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Abstract

The mixed quantum-classical dynamical simulation is essential to study nonadia-

batic phenomena in photophysics and photochemistry. In recent years, many machine

learning models have been developed to accelerate the time evolution of the nuclear

subsystem. Herein, we implement long short-term memory (LSTM) networks as a

propagator to accelerate the time evolution of the electronic subsystem during the

fewest-switches surface hopping (FSSH) simulations. A small number of reference tra-

jectories are generated using the original FSSH method, and then the LSTM networks

can be built, accompanied by careful examination of typical LSTM-FSSH trajectories

that employ the same initial condition and random numbers as the corresponding ref-

erence. The constructed network is applied to FSSH to further produce a trajectory

ensemble to reveal the mechanism of nonadiabatic processes. Taking Tully’s three mod-

els as test systems, the collective results can be reproduced qualitatively. This work

demonstrates that LSTM is applicable to the most popular surface hopping simulations.
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Dynamical simulations governed by the laws of quantum mechanics are indispensable

for providing intuitive views of photophysical and photochemical processes.1–3 Although a

fully quantum treatment on both nuclear and electronic motion should be employed in princi-

ple, such a simulation is too computationally expensive for medium-sized or larger polyatomic

molecules. The requirement of prior knowledge about potential energy surface (PES) further

hampers its application on realistic molecular systems with high dimensionality. As an al-

ternative, the mixed quantum-classical molecular dynamics (MQC-MD) approach provides

a powerful tool to study the mechanism of photochemical reactions, including the excited-

state lifetimes and the quantum yields of photoproducts on different reaction channels. Dur-

ing MQC-MD simulations, the nuclei are represented as classical particles but incorporate

quantum feedback from the electronic motion. Many theoretical models and algorithms for

MQC-MD have been developed over the past decades.4–9 The most popular method is the

fewest-switches surface hopping (FSSH)10,11, in which the nuclei travel classically on a single

PES in an adiabatic electronic state with a probability of switching to any other state. The

hopping probability is extracted from the time evolution of electronic degrees of freedom.

Despite its simplicity for implementation and great success in many applications12–14, the

computational cost on FSSH is still much more expensive than ground-state MD, especially

with the growing demand of simulations on photodynamics in long timescale.15 At each

time step, electronic structure calculations on ground and excited electronic states, includ-

ing potential energies, gradients as well as nonadiabatic coupling vectors (NACVs) between

different states, are usually required at a high level of theory. How to accelerate dynami-

cal simulations remains an important topic if we are willing to extend FSSH to a broader

prospect.

In recent years, we have witnessed the prosperity of machine learning (ML) assisted

chemical researches.16–20 Several ML techniques such as kernel ridge regression and artificial

neural network have been proved as promising tools to provide a relation between molecu-

lar structure and ground-state potential energy, so-called ML-based PES or ML-based force
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field.21–28 Because of its great potential to achieve high computational accuracy and high

efficiency on MD simulations simultaneously, the extension to MQC-MD is attractive and

seems to be straightforward. In principle, each of adiabatic PESs can be individually fitted

as the same as the proposed ML-based force fields. However, the nonadiabatic coupling

vectors between adiabatic states have become a challenge for a fully ML-based MQC-MD

simulations. One solution is based on the Landau-Zener formalism such as Zhu-Nakamura

dynamics29,30, in which the probability of surface hopping can be obtained only from adia-

batic energies and gradients, without the need to compute NACVs. It has been successfully

applied to ML-based nonadiabatic molecular dynamics approaches recently31,32, but the lim-

itation of Landau-Zener formalism as well as its influence on final simulation results is not

easy to realize or control. Another way is to improve ML models to fit the reference values of

NACVs.33–36 Despite its success on some systems, it is worthy noting that machine learning

on nonadiabatic coupling is a nontrivial issue for high-dimensional molecules because NACV

keeps almost negligible in most regions of PES but becomes very sensitive to small changes of

nuclear positions in the vicinity of conical intersections. The construction on a high-quality

ML database is also extremely time-consuming in practice on account of multi-configuration

electronic structure calculations for accurate reference values.

In the above approaches, machine learning models are developed and applied to predict

potential energies, gradients and nonadiabatic coupling vectors instead of electronic struc-

ture calculations, while the time evolution of nuclei and electrons is still governed by the

Newton’s second law and the time-dependent Schrödinger equation, respectively. A time

series of nuclear positions, velocities and elements of electronic density matrix is obtained

and updated during simulations. It suggests employing machine learning to propagate nu-

clear and/or electronic subsystems based on historical knowledge extracted from the pre-

ceding trajectory data. On one hand, ML techniques such as recurrent neural network

(RNN) and long short-term memory (LSTM) network have been introduced to classical MD

for realistic material and protein systems to solve Newton’s equations.37–40 On the other
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hand, several successful ML applications on quantum dynamics have been also proposed in

recent years.41–43 For example, Lan and coworkers simulated electronic evolution of multi-

configuration time-dependent hartree method with LSTM;44 Ullah and Dral studied quan-

tum dissipative dynamics of spin-boson model and Fenna-Matthews-Olson complex using

kernel ridge regression and convolutional neural network, respectively;45,46 Hammes-Schiffer

and coworkers employed artificial neural networks to solve the time-dependent Schrödinger

equation and propagate the wavepacket relevant to proton transfer systems.47 There are also

reports of deep learning in prediction of Landau-Zener transitions48,49 as well as linearized

semiclassical and symmetrical quasiclassical mapping dynamics50. This inspired of us that

machine learning can be implemented as propagator for electronic degrees of freedom in

mixed quantum-classical molecular dynamics, possibly avoiding expensive computation or

difficult prediction on NACVs.

In this Letter, we will show that LSTM networks can be incorporated into FSSH to

evolve the electronic density matrix. Let us first give a brief review about LSTM. Neural

network models represent arbitrary functions with highly interconnected nodes processing

through one or several hidden layers. The input vector x of the function is provided to the

nodes in input layer, and the output vector y is obtained from the nodes in output layer.

For a conventional L-layer neural network, the connection between two adjacent layers can

be expressed as

h[l ] = f
(
W[l ]h[l−1] + B[l ]

)
(1)

where l = 1, 2, ..., L. In the above equation, the l-th layer receives h[l−1] from the previous

layer and sends h[l ] to the next layer, W[l ] and B[l ] denote weight and bias parameters for the

current layer, respectively, and f is the activation function such as a sigmoid or hyperbolic

tangent function. Note that h[0] = x for input layer and h[L] = y for output layer. Recurrent
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Figure 1: Structures of LSTM unit (a) and multi-layer LSTM networks (b).
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neural network takes this form in general but accepts a sequence as input variables. A time

series x1,x2, ...,xt is a typical input sequence, in which xt+1 at the next time step can be

predicted using neural network as

ht = f1 (Whxxt + Whhht−1 + Bh) (2)

yt = f2 (Wyhht + By) (3)

where Whx, Whh and Wyh are weight parameters, Bh and By are bias parameters, f1 and f2

can be selected as the same or different activation functions, ht is the hidden state vector that

implicitly involves historical information of x, i.e., x1,x2, ...,xt−1 through ht−1 (see Eq 2),

and xt+1 is identical to or obtained based on the output of neural network (yt). The hidden

state and all input vectors at previous time steps are fully-connected in RNN and prone to an

exploding or vanishing gradient. The former can be solved using gradient clipping, while the

latter can be addressed using a gating mechanism such as long short-term memory networks

or gate recurrent unit (GRU). In LSTM, ht is employed to represent the short-term state,

and an additional vector ct is introduced to preserve the long-term state, which is so-called

memory. As shown in Figure 1(a), a gated cell is designed to decide what to store by a forget

gate ft , what to read by an input gate it, and what to write by an output gate ot; that is

ft = σ (Wfxxt + Wfhht−1 + Bf ) (4)

it = σ (Wixxt + Wihht−1 + Bi) (5)

ot = σ (Woxxt + Wohht−1 + Bo) (6)

where σ denotes the sigmoid function. The propagation of LSTM is given by
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c̃t = tanh (Wcxxt + Wchht−1 + Bc) (7)

ct = ft � ct−1 + it � c̃t (8)

ht = tanh (ct) � ot (9)

Here � denotes the elementwise product, yt is obtained from ht via a dense layer using Eq

3 with a hyperbolic tangent function, and xt+1 is identical to or obtained based on yt. Eqs

4-9 can be briefly expressed as

{ht, ct} = LSTM (xt,ht−1, ct−1;W,B) (10)

In this work, a multi-layer LSTM is employed and shown in Figure 1(b); that is

{
h

[l]
t , c

[l]
t

}
= LSTM

(
h

[l−1]
t ,h

[l]
t−1, c

[l]
t−1;W[l ],B[l ]

)
(11)

where l = 1, 2, 3, h
[0]
t = xt, and h

[3]
t is applied to the dense layer to predict xt+1.

Here we implemented LSTM networks into the original version of FSSH. The extension

to a variety of modified surface hopping algorithms is straightforward in principle. In the

surface hopping scheme, the nuclear motion is determined by the gradients on a single

adiabatic PES; that is

MaR̈a = −∇RaEk (12)

where Ra and Ma denote the position and mass of nucleus a, respectively, and k denotes

the adiabatic electronic state at the current time step with the relevant potential energy Ek.

The time evolution on electronic subsystem can be expressed as
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Figure 2: Workflow for LSTM-FSSH: whole procedure with three steps (top), example on
generation of sequences from a reference trajectory in step 1 (middle) and implementation
on dynamical simulations in step 3 (bottom).
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ρ̇jk = − i
~
ρjk (Ej − Ek)−

∑
l

Ṙ · (djlρlk − ρjldlk) (13)

where djk is the nonadiabatic coupling vector between state j and k, and ρ denotes the

electronic density matrix. According to the assumption of the fewest number of switches,

the probability of nonadiabatic transitions from the current state k to state j in a time

interval ∆t is

Pk→j (t, t+ ∆t) = max

0,

∫ t+∆t

t
2Re

(
Ṙ · dkjρjk

)
dτ

ρkk (t)

 (14)

For a system only involving two electronic states, the probability of switching from the

current state k to state j is identical to that of jumping out from state k, which can be

expressed as10

Pk→j (t, t+ ∆t) = max

(
0,
ρkk (t)− ρkk (t+ ∆t)

ρkk (t)

)
(15)

In presence of multiple electronic states, Eq 15 is the summation over hopping probabilities

from the current state to all other states and cannot be used directly. During FSSH simu-

lations on molecular systems, however, the hopping is only allowed when the energy gap is

lower than a certain threshold (e.g., 10 kcal/mol) in practice. It means that in most regions

of PES, the quantum subsystem can be reduced to the simple two-state case. It is no longer

reliable in the vicinity of multistate intersections, in which some advanced nonadiabatic

dynamical simulations beyond FSSH are usually required.

During conventional FSSH simulations, Eqs 12 and 13 are used to govern nuclear and

electronic motion, respectively, and the hopping probability is calculated with Eq 14. In

LSTM-FSSH, a LSTM network is built based on a small number of existing trajectories and

works as a propagator of electronic degrees of freedom, which replaces Eq 13. In other words,

ρ (t+∆t) is predicted by LSTM based on a time series in the preceding trajectory without
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solving Eq 13. The hopping probability is obtained directly using Eq 15 instead of Eq 14.

On one hand, the time evolution on classical subsystem can be also learned by LSTM or

RNN as reported in recent works.37,38 On the other hand, several ML-based protocols have

been performed excellently to predict accurate potential energies and gradients on the right-

hand side of Eq 12, which may be a better choice for realistic molecular systems.51,52 Here

the classical subsystem still evolves according to Eq 12 with analytical gradients of our test

model systems. More benchmarks and further methodology developments on this issue are

left for future work.

The workflow of LSTM-FSSH is summarized in Figure 2. We take a one-dimensional

system with two electronic states as an instance and outline the procedure as follows:

Step 1. Database construction.

(1a) Conventional FSSH simulations with a time step ∆t are performed to generate a

small number of reference trajectories. The nuclear position R and velocity Ṙ, potential

energies and gradients in two states as E0, E1, G0, G1, as well as two independent elements

of electronic density matrix as ρ00 and ρ01, are recorded at each step.

(1b) Select a few representative trajectories as “external reference trajectories” in prepara-

tion for (2d). For example, three trajectories at a low, medium and high initial momentum

for each model are selected in this work. These trajectories are excluded from reference

trajectories in (1c)-(2c).

(1c) A time series x1,x2, ...,xN with N frames is extracted with a time step ∆ts from

one reference trajectory. Here x consists of R, Ṙ, E0, E1, G0, G1, ρ00, ρ01 and/or arbitrary

functions of the above nuclear degrees of freedom, and ∆ts is equal to ∆t for simplicity.

(1d) The sequence obtained in (1c) is shifted forward by M frames with the same time

step to extract another time series until the end of this reference trajectory.

(1e) Repeat (1c) and (1d) on other reference trajectories to extract a large number of

N -length sequences as the database for LSTM training.

Step 2. LSTM training.
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(2a) Select 80% of reference sequences randomly from the database to build the training

set. The remaining sequences belong to the testing set.

(2b) Set initial values of hyperparameters of LSTM, such as layer sizes of network and

batch sizes for minimization.

(2c) Perform the training of LSTM based on the training set. The mean squared error

(MSE) of ρ00 and ρ01 is minimized using Adam optimizer53, and the MSE for the testing set

is monitored to avoid overfitting.

(2d) Perform LSTM-FSSH with the same initial condition and random numbers for hop-

ping of the external reference trajectories selected in (1b). If the generated trajectory visually

agrees with the corresponding FSSH trajectory, the present LSTM model is acceptable. Oth-

erwise, return to (2c) to rebuild LSTM using different hyperparameters and random numbers

for training.

Step 3. FSSH simulation.

(3a) Initialize the nuclear position, velocity and electronic density matrix for one trajec-

tory as the same as conventional FSSH simulation without machine learning.

(3b) Perform conventional FSSH simulation using Eqs 12, 13 and 14 for N steps to

produce an N -length sequence, that is, a short-time dynamics in absence of LSTM in the

beginning.

(3c) The generated sequence is provided into LSTM to predict electronic density matrix

in the next step. Note that the dimensionalities of input and output features of LSTM can

be different. Take our test case as an instance. The output layer usually has three nodes as

ρ00, Re (ρ01) and Im (ρ01), while the input layer includes all nuclear and electronic features.

(3d) The nuclear position and velocity are propagated to the next step using Eq 12,

followed by the calculation on potential energies and gradients in all electronic states. The

hopping probability between electronic states is obtained using Eq 15, and the nuclear ve-

locity is adjusted if a switch occurs. This step is the same as conventional FSSH simulation

without machine learning, except for the calculation on hopping probability.
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(3e) Shift the N -length sequence forward by one step. Now the electronic and nuclear

features updated in (3c) and (3d) is added into the sequence.

(3f) Return to (3c) to propagate the trajectory until the stopping criterion such as the

maximum MD step is achieved.

(3g) Repeat (3a)-(3f) to produce a large number of trajectories. Study collective photo-

dynamic behavior of the system based on trajectory ensemble.

It is worthy noting that step (2d) is the most essential during the whole procedure. Unlike

the common case of ML training, step (2c) converges very quickly and seems to be insensitive

to hyperparameters in our test case. It indicates that the MSE for the testing set may be

insufficient to reflect actual performance of LSTM on dynamical simulations. Actually, it

is observed that a set of LSTM networks, all of which perform excellently in (2c), usually

produce diverse FSSH trajectories with the same initial condition and random numbers. It

may be due to the cumulative error of ML propagator after a long-time ML-driven dynamical

simulation. The implementation in step (2d) is thus required. In this work, we compare the

time evolution of electronic density matrix visually as a criterion of consistency between

external reference and LSTM-FSSH trajectories. The hyperparameters M and N in step 1

are also tuned, leading to a reconstructed database. In practice, the input features as well as

the arbitrary functions mentioned in step (1c) may be even necessary to select again before

returning to (2c). However, the additional computational cost is small because the reference

FSSH trajectories have been produced in step (1a) and keep the same regardless of database

reconstruction or input feature reselection.

We employ Tully’s three models reported in the original FSSH paper10: the single-avoided

crossing model, the dual-avoided crossing model, and the extended coupling model as our

test systems (Fig. 3), which are supposed to cover most of the typical features in realis-

tic molecular systems. The reference trajectories as well as the final collective results for

comparison are obtained using the original FSSH method despite its well-known limitations

such as the overcoherence problem.54–57 All parameters of Tully’s models are in atomic units.
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Figure 3: Adiabatic PESs and nonadiabatic coupling vectors of the single-avoided crossing
model (a), the dual-avoided crossing model (b), and the extended coupling Hamiltonian
model (c). All quantities are in atomic units.

In order to keep consistent with previous works, the classical position R and velocity Ṙ in

Fig. 2(c) are represented by x and v, respectively, for Tully’s three models. All trajectories

start at x = −20.0 on the lower surface with an initial momentum to the right and stop at

x = ±25.0. The elements of electronic density matrix are initialized as zero except ρ00 = 1.0.

The time step ∆t = 1.0 for all simulations, and ∆ts for LSTM is equal to ∆t . The mass

in Eq 12 is set as 2000 to mimic atomic nuclei. For each model and each method, 2000

trajectories are simulated with each initial momentum for collection. The collective results

consist of four channels: transmission to x > 25.0 in the lower state (T1), transmission

to x > 25.0 in the upper state (T2), reflection to x < −25.0 in the lower state (R1) and

reflection to x < −25.0 in the upper state (R2). The proportions that the trajectory stops

in each channel are calculated and shown in Fig. 4. The training of all LSTM networks

are implemented using Keras58 combined with Tensorflow59. The interface between FSSH

propagator and LSTM networks are built using Keras2C60.

The diabatic Hamiltonian of the single-avoided crossing model is given as

14



Figure 4: Collective results of single-avoided crossing (a), dual-avoided crossing (b), and
extended coupling models (c) obtained using original FSSH as reference (top) or LSTM-FSSH
(bottom).
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V11 (x) =


A
[
1− e−Bx

]
x > 0

−A
[
1− eBx

]
x < 0

V22 (x) = −V11 (x) (16)

V12 (x) = V21 (x) = Ce−Dx2

where A = 0.01, B = 1.6, C = 0.005, and D = 1.0. The corresponding adiabatic PESs and

NACVs are shown in Figure 3(a). We generate 20 reference trajectories without machine

learning for each initial momentum. The sequences in the training and testing sets are

extracted from all reference trajectories with all initial conditions. The classical position x,

velocity v, potential energies E0 and E1, as well as elements of electronic density matrix are

employed as input features. More details can be seen in Tables S1, S2 and S3.

The excellent performance for the testing set in step (2c) is shown in Figure S1. As

mentioned in step (2d), LSTM-FSSH simulations are implemented to produce three rep-

resentative trajectories with different initial momenta. The time evolution of ρ00, Re (ρ01)

and Im (ρ01) is compared to the corresponding reference trajectories with the same initial

condition and random numbers for hopping (see Figure 5). At a low momentum of 5.0,

LSTM-FSSH keeps consistent with the reference for 12500 steps. The deviation takes place

after the system departs from the coupling region, which will not affect collective results.

At a medium momentum of 15.0 and a large momentum of 30.0, LSTM-FSSH agrees well

with the reference except for a slightly fluctuation of ρ00 after a sudden decay. The hopping

event is observed only at a large momentum. The system switches to the upper surface at

step 1882 and 1339 with and without LSTM, respectively. Then we run 2000 trajectories

with each initial momentum (60000 in total) using LSTM-FSSH. As shown in Figure 4, the

collective result is almost the same as the original FSSH simulations. The resonance phe-

nomenon at 7.0 < p < 9.0 populated on R1 can be partially captured by machine learning
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with a smaller probability.

Figure 5: Electronic density matrix plotted as function of time for representative trajectories
of single-avoided crossing model at a low (a), medium (b) and high (c) initial momentum.
Different colors represent different simulation methods (black: original FSSH as reference;
red: LSTM-FSSH).

The diabatic Hamiltonian of the dual-avoided crossing model is

V11 (x) = 0

V22 (x) = −Ae−Bx2

+ E (17)

V12 (x) = V21 (x) = Ce−Dx2
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where A = 0.10, B = 0.28, C = 0.015, D = 0.06, and E = 0.05. The adiabatic PESs

and NACVs are shown in Figure 3(b), where Einit denotes the initial kinetic energy, and

the initial momentum p =
√

2mEinit. For each initial momentum, there are 50 reference

trajectories generated without machine learning. Then the reference sequences are extracted

to build the database for LSTM training, covering all initial momenta. The input features

are selected as the same as the first model. More details can be seen in Tables S1, S2 and

S4.

First, it can be seen from Figure S1 that the performance for the testing set is remarkable.

Second, three representative trajectories using LSTM-FSSH simulations are compared. As

shown in Figure 6, the higher the initial momentum, the better the performance of machine

learning. At a low momentum of ln(Einit) = −3.0, LSTM-FSSH deviates away from the

reference after step 3000. Both trajectories switch to the upper surface at step 2949, and

return to the lower surface at step 4257 and 7156 using LSTM and FSSH, respectively. At

a medium momentum of ln(Einit) = −1.5, two trajectories share the same hopping event at

step 1424. At a high momentum of ln(Einit) = −0.5, the transition between two surfaces

is never observed in the representative trajectories using LSTM, while the original FSSH

simulation predicts an excited-state population lasting for a short time around step 800.

Finally, 2000 LSTM-FSSH trajectories with each initial momentum (74000 in total) are

implemented. The collective result shown in Figure 4 is consistent with the performance

on representative trajectories. Our method gives a qualitatively correct result except an

error within −3.0 < ln(Einit) < −2.0 where the increase of T2 population is missing. It

is probably due to the relatively small number of T2 trajectories in our training set, but

manually picking trajectories with a specified population is always unrealistic for polyatomic

molecules.

The simulation results using another LSTM model with different hyperparameters are

reported in Figs. S1, S17 and S18. No problem can be observed from the MSE of the

testing set in step (2c). However, the FSSH simulations with and without machine learning
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in step (2d) represent opposite tendencies of the time evolution of ρ00. At a low momentum,

ρ00 keeps around 1.0 in the reference but decreases to 0.5 using LSTM after a long-time

dynamics. At a medium momentum, ρ00 converges to 0.3 in the reference but returns to 0.8

using LSTM. It indicates large cumulative errors of this inappropriate LSTM model, leading

to an incorrect collective result.

Figure 6: Electronic density matrix plotted as function of time for representative trajectories
of dual-avoided crossing model at a low (a), medium (b) and high (c) initial momentum.
Different colors represent different simulation methods (black: original FSSH as reference;
red: LSTM-FSSH).
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The diabatic Hamiltonian of the extended coupling model is

V11 (x) = A

V22 (x) = −A (18)

V12 (x) = V21 (x) =


B
[
2− e−Cx

]
x > 0

BeCx x < 0

where A = 0.0006, B = 0.1, and C = 0.9. The adiabatic PESs and NACVs are shown

in Figure 3(c). Note again that the original FSSH simulation results are employed as the

reference of machine learning, and the decoherence correction, which is necessary for this

model to reproduce its full-quantum dynamics behavior, is out of our scope in this work.

We first implement FSSH simulations without machine learning to produce 50 reference

trajectories at each initial momentum. However, all attempts on LSTM training using the

above strategy are unsuccessful in step (2d). As shown in Fig. S19, the decrease of ρ00

appears too early using LSTM; LSTM also fails to reproduce the strong oscillation of ρ01,

which is relevant to the coherence in the coupling region. Unsurprisingly, the collective result

deviates away from the reference (see Fig. S20).

We refine the LSTM network in two ways. First, since the coupling between quantum

and classical subsystems is the key factor of MQC-MD, elaborate selection on input features

related to nuclear degrees of freedom is expected to improve the performance of LSTM

on the prediction of electronic motion. Functions of nuclear degrees of freedom: G0|v|
(E1−E0)2

and G1|v|
(E1−E0)2

, are introduced as two additional input features. Three factors including the

degeneracy of PESs, the branching of PESs and the correlation between nuclear velocity

and transition probability in the intersection region are considered. It would be beneficial

to add a small positive bias ε to denominator when the potential energy difference is very

close to zero, but we have never encountered such a problem on numerical instability in the

present work. Second, multiple connected LSTM networks are constructed. As shown in
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Fig. S11(a-d), the first LSTM network is used at the beginning of trajectory (x = −20.0).

When the system first reaches x = −2.0, the second LSTM is employed until it first reaches

x = 1.0 or returns to −2.0. The third LSTM is applied sequentially until the system first

reaches x = 4.0 or returns to −7.0. The last LSTM is responsible when x ≥ 4.0 or ≤ −7.0.

Two infrequent cases were also displayed in Fig. S11(e-f), in which the velocity reverses

when x ≤ −2.0 or ≥ 4.0 at a very low or high momentum, respectively. In the former case,

the first LSTM would switch to the third one immediately; in the latter case, the last LSTM

would change to the third one when the system returns to x = 4.0. The third network would

be kept until x ≤ −7.0 in both cases, followed by the last LSTM. More details of LSTM

used for the extended coupling model can be seen in Tables S1, S2 and S5.

The comparison between three representative LSTM-FSSH trajectories and their corre-

sponding references is shown in Figure 7. The multiple networks perform well. The time

evolution of ρ00, Re(ρ01) and Im(ρ01) agrees with the reference except for a problem at a low

momentum of 5.0, where ρ00 descends too early and tends to oscillate using LSTM. Hop-

ping events are observed only at a medium momentum of 15.0 with both methods, taking

place at the same step as 1927. The collective result shown in Figure 4 is obtained from

2000 LSTM-FSSH trajectories with each initial momentum (60000 in total). LSTM-FSSH is

qualitatively identical to the original FSSH simulations without machine learning. Further

analysis on the distribution of hopping events is shown in Figures S9 and S10, disclosing a

few unphysical predictions of LSTM after long-time dynamics. This can be attributed to not

only the cumulative errors of ML propagator but also the tendency of LSTM-FSSH to learn

the average features of trajectory ensemble, in which trajectories starting from the same

initial condition should give different time series due to random hopping events. Despite

these intrinsic limitations of our method, their influence on simulation results is possible to

evaluate or control at least roughly (see Section S2.3, SI). In addition, the MSEs for the

testing sets with all LSTM models are indistinguishable in Figure S1 despite different collec-

tive results, which highlights the importance of step (2d) on LSTM training. Using a single
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LSTM with additional input features only partially improves the performance of collective

results (see Section S3.2, SI).

Although the improvement of multiple LSTM networks with additional input features

is remarkable, we still suggest simple settings of LSTM networks as the first choice on a

new system. First, nuclear positions and velocity, potential energies in two electronic states,

and elements of electronic density matrix are recommended as initial input features. More

complex descriptor such as G0|v|
(E1−E0)2

and G1|v|
(E1−E0)2

, which also performs well for other test

cases in this work (see Fig. S16), can be introduced when LSTM network with different

hyperparameters cannot work in step (2d). Second, a close examination on representative

trajectories indicates that the discrepancy between energy degeneration and strong coupling

regions may lead to the difficulties on the extended coupling model. According to our

experience, however, it is an unusual case for realistic photochemical reactions, which can

be identified by detecting the coupling region based on frequent hopping events in reference

trajectories. Multiple networks provide an option if all attempts using a single LSTM fail.

Different networks can be applied to the detected strong coupling region, the intersection

region without strong coupling and other regions with a large energy gap between two states.

The application of this method on realistic molecular systems is attractive, but some

nontrivial issues should be addressed in prior. First, although NACV is no longer necessary

for two-state systems, the excited-state calculation on potential energies and gradients is

still a bottleneck for medium-sized or larger molecules. Fortunately, ML-based force fields

have been successfully applied to dynamical simulations on multiple PESs of several organic

molecules in photochemistry.31,32,61–63 The combination of ML-based force fields and LSTM-

FSSH is straightforward, in which the term on the right-hand side of Eq 12 would be obtained

from ML prediction instead of electronic structure calculation. Second, the input feature se-

lection is more complicated for high-dimensional classical subsystem. Our preliminary results

show that a large number of input features related to nuclear motion hamper the ability of

LSTM to propagate electronic subsystem. The encoder network that generates a low-order
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Figure 7: Electronic density matrix plotted as function of time for representative trajecto-
ries of extended coupling model at a low (a), medium (b) and high (c) initial momentum.
Different colors represent different simulation methods (black: original FSSH as reference;
red: LSTM-FSSH). Switches between two connected LSTM networks are represented by
vertical lines (orange: 1→2; green: 2→3; blue: 3→4).
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latent space may be a promising choice to extract more concentrated input features.38 The

use of encoder in LSTM-FSSH would be simpler than latent-space classical dynamics be-

cause the time evolution on nuclei is still implemented in the full-dimensional space. Third,

a general quantitative criterion in step (2d) is absent. Here we compare the representative

LSTM-FSSH trajectories with the reference visually, which would be system-specific and la-

borious for realistic molecules. ML-based analysis of MQC-MD dynamics such as isometric

feature mapping and multidimensional scaling provides a possible solution to this trouble.64

Fourth, the time-series LSTM predictor always suffers from cumulative errors, while non-

time-series ML approaches, which have been implemented for surface hopping dynamics

simulations on realistic molecular systems, are free of this problem. More comparisons be-

tween LSTM-FSSH and the non-time-series ML-based excited-state dynamics methods such

as SchNarc35 should be performed carefully. Finally, how to extend this method to study

the dynamics around multistate intersections is unsolved in this work. We suggest making a

pause for ML-driven simulation and switching to a more accurate MQC-MD approach7,65,66

when the system evolves in multistate intersection regions.

In summary, we have demonstrated how to construct long short-term memory networks

as a propagator of electronic subsystem in fewest-switches surface hopping simulations. The

single-avoided crossing, dual-avoided crossing and extended coupling models are employed

as our test systems. Starting with a small number of full-length trajectories (20-50 for each

initial momentum and each model) from the original FSSH simulations, LSTM networks

can be built to reproduce the time evolution of electronic density matrix during a long-

time FSSH dynamical simulation in presence of only 50-100 steps given as the initial input

sequence. Then we simulate 2000 trajectories for each initial momentum and each model

using LSTM-FSSH. The collective results is qualitatively consistent with the original FSSH

as reference, even though the extended coupling model is much more difficult than other

test cases and requires multiple connected LSTM networks. All results show that a lower

initial momentum results in a longer-time trajectory with larger cumulative errors, which
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is an intrinsic drawback of LSTM propagators. Besides avoiding expensive computation on

nonadiabatic coupling vectors at least for two-state systems, the combination of LSTM and

ML-based force field has a great potential to further accelerate surface hopping simulations

on realistic molecular systems. We believe that LSTM is a powerful tool on mixed quantum-

classical molecular dynamics to study photophysics and photochemistry more effectively.
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Section S1. Input features and hyperparameters of LSTMs 

Table S1. Input features of LSTMs for Tully’s three models 

System Input Feature 

Tully 1 x v E0 E1 ρ00 Re(ρ01) Im(ρ01)   

Tully 2 x v E0 E1 ρ00 Re(ρ01) Im(ρ01)   

Tully 3 x v E0 E1 ρ00 Re(ρ01) Im(ρ01) 
𝐺0|𝑣|

(𝐸1−𝐸0)
2  

𝐺1|𝑣|

(𝐸1−𝐸0)
2  

Tully 1: Single-avoided crossing model. 

Tully 2: Dual-avoided crossing model. 

Tully 3: Extended coupling model. 

x: classical position. 

v: classical velocity. 

E0, G0: potential energy and gradient in lower surface. 

E1, G1: potential energy and gradient in upper surface. 

ρ00, ρ01: elements of electronic density matrix. 

 

 

 

Table S2. Hyperparameters of LSTMs for Tully’s three models 

  Tully 1 Tully 2 
Tully 3 

Network 1 Network 2 Network 3 Network 4 

N_input [a] 7 7 9 9 9 9 

Size [b] 32 48 72 72 72 72 

N [c] 100 50 50 50 50 50 

M [d] 50 20 25 25 3 5 

N_train [e] 96235 355776 191903 35655 175480 471559 

N_batch [f] 64 32 32 16 32 64 

α [g] 0.001 0.001 0.001 0.001 0.001 0.001 

[a]  Number of input features. 
[b]  Number of nodes for each LSTM layer and dense layer. 
[c]   Length of input sequence; see explanation for step (1c) in main text. 
[d]  Interval between extracted sequences; see explanation for step (1d) in main text. 
[e]  Number of sequences in training set. 
[f]   Batch size for minimization. 
[g]   Learning rate. 
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Table S3. Scaled input features of LSTM for single-avoided crossing model. 

Definition Scaled 

x 0.05x 

v (2000v-17)/30 

E0 50E0 

E1 50E1 

ρ00 ρ00-0.5 

Re(ρ01) Re(ρ01) 

Im(ρ01) Im(ρ01) 

 

 

Table S4. Scaled input features of LSTM for dual-avoided crossing model. 

Definition Scaled 

x 0.05x 

v (2000v-17)/30 

E0 20E0 

E1 20E1 

ρ00 ρ00-0.5 

Re(ρ01) Re(ρ01) 

Im(ρ01) Im(ρ01) 

 

Table S5. Scaled input features of LSTM for extended coupling model. 

Definition Scaled 

x 0.05x 

v (2000v-17)/30 

E0 2.5E0 

E1 2.5E1 

ρ00 ρ00-0.5 

Re(ρ01) Re(ρ01) 

Im(ρ01) Im(ρ01) 

𝐺0|𝑣|

(𝐸1−𝐸0)
2  

𝐺0|𝑣|

3.75(𝐸1−𝐸0)
2  

𝐺1|𝑣|

(𝐸1−𝐸0)
2  

𝐺1|𝑣|

3.75(𝐸1−𝐸0)
2  

 



Section S2. Additional results of LSTM-FSSH

S2.1 Performance of LSTM networks on testing sets

Figure S1: Comparison of LSTM predictions of electronic density matrix with reference for
testing sets: single-avoided crossing model in the main text (a), dual-avoided crossing model
in the main text (b), extended coupling model with multiple networks in the main text (c-
f), dual-avoided crossing model with unsatisfactory performance in Fig. S17 (g), extended
coupling model with unsatisfactory performance in Figs. S19 (h) and S14 (i), and extended
coupling model with moderate performance in Fig. S12 (j). All values of ρ00 are shifted by
−0.5.
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S2.2 Time-dependent population for selected trajectories

We further analysis all trajectories that end in the same channel as the representative tra-

jectories shown in Figs. 5, 6 and 7 in the main text. The number of trajectories between

−25.0 < x < 25.0 in the lower surface is plotted as function of time in Figs. S2, S3 and

S4 for the single-avoided crossing, dual-avoided crossing and extended coupling models, re-

spectively. The results with LSTM-FSSH are consistent with reference. For example, the

representative trajectory in Fig. 5(c) ends in T2 and corresponds to Fig. S2(c). The total

number in T2 channel is 1350 using LSTM and 1450 in reference. All of these trajectories

stay in the lower surface at the beginning. At step 1300, most trajectories switch to the

upper surface, which take place a little latter using LSTM. For the dual-avoided crossing

model, the representative trajectory in Fig. 6(c) ends in T1 and corresponds to Fig. S3(c).

All of these trajectories evolve in the lower surface until x > 25.0 (see the sudden jump to

zero in the end of simulation). An excited-state population lasting for a short time around

step 800 can be captured with both methods. For the extended coupling model, the rep-

resentative trajectory in Fig. 7(c) ends in T1 and corresponds to Fig. S4(c). It can be

inferred that some trajectories at a high speed switch to the upper surface and hop back

after step 2000 during LSTM-FSSH simulations, leading to a larger number of trajectories

ending in T1 in comparison of the reference. This is consistent with the unphysical re-hops

as discussed later.
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Figure S2: Number of trajectories between −25.0 < x < 25.0 in the lower surface plotted as
function of time for single-avoided crossing model at different initial momenta and different
channels: low speed/ending in T1 (a), medium speed/ending in T1 (b) and high speed/ending
in T2 (c). Different colors represent different simulation methods (black: original FSSH as
reference; red: LSTM-FSSH).
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Figure S3: Number of trajectories between −25.0 < x < 25.0 in the lower surface plotted as
function of time for dual-avoided crossing model at different initial momenta and different
channels: low speed/ending in T1 (a), medium speed/ending in T2 (b) and high speed/ending
in T1 (c). Different colors represent different simulation methods (black: original FSSH as
reference; red: LSTM-FSSH).
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Figure S4: Number of trajectories between −25.0 < x < 25.0 in the lower surface plotted
as function of time for extended coupling model at different initial momenta and different
channels: low speed/ending in T1 (a), medium speed/ending in R2 (b) and high speed/ending
in T1 (c). Different colors represent different simulation methods (black: original FSSH as
reference; red: LSTM-FSSH).
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S2.3 Time and space distributions of hopping events

The time and space distributions of hopping events at a low, medium and high initial mo-

mentum are shown in Figs. S5, S7 and S9 for the single-avoided crossing model, dual-avoided

crossing model and extended coupling model, respectively. We further distinguish the events

between the first-hops and re-hops and display the results in Figs. S6, S8 and S10. In

general, LSTM-FSSH is consistent with the reference qualitatively, but some discrepancies

cannot be neglected. For the single-avoided crossing model, LSTM predicts more hopping

events from the upper to lower surface (so-called down-hops). Most of them appear when

the trajectory moves away from the coupling region, indicating an unphysical hopping. The

LSTM-FSSH prediction on re-hops around the coupling region (x = 0.0) agrees with the

reference, accompanied by unphysical re-hops. However, the contribution of unphysical hop-

ping events has a small proportion (< 10%) compared to all hops, so its impact on the final

collective result seems little. The performance on the dual-avoided crossing model is better

than others. For the extended coupling model, LSTM predicts some unphysical down-hops

at a high speed. The relevant re-hops almost disappear using the original FSSH but can be

produced with LSTM in the noncoupling region. As a result, the ratios of T1 channel at the

same initial momentum (p = 30.0) are different using two methods. LSTM prediction at a

low speed is not accurate for this model, which may originate from the disagreement of ρ00

using two methods (see the representative trajectory in Fig. 7(a), step 6000-7000).

Two points should be considered to understand the performance of LSTM-FSSH. The

first one is the cumulative error after a long-time dynamics simulation, which is unavoidable

for any time-series ML predictor. However, the nuclei always evolve on a single potential

energy surface during FSSH simulations, which reduces the impact of inaccurate electronic

propagation on nuclear motion. In addition, FSSH requires a large number of trajectories to

obtain collective results. It means that ML is useful to generate trajectory ensemble based on

a small number of reference trajectories even if the length of trajectories is similar. Therefore,

the cumulative error is not a serious issue at least in our present cases. The second one is
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the re-hops that may be heavily influenced by cumulative errors. Surprisingly, we observe

the agreement between the original FSSH and LSTM-FSSH when the trajectory crosses the

coupling region again. LSTM actually predicts more re-hops far from the coupling region.

It is possible to avoid such unphysical re-hops by rejecting surface hopping when the energy

gap is larger than a certain threshold.
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Figure S5: (from top to bottom) Time distribution of switching from lower to upper sur-
face (i.e., up-hops), space distribution of up-hops, time distribution of switching from upper
to lower surface (i.e., down-hops), and space distribution of down-hops in all trajectories
for single-avoided crossing model at a low (a), medium (b) and high (c) initial momen-
tum. Different colors represent different methods (orange: original FSSH as reference; green:
LSTM-FSSH.)
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Figure S6: (from top to bottom) Time distribution of first-hops, space distribution of
first-hops, time distribution of re-hops, and space distribution of re-hops taking place in all
trajectories for single-avoided crossing model at a low (a), medium (b) and high (c) initial
momentum. Different colors represent different methods (orange: original FSSH as reference;
green: LSTM-FSSH.)
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Figure S7: (from top to bottom) Time distribution of up-hops, space distribution of up-hops,
time distribution of down-hops, and space distribution of down-hops in all trajectories for
dual-avoided crossing model at a low (a), medium (b) and high (c) initial momentum. Dif-
ferent colors represent different methods (orange: original FSSH as reference; green: LSTM-
FSSH.)

S12



Figure S8: (from top to bottom) Time distribution of first-hops, space distribution of
first-hops, time distribution of re-hops, and space distribution of re-hops taking place in all
trajectories for dual-avoided crossing model at a low (a), medium (b) and high (c) initial
momentum. Different colors represent different methods (orange: original FSSH as reference;
green: LSTM-FSSH.)
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Figure S9: (from top to bottom) Time distribution of up-hops, space distribution of up-hops,
time distribution of down-hops, and space distribution of down-hops in all trajectories for
extended coupling model at a low (a), medium (b) and high (c) initial momentum. Different
colors represent different methods (orange: original FSSH as reference; green: LSTM-FSSH.)
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Figure S10: (from top to bottom) Time distribution of first-hops, space distribution of
first-hops, time distribution of re-hops, and space distribution of re-hops taking place in
all trajectories for extended coupling model at a low (a), medium (b) and high (c) initial
momentum. Different colors represent different methods (orange: original FSSH as reference;
green: LSTM-FSSH.)
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Section 3. More information on LSTM networks for ex-

tended coupling model

S3.1 Multiple connected LSTM networks with trajectories in differ-

ent cases

Figure S11: Multiple connected LSTM networks (labeled as 1 in blue, 2 in green, 3 in
orange, and 4 in red) are applied and switched during propagation on extended coupling
model. Different initial momenta or random surface hopping events lead to different cases
represented in (a-f).
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S3.2 Attempts to construct a single LSTM network

We select the classical position x, velocity v, a function of nuclear degrees of freedom as
G0|v|

(E1−E0)
2 and G1|v|

(E1−E0)
2 , as well as ρ00 as input features to construct a single LSTM network.

Totally 165693 sequences are extracted from 50 reference trajectories with M = 50 and

N = 100. The number of nodes for each LSTM layer and the dense layer are set as 48.

The batch size for minimization is 64 with a learning rate as 0.001. As shown in Fig. S12,

the time evolution of ρ00 for three representative trajectories agree well with the reference.

The collective results at low and high momenta match the original FSSH simulation, but the

alternation of R1 and R2 populations at medium momenta disappears in LSTM-FSSH (see

Fig. S13). Here the off-diagonal elements of electronic density matrix are ignored. Although

the hopping probability can be obtained in absence of ρ01 using Eq (15) in the main text,

the phase of this term may strongly affect the population of reflection channels and should

be included in ML models via Re (ρ01) and Im (ρ01). However, all attempts, in which we

select G0|v|
(E1−E0)

2 , G1|v|
(E1−E0)

2 , ρ00, Re (ρ01), Im (ρ01) and some other classical variables as the input

features of a single LSTM network, fail in step (2d) (see an example in Figs. S14 and S15).
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Figure S12: Electronic density matrix plotted as function of time for representative trajec-
tories of extended coupling model at a low (a), medium (b) and high (c) initial momentum.
LSTM network is constructed with input features as x, v, G0|v|

(E1−E0)
2 , G1|v|

(E1−E0)
2 and ρ00; all

hyperparameters are listed in Section S3.2. Different colors represent different simulation
methods (black: original FSSH as reference; red: LSTM-FSSH).
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Figure S13: Collective result of extended coupling model obtained using LSTM in Fig. S12
in comparison with reference.
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Figure S14: Electronic density matrix plotted as function of time for representative trajec-
tories of extended coupling model at a low (a), medium (b) and high (c) initial momentum.
LSTM is built with input features as x, v, E0, E1, G0|v|

(E1−E0)
2 , G1|v|

(E1−E0)
2 , ρ00, Re (ρ01) and

Im (ρ01); 417096 sequences in database are extracted with M = 20 and N = 50; the number
of nodes for each layer is 72 with a batch size of 32 and a learning rate of 0.001. Differ-
ent colors represent different simulation methods (black: original FSSH as reference; red:
LSTM-FSSH).
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Figure S15: Collective result of extended coupling model obtained using LSTM in Fig. S14
in comparison with reference.

S21



S3.3 Performance of LSTM networks using more complex input fea-

tures on other models

Figure S16: Collective results of LSTM-FSSH. The input features of LSTM for the extended
coupling model in the main text are applied to single-avoided crossing (left) and dual-avoided
crossing (right) models.
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Section 4. Other LSTM networks with unsatisfactory per-

formance

Figure S17: Electronic density matrix plotted as function of time for representative trajecto-
ries of dual-avoided crossing model at a low (a), medium (b) and high (c) initial momentum.
LSTM is built with the number of nodes for each layer as 32; other hyperparameters are the
same as that used in the main text. Different colors represent different simulation methods
(black: original FSSH as reference; red: LSTM-FSSH).
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Figure S18: Collective result of dual-avoided crossing model obtained using LSTM in Fig.
S17 in comparison with reference.
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Figure S19: Electronic density matrix plotted as function of time for representative trajec-
tories of extended coupling model at a low (a), medium (b) and high (c) initial momentum.
LSTM is built with the same input features as the first and second test systems; 422341
sequences in database are extracted with M = 20 and N = 50; the number of nodes for each
layer is 72 with a batch size of 64 and a learning rate of 0.001. Different colors represent
different simulation methods (black: original FSSH as reference; red: LSTM-FSSH).
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Figure S20: Collective result of extended coupling model obtained using LSTM in Fig. S19
in comparison with reference.
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