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FEYNMAN AMPLITUDES, COACTION PRINCIPLE, AND

COSMIC GALOIS GROUP

FRANCIS BROWN

Abstract. The first part of a set of notes based on lectures given at the IHES
in May 2015 on Feynman amplitudes and motivic periods.

0.1. Some motivation for physicists. Scattering amplitudes are ubiquitous in
high energy physics and have been intensively studied from at least three angles:

(1) in phenomenology, where amplitudes in quantum field theory are obtained
as a sum of Feynman integrals associated to graphs which represent inter-
actions between fundamental particles. This presents a huge computational
challenge with important applications to collider experiments.

(2) in superstring perturbation theory, where amplitudes are expressed as in-
tegrals over moduli spaces of curves with marked points.

(3) in various modern approaches, most notably in the planar limit of N =
4 SYM, which avoid the use of Feynman graphs altogether and seek to
construct the amplitude directly, either via the bootstrap method, or via
geometric approaches such as on-shell diagrams or the amplituhedron.

The goal of these notes is to study a new kind of structure which is potentially
satisfied by amplitudes in all three situations. To motivate it, consider first the
case of the dilogarithm function, defined for |z| < 1 by the sum

Li2(z) =
∑

n≥1

zn

n2
.

It is an iterated integral over the projective line minus three points, and is the
universal function describing amplitudes at one loop. Chen’s general theory of
iterated integrals [26] naturally associates to it a coproduct ∆it satisfying

∆it Li2(z) = 1⊗ Li2(z) + Li1(z)⊗ log(z) + Li2(z)⊗ 1 ,

where Li1(z) = − log(1− z). Suitably interpreted, this coproduct encodes both the
differential equation ∂

∂z Li2(z) = Li1(z) d log(z), and also the action of monodromy
Li2(z) 7→ Li2(z) + 2πi log(z) as z winds around the point z = 1 in the positive
direction. It is well-known that Feynman integrals and amplitudes of different
orders can be related both with respect to differentiation, and also with respect to
branch cuts, and so it comes as no surprise that the coproduct ∆it has found many
uses in high-energy physics via the so-called method of symbols [36].

Now consider the much more subtle situation when z = 1. Then Li2(1) = ζ(2)
is simply a number and all the structure described above seems to be lost. It can,
however, be retrieved by replacing ζ(2) with a ‘motivic period’ ζm(2), which as a
first approximation, can be simply thought of as a matrix of numbers (in this case,
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2 FRANCIS BROWN

a two by two matrix). It now satisfies a coaction, rather than a coproduct:

∆ζm(2) = ζm(2)⊗ 1 .

The dilogarithm can also be promoted a motivic version Lim2 (z) in a similar manner,
and has a (unipotent) coaction:

∆Lim2 (z) = Lim2 (z)⊗ 1 + Lim1 (z)⊗ logu(z) + 1⊗ Liu2(z)

which is valid both for z viewed as a function, and also for any algebraic values of
z, including z = 1 (in which case, Lim2 (1) = ζm(2) and logu(1) = Liu2(1) = 0). The
quantities on the right-hand side of the tensor product are of a different nature from
those on the left, and could be called unipotent de Rham periods. This coaction is
a much deeper structure than the coproduct ∆it. Motivic periods have a natural
homomorphism per (called the ‘period map’) to the complex numbers: for example,
per (Lim2 (z)) = Li2(z).

If we imagine that Feynman integrals and scattering amplitudes more generally
have canonical ‘motivic’ versions, as one certainly expects, then they inherit a
coaction, and it is natural to ask how this coaction relates to the structure of
amplitudes. Indeed, any of the three situations described above should generate a
space H of motivic periods, and a corresponding algebra A of de Rham periods. A
general ‘coaction principle’ would be the equation

(0.1) ∆H ⊂ H ⊗A .

In other words, the class of amplitudes is stable under the coaction. An equivalent
way to phrase this is in terms of group theory. Indeed, A is naturally a Hopf
algebra, and defines a pro-algebraic group C, a projective limit of algebraic matrix
groups, whose elements are homomorphisms from A to a commutative ring. The
equation (0.1) is equivalent to a linear group action of C on H :

(0.2) C ×H −→ H .

In other words, the space of amplitudes in the theory are stable under the action
of a group, which could be called a ‘cosmic’ Galois group, to borrow a phrase from
Cartier [24].

What possible evidence is there for such a structure? Taking each of the three
situations in turn, we find the following:

(1) In quantum field theory, Panzer and Schnetz computed every known ampli-
tude in massless φ4 theory, and, assuming the ‘period conjecture’ replaced
them with their motivic versions [15], generating an algebra H . Remark-
ably, they found that the coaction principle (0.1) holds in every case. Ev-
idence in [1, 2] suggests that Feynman amplitudes of small graphs with
non-trivial masses and momenta also satisfy a similar property.

(2) In string perturbation theory, Stieberger and Schlotterer [47] replaced the
multiple zeta values in the expansion of the genus zero open string with
their motivic versions [15]. They found that the coaction gives rise to a
spectacular factorisation of the amplitude, which is invisible on the level of
numbers. Similarly, the closed genus zero string can be expressed in terms
of single-valued multiple zeta values [53], whose motivic versions are also
known to be closed under the coaction (0.1).

(3) Several features of the hexagon function bootstrap [25] are expressible in
terms of a coaction principle (0.1). Here, H is a subspace of the space of
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motivic iterated integrals on the moduli space of curves M0,6 of genus 0
with six marked points [17] §10.6.2, and equation (0.1) is equivalent to ‘first
n entries’ constraints on the iterated integrals.

In all these settings, we believe that a version of the coaction principle (0.1) holds,
after possibly enlarging the space of integrals or amplitudes under consideration. It
is also important to note that in the first setting, the coaction principle holds graph
by graph, whereas in the third setting, it operates on the entire amplitude, i.e., the
sum of all graphs (these two statements are by no means equivalent). It would be
interesting in (1) to study the case of gauge theories: the (three) known coefficients
of the perturbative expansion of the anomalous magnetic dipole moment of the
electron also appear to exhibit a coaction principle.

In this paper, we concentrate only on the first setting. Our first goal, then, is to
define canonical motivic Feynman integrals for a large class of graphs in perturbative
quantum field theory in an even number of space-time dimensions. We then develop
tools to prove that, after enlarging the space of motivic integrals under consideration
slightly, the coaction principle (0.1) does indeed hold. This is just the first step in
a programme to study amplitudes via the representation theory of groups.

The accompanying paper [17] develops methods for studying motivic periods
including a decomposition map which generalises the f -alphabet construction used
in [47] for multiple zeta values, and general notions of symbols which go beyond the
polylogarithmic setting. In particular, it provides tools to compare amplitudes at
different weights via seemingly paradoxical operations such as ‘differentiation with
respect to ζ(3)’, and to extract the essential information contained in an amplitude
in a basis-independent manner.

0.2. Statement of results. To any Feynman graph G one associates a Feynman
integral, which is given by a possibly divergent projective integral of the general
parametric form

(0.3) IG(q, m) =

∫

σG

ωG where ωG =
P (αe)ΩG

ΨA
G ΞG(q, m)B

.

Here ΨG, ΞG(q, m), and P (αe) are certain polynomials in variables αe indexed by
the edges of G, ΩG is defined in (1.12), A, B ∈ Z, and σG is the domain where
all αe ≥ 0. These quantities are involved in predictions for particle collider ex-
periments. The polynomial P allows for the possibility of numerator polynomials
in the loop momentum representation, and therefore covers the case of Feynman
integrals in gauge theories (before renormalisation). It is immediate from the inte-
gral representation (0.3), when it converges, that amplitudes are families of periods
[40], depending on kinematic data such as particle momenta q = (qi)i and masses
m = (me)e. A deep idea, originating with Grothendieck, is that there should exist
a Galois theory of periods [5, 6], extending the classical Galois theory of algebraic
numbers. We shall apply these ideas to the integrals of the form (0.3).

The first problem, when trying to set up a Galois theory of periods, is that
one immediately runs into difficult conjectures concerning motives. A simple way
around this is to work in a category of systems of realisations1 and the second
part of these notes [17] explain how this can be done without difficulty. In brief,
the objects in a category of realisations H(S) on a smooth scheme S over Q are

1We shall abusively use the word ‘motive’ to signify an object in such a category which is the
image of the cohomology of an algebraic variety.
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triples V = (VB,VdR, c) where VB is a local system of Q-vector spaces over S(C);
VdR is an algebraic vector bundle with integrable connection on S and regular
singularities at infinity, and c is a Riemann-Hilbert correspondence between VB

and VdR. This data should define a variation of mixed Hodge structures on S. A
further subtlety, which has nothing to do with questions about motives, is how to
interpret any given family of integrals, such as (0.3), as a period of the cohomology
of an algebraic variety since this can involve choices. It turns out that it can be
done canonically for Feynman amplitudes.

Theorem 0.1. For any Feynman graph G with generic kinematics q, m, there is a
canonical way to associate to a convergent integral (0.3):

(i). an object motG in H(S), where S is a Zariski open in a space of kinematics,
(ii). a de Rham class [ωG] in the generic fiber of (motG)dR,
(iii). a Betti class [σG] in a certain (Euclidean) fiber of (motG)∨B,

such that the integral (0.3) is the period

σG(c(ωG)) = IG(q, m) .

The object motG is defined as a compatible system of cohomology groups (namely,
Betti and de Rham) of a family of pairs of algebraic varieties

(0.4) (PG\YG, D\(D ∩ YG))

where PG is a blow up of projective space along linear subvarieties, YG is the strict
transform of the zero loci of ΨG and ΞG(q, m), and D is a certain strict normal
crossing divisor independent of q, m. This theorem generalises a result in [10] which
treats a family of cases with no kinematic dependence (B = 0 and S is a point).

This theorem enables us to replace the Feynman integral IG(q, m) with a canon-
ical ‘motivic version’ Im

G (q, m) = [mot(G), σG, ωG]m which is defined as a matrix
coefficient of the torsor of isomorphisms between two fiber functors on H(S). The
integral itself (0.3) can be retrieved from it by applying the period homomorphism.
The motivic integral now carries the action of an affine group scheme which is the
Tannaka group of H(S) with respect to the de Rham fiber functor at the generic
point. This group factors through a certain quotient which acts faithfully on the
motivic periods of motG relative to σG, where G has at most Q external momenta
and M possible non-zero masses, hereafter called ‘of type (Q, M)’. This quotient
is denoted by CQ,M and could be called a cosmic Galois group, following [24]. In
this way, every convergent integral (0.3) is replaced by a finite-dimensional rep-
resentation of CQ,M , and this enables us to assign an array of new invariants to
amplitudes. Examples include: a weight filtration2, a canonical connection (differ-
ential equation with regular singularities), Hodge polynomials, Galois conjugates,
and various measures of complexity such as the rank, dimension, and unipotency
degree. These ideas are explored in the second half of these notes [17]. In partic-
ular, we generalise the notion of the ‘f -alphabet’ decomposition of multiple zeta
values, which has various applications in physics, to all periods. The next step in
this programme is to formulate conjectures which relate topological invariants of
graphs to the above-mentioned invariants of their motivic periods.

2This provides a rigorous meaning to many statements in the physics literature referring to
the ‘transcendental weight’ of amplitudes
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We can subsequently define FPm

Q,M to be the vector space spanned by all motivic

periods of motic3 Feynman graphs of type (Q, M) relative to σG. The group action

(0.5) CQ,M ×FP
m

Q,M −→ FP
m

Q,M

can be expressed equivalently as a coaction

(0.6) ∆ : FPm

Q,M −→ FP
m

Q,M ⊗kQ,M FP
dr

Q,M

where FPdr

Q,M is the ring generated by the de Rham periods of motG. Note that
the formula we gave for the motivic dilogarithm in the first paragarph involved the
unipotent coaction and unipotent de Rham periods for simplicity (the full coaction
involves powers of Ldr, see [17], last lines of §10). A key point is that there is a
general formula for this coaction in terms of the cohomology (motG)dR, and this
can be computed explicitly in some cases. The apparently unphysical case of graphs
with no masses or momenta plays a special role in this theory. Indeed, FPm

0,0 is an

algebra, and each FPm

Q,M is a module over it:

FPm

0,0 × FP
m

Q,M −→ FP
m

Q,M .

0.3. Product structure and stability. There is a priori no reason whatsoever
for the action of CQ,M to preserve the space of motivic amplitudes, which form a
small subfamily of integrals (0.3) with highly specific numerators.4 However, using
the formalism of motivic periods, Panzer and Schnetz computed the Galois action
on a huge family of amplitudes in φ4 theory of type (0, 0) and verified, astonishingly,
that they are preserved by C0,0 in all cases. The motivation for these lectures was
to try to understand this extraordinary fact.

The theory outlined in these notes is best explained by the following conjecture.

Conjecture 1. The motivic periods of a graph G of type (Q, M) are regularised
versions of motivic integrals of the form (0.3). Those of weight ≤ k are in the
algebra generated by regularised motivic periods of graph minors of G with at
most k + 1 edges.

This conjecture means that the Galois conjugates of a motivic amplitude of low
weight of a graph should be a regularised motivic period of its sub-quotient graphs
of the form (0.3). Since there are few graphs with a bounded number of edges, this
provides a constraint on amplitudes to all orders. We call this the small graphs
principle. The upshot is that the topology of a graph constrains the Galois theory
of its amplitudes. In the case (Q, M) = (0, 0), this theory partially explains the
observations of Panzer and Schnetz.

What is presently lacking for a proof of this conjecture is a suitable notion of
regularisation for motivic periods.5 In these notes, we prove a weaker, but more

3This notion is defined in §3 and generalises the notion of one-particle irreducible.
4From now on, we shall loosely call amplitude a Feynman integral of the form (0.3) with a

specific numerator, which arises, for instance, from the Feynman rules of a given quantum field
theory, as opposed to an arbitrary integral with that shape. In the literature, the word amplitude
is often reserved to describe the sum of all Feynman integrals at a given loop order. We shall call
the latter the ‘full amplitude’ in accordance with some authors.

5Unfortunately, when writing the technical background [17] for these notes, I had not forseen
that convergent Feynman integrals might require the theory of limiting mixed Hodge structures,
and a corresponding notion of limiting motivic period, and so it was not discussed. I do not
believe that this, or conjecture 1, should pose any major difficulties.
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precise version of this conjecture, in which we replace the word ‘regularised’ with
‘affine’, which has a technical meaning (theorem 8.11). It implies the

Theorem 0.2. The vector space WkFP
m

Q,M is finite-dimensional. In particular,

the vector space generated by convergent integrals (0.3) which are of bounded weight6,
for G of any fixed type (Q, M), is finite-dimensional.

This theorem is non-trivial since there are infinitely many graphs, and therefore
implies infinitely many relations between periods of different graphs.

We also show that the weight-graded pieces of mot(G) in weight ≤ k are indeed
generated by minors of G with at most ≤ k+1 edges, and we completely determine
W2FP

m

0,0. These simple facts already imply strong and concrete constraints on
amplitudes to all loop orders - for example, the last statement gives a non-trivial
and rather subtle condition on amplitudes which has been verified numerically for
nine loop scalar graphs by Panzer and Schnetz.

At the heart of this theory is a set of identities for graph polynomials. For the
usual graph (Kirchhoff) polynomial it takes the form of a partial factorisation

ΨG = ΨγΨG/γ + RΨ
γ,G

where γ ⊂ G is any subgraph (defined by a subset of edges of G), and RΨ
γ,G is a

remainder term of higher degree in the variables of Ψγ than deg(Ψγ). This identity
has been known for some time and is used in the parametric theory of renormal-
isation [21], although only in the special case when γ is a divergent subgraph. It
generalises in two different ways for the graph polynomial ΞG(q, m), which we call
the ultraviolet and infra-red factorisations. This requires some genericity assump-
tions on the external kinematics. The infra-red factorisation identities are new.

The geometric incarnation of these identities implies that the open strata of (0.4)

Di\(YG ∩Di)

are products of varieties of the same type. This was already observed in [10] in
the case (Q, M) = (0, 0) mentioned above. Such a family of varieties defines a type
of operad in the category of schemes over Z. Although we shall barely mention
operads in these notes, the notion of ‘operad in the category of motives’ imposes
strong constraints on its possible periods, and merits further study.7 A similar
theory to the one described here should hold more generally for any family of
varieties with this product-structure.

We are still very far from exploiting all the consequences of this geometric struc-
ture underlying amplitudes. In fact, the product structure on the faces of (0.4) is
such a rigid constraint that it almost completely determines the polynomials ΨG

and ΞG(q, m), as we prove in §4.

0.4. Contents. In §1 we recall some basic notions relating to Feynman graphs and
graph polynomials. In §2 we prove factorisation theorems for graph polynomials. In
§3 we study the notion of a motic subgraph of a Feynman graph. These are in one-
to-one correspondence with the locus where the domain of integration σG meets the
singularities of the Feynman integrand and subsume both ultraviolet and infra-red

6let us call a period of weight ≤ k if it is the image of a motivic period of weight ≤ k under
the period homomorphism

7A similar example of such a system of stratified varieties with product structure are the moduli
spaces Mg,n of curves of genus g with n marked points.
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type divergences. In §4 we consider a Hopf algebra of graphs where the coproduct
ranges over motic subgraphs and characterize graph polynomials by their partial
factorisation properties. The motic Hopf algebra is a generalisation of the Connes-
Kreimer coproduct for scalar graphs since it also takes into account certain infra-red
subdivergences. In §5 we study blow-ups of projective space along linear subspaces,
and define some affine models which generalise the partial compactifications of
moduli spaces Mδ

0,n of the author’s thesis. In §6 we define the graph motive and
prove its recursive product structure. In §7 we define the motivic amplitude of
a Feynman graph, and prove some stability results in §8. In §9 we focus on the
case of graphs with no kinematic dependence and prove some modest results in the
direction of the coaction conjecture of [46]. Although they are of limited physical
significance, this family of graphs plays an important and central role in the theory.
In §10 we discuss applications of the cosmic Galois group in the case of graphs with
general kinematics and state some conjectures and problems for further study.

The appendix §12 provides a fully worked example of such a graph using the
methods described here. It requires some technical tools which are set out in §11.

0.5. Relation to other work. A number of expressions in this paper have ap-
peared in the literature with possibly different meanings. They are listed below:

• ‘Cosmic Galois group’. The phrase ‘cosmic Galois group’ was invented by
P. Cartier. Later, Connes and Marcolli made a precise definition of a cosmic
Galois group in relation to renormalisation, in the papers [27, 28]. It is not
clear if it is at all related to the groups defined here.
• ‘Motivic amplitude’. This phrase occurs with a different definition in [34],

where it means a certain tensor of elements in a field, and only makes sense
in the mixed Tate case. This notion can be retrieved as a very special case
of the symbol (defined in [17]) of de Rham motivic amplitudes.
• ‘Motivic multiple zeta value’. There are two versions of motivic multiple

zeta values in use, an earlier one due to Goncharov, for which the motivic
version of ζ(2) vanishes, and which do not posses a period map, and another
for which ζm(2) is non-zero. Sending ζm(2) to zero would destroy much of
the structure in amplitudes discovered in [46].

It is also important to emphasize that motivic amplitudes do not form a Hopf
algebra. The main coaction formula (0.6) is asymmetric - on one side we have
motivic periods which have a well-defined map to numbers, and on the other, de
Rham periods which do not. However we can associate symbols to de Rham periods
(in the differentially unipotent case), and also single-valued periods [17].

0.6. Acknowledgements. This work was partly funded by ERC grant 257638. I
owe many thanks to the participants of my lecture series at IHES for their interest
and many pertinent questions, especially Pierre Cartier and Joseph Oesterlé. Many
thanks to Oliver Schnetz and Erik Panzer for their remarkable computations, which
motivated this project, and also to Clément Dupont and Lance Dixon for valuable
feedback.

1. Scalar Feynman graphs and Symanzik polynomials

We first recall some basic definitions of scalar Feynman graphs, before describing
the corresponding integrals in parametric form. The reader should be aware that
our conventions occasionally differ from the standard ones in a few minor details.
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1.1. Feynman graphs. A Feynman graph is a graph G defined by

(VG, EG, Eext
G )

where VG is the set of vertices of G, EG is the set of internal edges of G, and Eext

is a set of external half-edges (also known as legs). Their endpoints are encoded by
maps ∂ : EG → Sym2 VG and ∂ : Eext

G → VG. We shall assume that the vertices
with external legs (image of Eext

G in VG) lie in a single connected component of G.
A Feynman graph additionally comes with kinematic data:

• a particle mass me ∈ R for every internal edge e ∈ EG,
• a momentum qi ∈ Rd for every external half-edge i ∈ Eext

G ,

where d ≥ 0, the dimension of space-time, is fixed. The internal edges of G are
labelled if there is a bijection EG ↔ S with a fixed set S. The external half-edges
will be oriented inwards, so all momenta are incoming and are subject to momentum
conservation

(1.1)
∑

i∈Eext
G

qi = 0 .

Some of the internal masses me will be zero. Let MG ⊂ EG denote the set of
internal edges e of G for which me 6= 0. In our figures, the mass-carrying edges in
MG will be drawn with a doubled edge.

In this paper, a subgraph H of G will be a graph defined by a triple (VH , EH , Eext
H )

where VH ⊂ VG, EH ⊂ EG and either Eext
H = Eext

G or Eext
H = ∅. Note that for

H to be a Feynman subgraph, the extra condition that the vertices Eext
H lie in a

single connected component of H must also hold. This guarantees that momentum
conservation holds for every component of H . The particle masses of a Feynman
subgraph H ⊂ G are determined by the following condition:

either Eext
H = Eext

G and MH = MG

or Eext
H = ∅ and MH = ∅ .

In the former case, H contains all massive edges of G, and inherits the corresponding
masses. In the latter case, H is viewed as a massless diagram and me = 0 for all
e ∈ EH . Thus in these notes, a Feynman subgraph either meets all external legs in
a single connected component, and contains all massive edges; or is considered to
be massless with no external momenta.

Note that all external legs correspond to a potentially non-zero momentum; ex-
ternal legs which would ordinarily be considered to have zero incoming momentum
will simply be omitted. This forces our graphs G to have vertices of varying degrees:
a graph G is said to be in φn if every vertex has degree ≤ n.

A tadpole, or self-edge, is a subgraph of G of the form ({v}, {v, v}, ∅).
We shall use the following notation for the basic combinatorial invariants of G:

hG = h1(G) the loop number of G

κG = h0(G) the number of connected components of G

NG = |EG| the number of edges of G .

They do not depend on the external legs of G. Euler’s formula states that

(1.2) NG − VG = hG − κG .
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We define the following equivalence relation on Feynman graphs. If a vertex v ∈ VG

has several incoming momenta q1, . . . , qn we can replace it with a single incoming
momentum q1 + . . . + qn:

q1 q2
. . .

qn−1 qn

∼

q1 + . . . + qn

Our notion of Feynman subgraph respects this equivalence relation. The graph
polynomials defined below will only depend on equivalence classes.

We say that a Feynman graph is of type (Q, M) if it is equivalent to a graph
with at most Q external kinematic parameters, and at most M non-zero particle
masses. We shall call a graph one-particle irreducible, or 1PI, if every connected
component is 2-edge connected (i.e. deleting any edge causes the loop number to
drop).

Example 1.1. The following Feynman graph will be our basic example to illustrate
the ideas in this paper. It will be referred to several times throughout this text.

1

2

3 4q1

q2

This graph has a single non-zero mass, namely m1, and m2 = m3 = m4 = 0.
Momentum conservation demands that q1 = −q2. The bottom right vertex, which
meets edges 2, 3, 4 has zero incoming external momentum.

1.2. Graph polynomials. Let G be a Feynman graph. Recall that a tree is a
connected graph T with hT = 0. A forest is any graph T with hT = 0.

Definition 1.2. A spanning k-tree of G is a subgraph T = T1∪ . . .∪Tk ⊂ G which
has exactly k components Ti such that Ti is a tree and VT = VG.

A spanning 1-tree is simply called a spanning tree.

Definition 1.3. Let G be a connected Feynman graph. The Kirchhoff polynomial
(or 1st Symanzik polynomial) is the polynomial in Z[αe, e ∈ EG] defined by

(1.3) ΨG =
∑

T⊂G

∏

e/∈T

αe ,

where the sum is over all spanning trees T of G. If G has several connected com-
ponents G1, . . . , Gn we shall define

(1.4) ΨG =

n∏

i=1

ΨGi .
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Note that one sometimes takes (1.3) as the general definition of graph polynomial.
It differs from (1.4) and vanishes if G has more than one connected component.

The second Symanzik polynomial is defined for connected G by

(1.5) ΦG(q) =
∑

T1∪T2⊂G

(qT1)2
∏

e/∈T1∪T2

αe ,

where the sum is over all spanning 2-trees T = T1∪T2 of G and qT1 =
∑

i∈Eext
T1

qi is

the total momentum entering T1. It equals −qT2 by momentum conservation (1.1).
If G has several connected components G0, G1, . . . , Gn, then by our definition of a
Feynman graph, exactly one component, say G0, contains all external momenta.

In this case we define

(1.6) ΦG(q) = ΦG0(q)
∏

i≥1

ΨGi .

Applying Euler’s formula (1.2) to G and a spanning κT -tree T ⊂ G implies that

(1.7) NG −NT = hG + κT − κG .

Since the right-hand side is independent of T , ΨG and ΦG are homogeneous with
respect to Schwinger parameters and have the following degrees (in the αe):

deg ΨG = hG(1.8)

deg ΦG(q) = hG + 1

These equations can also be deduced from the contraction-deletion relations which
are stated below. It is a crucial fact for the arithmetic of Feynman integrals that
the coefficients of every monomial in ΨG are only 0 or 1. Furthermore, ΨG and
ΦG are of degree at most one in every Schwinger parameter αe, but these two facts
play a minor role in these notes. See [18], [22] for applications of these facts.

Definition 1.4. Let G be a Feyman graph. Define

(1.9) ΞG(q, m) = ΦG(q) +
( ∑

e∈EG

m2
eαe

)
ΨG .

By (1.8), the polynomial ΞG is homogeneous in the αe of degree hG + 1.

Since the graph polynomials ΨG, ΦG(q), ΞG(q, m) only depend on total momen-
tum flow, they are well-defined on equivalence classes of graphs.

Example 1.5. Let G be the graph of example 1.1. Then we have

ΨG = α1α3 + α1α4 + α2α3 + α2α4 + α3α4

ΦG(q) = q2
1(α1α2α3 + α1α2α4 + α1α3α4)

ΞG(q, m) = q2
1(α1α2α3 + α1α2α4 + α1α3α4) + m2

1α1ΨG

Remark 1.6. The reader is warned that in the literature, the polynomial (1.9) is
often written with the opposite sign (or equivalently, all momentum terms q are
replaced by iq). To find one’s bearings, consider the following familiar bubble
diagram with two equal masses m1 = m2 = m:



FEYNMAN AMPLITUDES AND COSMIC GALOIS GROUP 11

q −q

1

2

It satisfies

ΞG(q, m) = q2α1α2 + m2(α1 + α2)
2 .

Its discriminant is 4m2 + q2, and so its Landau singularity occurs at q2 = −4m2.
With our chosen sign convention, it will lie outside the Euclidean region where q, m
are real. This, and other, typical physical infra-red singularities (where, for ex-
ample, terms in ΞG(q, m) cancel out altogether) will be excluded from the present
set-up (although certain other types of infra-red singularities will be allowed). How-
ever, they can still be treated in the present theory on a graph by graph basis after
analytic continuation in the space of kinematics (q, m). That the analytic con-
tinuation exists follows from the fact that the discriminant locus is algebraic of
codimension ≥ 1, and its complement is connected in the analytic topology. There-
fore there exists a path from a point in the Euclidean region to an open subset of
the region q ∈ iR, along which the integral is analytic.

1.3. Feynman integral in projective space. Let d ∈ 2N be an even integer,
which denotes the dimension of space-time. Here it will always be fixed, and will
be dropped from the notation. Our version of the Feynman integral in parametric
form differs marginally the usual presentation. In order to kill two birds (namely,
the case with no kinematics, and the case with non-trivial kinematics) with one
stone we shall take the following definition, after omitting certain pre-factors (see
[21] §3 of a more rigorous derivation from first principles):

(1.10) IG(q, m) =

∫

σ

ωG(q, m)

where

(1.11) ωG(q, m) =
1

Ψ
d/2
G

( ΨG

ΞG(q, m)

)NG−hGd/2

ΩG

and

(1.12) ΩG =

NG∑

i=1

(−1)iαi dα1 ∧ . . . ∧ d̂αi ∧ . . . ∧ dαNG

where d̂αi means that the term dαi is omitted. Note that the form ωG is homoge-
neous of degree 0, which follows from (1.8). Finally, let

σ ⊂ PNG−1(R)

be the coordinate simplex defined in projective coordinates by

(1.13) σ = {(α1 : . . . : αNG) ∈ PNG−1(R) : αi ≥ 0} .

The integral (1.10) may not necessarily converge. Necessary and sufficient condi-
tions for its convergence, in a certain kinematic region, will be stated below. The
derivation of the parametric form of the Feynman integral (1.10) from its momen-
tum space representation using the Schwinger trick is nicely explained in [44].
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Remark 1.7. The integral (1.10) is a drastic simplification in certain situations. For
example, if d = 4 and G is primitive overall log-divergent (NG = 2hG), then the
second factor in ωG(q, m) drops out and it has no dependence on external masses
or momenta. For such a graph, we obtain

IG =

∫

σ

ΩG

Ψ2
G

.

In the case of the wheel with three spokes, this equals 6ζ(3) which is its residue
(coefficient of 1/ε in dimensional regularisation). The full vertex function is

∫

σ

log(ΞG(q, m)/ΞG(q0, m0))

Ψ2
G

ΩG

where q0, m0 is a chosen renormalisation point. Such integrals, and their derivation,
are discussed at length in [21]. They can also be viewed as period integrals either
by writing the log in the numerator as an integral, or by differentiating with respect
to a renormalisation scale as in [21] to make the integrand algebraic. It is highly
likely that the theory described in this paper also extends to this situation, but a
discussion of renormalisation would have made the present paper overly lengthy.

1.4. Edge subgraphs and their quotients. Let G = (VG, EG, Eext
G ) be a Feyn-

man graph. A set of internal edges γ ⊂ EG defines a subgraph of G as follows.
Write Eγ = γ and let Vγ be the set of endpoints of elements of Eγ .

Definition 1.8. A set of edges γ ⊂ EG is momentum-spanning if ∂Eext
G ⊂ Vγ , and

the vertices Eext
G lie in a single connected component of the graph (Vγ , Eγ).

We define the subgraph associated to γ ⊂ EG by

(1.14) (Vγ , Eγ , Eext
γ )

where Eext
γ = Eext

G if γ is momentum-spanning, and Eext
γ = ∅ otherwise. Thus

the Feynman graph (1.14) inherits all external momenta of G if it is momentum-
spanning and has no external momenta otherwise. We shall call (1.14) the edge-
subgraph associated to γ, and denote it also by γ when no confusion arises.

The quotient of G by an edge-subgraph γ is defined by

G/γ = (VG/∼, (EG\γ)/∼, Eext
G /∼)

where∼ is the equivalence relation on vertices of G where two vertices are equivalent
if and only if they are vertices of the same connected component of γ, and the
induced equivalence relation on edges (unordered pairs of vertices). It is a Feynman
graph. Every connected component of γ corresponds to a unique vertex in G/γ.
Note that γ is momentum-spanning if and only if G/γ is equivalent to a graph
with no external momenta (by momentum conservation). In this case we can take
Eext

G/γ = ∅.

In this way, exactly one of the two Feynman graphs γ and G/γ is equivalent to
a Feynman graph with non-zero external momenta: if γ is momentum spanning it
is γ, otherwise it is G/γ.

1.5. Contraction-deletion. Let G = (VG, EG, Eext
G ) be a Feynman graph. The

deletion of an edge e in G is the graph G\e defined by deleting the edge e but
retaining its endpoints:

G\e = (VG, EG\{e}, Eext
G ) .



FEYNMAN AMPLITUDES AND COSMIC GALOIS GROUP 13

In general, it is not a union of Feynman graphs since momentum conservation may
not hold on each of its connected components.

One sometimes encounters the following variant of the previous notion of graph-
quotient. It will be denoted by a double slash to distinguish it from the ordinary
quotient. For an edge-subgraph γ, let G//γ be the empty graph if hγ > 0 and

G//γ = G/γ

if γ is a forest. In the case of a single edge e, G//e is empty whenever e is a tadpole.
It follows from Euler’s formula (1.2) that

(1.15) hG = hγ + hG/γ

for any edge-subgraph γ ⊂ G (which is not necessarily connected).

Lemma 1.9. (Contraction-deletion) Let G be connected, and e ∈ EG. Then

ΨG = Ψ0
G\eαe + ΨG//e(1.16)

ΦG(q) = Φ0
G\e(q)αe + ΦG//e(q) ,

where Ψ0
G\e is given by the right-hand side of (1.3): it is ΨG\e if G\e is connected

and 0 otherwise. Likewise Φ0
G\e(q) is given by the right-hand side of (1.5): it is

equal to ΦG\e(q) if G\e is connected and equal to ΨG1ΨG2(q
G1)2 = ΨG1ΨG2(q

G2)2

if G\e has two connected components G1, G2.

Proof. Let T be a spanning k-tree of G (where k ∈ {1, 2}). The edge e is not an
edge of T if and only if T is a spanning k-tree of G\e. By the definition of the
graph polynomials, this gives rise to the first terms in the right hand sides of (1.16).
Note that if e is a tadpole, this is the only case which can occur. Now suppose that
e is not a tadpole. If e is an edge of T , then T/e is a spanning k-tree of G/e.
Conversely, if T ′ is a spanning k-tree of G/e, then there is a unique component of
T ′ which meets the vertex in G/e defined by the endpoints of e. It follows that the
inverse image of T ′ in G, together with the edge e, is a spanning k-tree in G. This
establishes a bijection between the set of spanning k-trees in T which contain e and
those of G/e. The rest follows from definition 1.3. �

Corollary 1.10. It follows that from (1.16) and (1.9) that

ΨG

∣∣
αe=0

= ΨG//e

ΞG(q, m)
∣∣
αe=0

= ΞG//e(q, m) .

1.6. Generic kinematics and non-vanishing of graph polynomials. We es-
tablish some non-vanishing results for graph polynomials which hold for generic
momenta. These will be important for the sequel.

Lemma 1.11. A connected graph G has a spanning tree. Equivalently, ΨG 6= 0.

Proof. Let G be a connected graph with ΨG = 0. Then ΨG//e = 0 for all e by
(1.16). By repeatedly contracting edges with distinct endpoints, we obtain a graph
G′ with a single vertex such that ΨG′ = 0. It has a unique spanning tree consisting
of this vertex, so ΨG′ =

∏
e∈EG′

αe, which is non-zero, a contradiction. �

Consider the following condition on external momenta

(1.17) (
∑

i∈I

qi)
2 6= 0 for all I ( Eext

G .
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It respects the equivalence relation of Feynman graphs.

Lemma 1.12. Let G be a Feynman graph with non-trivial external momenta (in
other words, there exists a vertex v ∈ ∂Eext

G such that the total momentum q{v}

entering v is non-zero). Then with condition (1.17), ΦG(q) 6= 0 .

Proof. By momentum conservation (1.1), there exist at least two vertices v1, v2 with
non-zero total incoming momenta q1, q2 respectively. Since G is a Feynman graph,
v1, v2 lie in the same connected component G0. By the previous lemma, there exists
a spanning tree T in G0. Since T is connected, there is a (shortest) path from v1

to v2 contained in T . Delete any edge e′ in this path to obtain a spanning 2-tree
T \e′ = T1∪T2 such that v1 ∈ VT1 and v2 ∈ VT2 . It contributes a non-zero monomial
(qT1)2

∏
e/∈T1∪T2

αe to the second Symanzik polynomial ΦG0(q) by (1.17). It cannot

cancel out since all signs in the definition of ΦG0(q) are positive. Now apply (1.6)
and the previous lemma to deduce that ΦG(q) 6= 0. �

Now consider the following condition on momenta and masses:

(1.18) (
∑

i∈I

qi)
2 + m2

e 6= 0 for all I ( Eext
G and e ∈ EG .

Lemma 1.13. If (1.17) and (1.18) hold then ΞG(q, m) = 0 if and only if G has no
massive edges, and no incoming momenta (i.e., q{v} = 0 for all v ∈ ∂Eext

G ).

Proof. Let e ∈ EG such that me 6= 0. Note that ΦG(q) is of degree at most one in
αe. If G\e is connected, then by (1.16), the coefficient of α2

e in ΞG is m2
eΨG\e which

is non-zero by lemma 1.11. In particular, ΞG(q, m) 6= 0. In the opposite case, e is a
bridge in G, and G\e has two connected components G1, G2. Then ΨG = ΨG1ΨG2

and by (1.16) the coefficient of αe in ΞG(q, m) is ((qG1)2 + m2
e)ΨG1ΨG2 . This is

non-zero by (1.18) and so ΞG(q, m) 6= 0. Finally, if all edges of G are massless, then
ΞG(q, m) = ΦG(q) and we can appeal to the previous lemma. �

Example 1.14. Consider the following Feynman graph

qi
... qj

...
1

where the momenta entering on the left are qi, for i ∈ I, and those on the right qj ,
j ∈ J . Then ΞG(q, m) =

(
(
∑

i∈I qi)
2+m2

)
α1 is identically zero if (

∑
i∈I qi)

2+m2 =
0, where m = m1. These examples imply, by contraction and deletion, that the
conditions (1.17) and (1.18) are optimal.

1.7. Space of generic kinematics. The previous discussion motivates the fol-
lowing definition. In order to allow the possibility of masses and momenta tak-
ing values in different fields, we work with affine spaces. Suppose that we wish
to consider processes in d ∈ 2N spacetime dimensions with Q external momenta
q = (q1, . . . , qQ) ∈ AQd, which are subject to momentum conservation

(1.19) q1 + . . . + qQ = 0 ,
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in a theory with M possible non-zero particle masses m = (m1, . . . , mM ) ∈ GM
m ,

where Gm = A1\{0}. The graph polynomials and hence the integral (1.10) are
invariant under the action of the orthogonal group in d dimensions. Therefore set

si,j = sj,i = qi.qj for 1 ≤ i ≤ j ≤ Q

to be the Euclidean inner product of the momenta qi, qj , and write

sI =
∑

i,j∈I

si,j = (
∑

i∈I

qi)
2 for I ⊂ {1, . . . , Q} .

Condition (1.19) implies that the si,j ∈ A(Q+1
2 ) lie in a subspace isomorphic to

A(Q
2) since we can solve for qQ. It is parameterised, for example, by the si,j for

1 ≤ i ≤ j ≤ Q− 1. The Feynman amplitude is a function only of the si,j and mk.

Definition 1.15. Define a space of generic kinematics

(1.20) Kgen
Q,M ⊂ KQ,M = A(Q

2) ×GM
m

with coordinates (s, m), to be the open complement of the union of the spaces

(1.21) sI + m2
j = 0

for all I ( {1, . . . , Q} and j ∈ {0, 1, . . . , M}, where we set m0 = 0. Compare (1.17).

It is an affine scheme defined over Z of dimension M +
(
Q
2

)
. Define the Euclidean

region to be its set of real points Kgen
Q,M (R). Define a subspace

Ugen
Q,M ⊂ Kgen

Q,M (C)

to be the open region (in the usual topology) of Kgen
Q,M (C) defined by

(1.22) Ugen
Q,M = {(s, m) ∈ Kgen

Q,M (C) : Re sI > 0 for all I ( {1, . . . , Q} ,

and Re m2
j > 0 for all j ∈ {1, . . . , M}} .

The region Ugen
Q,M contains the Euclidean region Kgen

Q,M (R).

Note that Kgen
1,M = Kgen

0,M = GM
m , and in particular Kgen

1,0 = Kgen
0,0 = Spec (Z).

Definition 1.16. Let kQ,M denote the field of fractions of O(KQ,M ). It is isomor-
phic to Q((si,j)1≤i≤j<Q, (mk)1≤k≤M ). In particular, k0,0 = Q.

2. Partial factorization theorems

The factorization theorems presented below are crucial to the construction of the
cosmic Galois group. The so-called ultraviolet factorisations are used in the theory
of renormalisation, the infra-red factorisations below are apparently new.

2.1. UV factorizations. Let G be a connected Feynman graph, and let γ ⊂ EG

be an edge-subgraph with connected components γ1, . . . , γn.

Lemma 2.1. The map T 7→ (T/(T ∩ γ), T ∩ γ1, . . . , T ∩ γn) is a bijection from:

{Spanning k-trees T such that γi ∩ T is connected for all i = 1, . . . , n}

to

{Spanning k-trees in G/γ} ×
n∏

i=1

{Spanning trees in γi}
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Proof. Let T be any subgraph of G such that T ∩ γ is a union of trees. Then

(2.1) hT/(T∩γ) = hT and κT/(T∩γ) = κT .

The first formula follows from (1.15), the second is clear. If T is a spanning k-tree
such that each T ∩ γi is connected, then each T ∩ γi is a spanning tree in γi and
T/(T ∩ γ) is a spanning k-tree in G/γ by (2.1).

In the other direction, suppose that S ⊂ G/γ is a spanning k-tree, and let Ti ⊂ γi

be spanning trees. There is a unique subgraph T of G such that T ∩ γi = Ti and
T/(T ∩ γ) = S. By (2.1), hT = hS = 0 and κT = κS = k, and since T meets every
vertex of G it follows that T is a spanning k-tree. �

The following factorisation formulae are essentially well-known [21].

Proposition 2.2. Let G be connected, γ ⊂ EG as above. Then

ΨG = ΨγΨG/γ + RΨ
γ,G(2.2)

ΦG(q) = ΨγΦG/γ(q) + RΦ,UV
γ,G (q)

where the degree of RΨ
γ,G and RΦ,UV

γ,G (q) in the variables αe, e ∈ Eγ is strictly greater
than

deg Ψγ = deg

n∏

i=1

Ψγi = hγ .

Proof. We shall prove both formulae simultaneously. Let k = 0 (resp. 1). By (1.3)
and (1.5), the set of monomials in ΨG (resp. ΦG(q)) are in one-to-one correspon-
dence with the set of spanning k-trees T ⊂ G. The latter can be partitioned into two
subsets: those for which T∩γi is connected for all i, and those for which T∩γi is not
connected for some i. The former class is in one-to-one correspondence, by lemma
2.1, with the monomials in Ψγ1 . . . Ψγn ×ΨG/γ (resp. Ψγ1 . . . Ψγn ×ΦG/γ(q)). The

latter class correspond to monomials in the remainder terms RΨ
γ,G (resp. RΦ,UV

γ,G (q)).

To see this, observe by (1.7) applied to γi ∩ T ⊂ γi that for each i,

Nγi −NT∩γi = hγi + κT∩γi − 1 .

Thus the degree of the monomial
∏

e/∈T αe in the variables αe for e ∈ Eγ is

n∑

i=1

(Nγi −NT∩γi) = hγ +

n∑

i=1

(κT∩γi − 1) .

This is strictly greater than hγ whenever some T ∩ γi is not connected. �

Equivalently, setting α′
e = λαe for e ∈ Eγ and α′

e = αe otherwise, we have

ΨG(α′
e) ≡ λhγ Ψγ(α′

e)ΨG/γ(α′
e) (mod λhγ+1)

ΦG(α′
e)(q) ≡ λhγ Ψγ(α′

e)ΦG/γ(q)(α′
e) (mod λhγ+1)

Remark 2.3. One can show [21] that the formulae (2.2), in the special case when γ
is a divergent subgraph, are sufficient to recover some of the main theorems of the
theory of renormalization. The full strength of the factorisation formulae (2.2), for
γ an arbitrary subgraph, will only manifest itself in the motivic period.
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2.2. IR factorizations. Let G be a connected Feynman graph.
With generic momenta (1.17), γ ⊂ EG is momentum-spanning8 if and only if

(2.3) ΦG/γ(q) = 0 .

This follows immediately from lemma 1.12. In this situation, the second factoriza-

tion formula (2.2) is degenerate. It turns out that the remainder term RΦ,UV
γ,G can

be further factorized via the following formula, which is apparently new.

Proposition 2.4. Let γ ⊂ EG be a momentum spanning edge-subgraph. Then

(2.4) ΦG(q) = Φγ(q)ΨG/γ + RΦ,IR
γ,G (q)

where the degree of RΦ,IR
γ,G (q) in the variables αe, e ∈ Eγ is strictly greater than

deg Φγ(q) = hγ + 1 .

Proof. Suppose that γ has connected components γ′, γ1, . . . , γn such that γ′ is mo-
mentum spanning. Monomials in ΦG(q) are in one-to-one correspondence with
spanning 2-trees T = T1 ∪ T2 such that (qT1)2 6= 0. For such a 2-tree, T ∩ γ′ can-
not be connected because each component Ti intersects γ′ non-trivially (otherwise,
Vγ′ ∩ VTi = ∅ for some i, which implies that qTi = 0 because γ′ is momentum-
spanning).

Partition the set of spanning 2-trees such that (qT
1 )2 6= 0 into two classes: those

such that T ∩ γ′ has 2 components and T ∩ γi is connected for all i (call this class
C1), and those for which T ∩ γ′ or some T ∩ γi has strictly more components (C2).

There is a bijection from the first set C1 to

{Spanning 2-trees in γ′} × {Spanning trees in G/γ} ×
∏

i

{Spanning trees in γi} .

It is given by the map

T 7→ (T ∩ γ′ , (T ∪ γ)/γ , T ∩ γ1, . . . , T ∩ γn) .

The proof is similar to lemma 2.1, on noting that (T ∪ γ)/γ is the one-vertex join
of T1/(T1 ∩ γ) and T2/(T2 ∩ γ) along the vertex given by the image of γ, and has
exactly one connected component. One checks that given a spanning 2-tree T ′ ⊂ γ′,
and spanning trees S ⊂ G/γ and Ti ⊂ γi, there is a unique graph T ⊂ G such that
T ∩ γ′ = T ′, (T ∪ γ)/γ = S and Ti = T ∩ γi, and that it has exactly two connected
components.

This gives a one-to-one correspondence between the set C1 and monomials in

Φγ(q) =
(
Φγ′(q)

n∏

i=1

Ψγi

)
ΨG/γ .

Spanning 2-trees T in the set C2 are such that T ∩ γ′ has at least 3 components,
or some T ∩ γi has at least 2 components. In this case, the degree of the monomial∏

e/∈T αe in the variables αe for e ∈ Eγ is, by equation (1.7) applied to T ∩ γ′ ⊂ γ′

and T ∩ γi ⊂ γi

Nγ′ −NT∩γ′ +

n∑

i=1

(Nγi −NT∩γi) = hγ + (κT∩γ′ − 1) +

n∑

i=1

(κT∩γi − 1) ,

8If wants to consider non-generic momentum configurations, one could take (2.3) as the defi-
nition of momentum-spanning. But in this case the factorisation theorems stated below will fail
without some additional assumptions on momenta. See example 2.5.
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which is strictly greater than hγ + 1, and contributes to RΦ,IR
γ,G (q). �

One can derive the contraction-deletion relations (1.16) from the factorizations
(2.2) and (2.4) by setting γ = e in the former and γ = G\e in the former and latter.

Example 2.5. (Degenerate momenta). Consider the following Feynman graph

q1 q2

q3q4

1

24

3

which satisfies

ΦG(q) = (q2 + q3)
2α1α3 + (q1 + q2)

2α2α4 + q2
1α1α4 + q2

2α1α2 + q2
3α2α3 + q2

4α3α4

and impose the condition (q2 + q3)
2 = (q1 + q4)

2 = 0. In this case the subgraph
γ defined by the two edges 2 and 4 satisfies φG/γ(q) = 0, but is not momentum
spanning according to our stricter definition, because the incoming momenta do
not all lie in the same connected component. To leading order in the subgraph
variables α2, α4 we have

ΦG(q) = α2(q
2
3α3 + q2

2α1) + α4(q
2
1α1 + q2

4α3) + R

where R = (q1 + q2)
2α2α4, and the leading terms do not factorize. If however, one

further imposes the conditions q2 + q3 = 0 and q1 + q4 = 0 (so that the subgraph γ
now satisfies momentum conservation in each connected component), we obtain

ΦG(q) = (q2
2α2 + q2

4α4)(α1 + α3) + R

and a factorization formula for the leading term is restored. These types of phe-
nomena suggest our results generalise, but will not be considered in these notes.

2.3. Factorization formulae for Ξ. A UV-factorization formula for ΞG(q, m)
follows immediately from (2.2). The IR-factorization formula requires a further
constraint on the distribution of masses.

Definition 2.6. A subgraph γ ⊂ G is mass-spanning if it contains all massive
edges of G: for every edge e ∈ EG such that me 6= 0, e ∈ Eγ .

We shall say that a subgraph γ is mass-momentum spanning (or simply m.m.
for short) if it is both mass and momentum-spanning.

For generic kinematics (1.18), a subgraph γ ⊂ EG satisfies

(2.5) γ is m.m. ⇐⇒ ΞG/γ(q, m) = 0 .

This is a direct consequence of lemma 1.13.

Theorem 2.7. Let G be a connected Feynman graph, and let γ ⊂ EG be an edge-
subgraph with any number of connected components. Then

(2.6) ΞG(q, m) = Ψγ ΞG/γ(q, m) + RΞ,UV
γ,G (q, m)
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where RΞ,UV
γ,G (q, m) has degree > hγ in the αe, e ∈ Eγ . Now suppose that γ is a

mass-momentum subgraph. In this case,

(2.7) ΞG(q, m) = Ξγ(q, m)ΨG/γ + RΞ,IR
γ,G (q, m)

where RΞ,IR
γ,G (q, m) has degree > hγ + 1 in the αe, e ∈ Eγ .

Proof. For the proof of (2.6) combine (2.2) with the definition (1.9) and set

RΞ,UV
γ,G (q, m) = RΦ,UV

γ,G (q) + (
∑

e∈Eγ

m2
eαe)ΨγΨG/γ + (

∑

e∈EG

m2
eαe)R

Ψ
γ,G

For (2.7), combine the factorization formula for Ψ with the IR-factorization formula
(2.4), use the condition me 6= 0⇒ e ∈ Eγ , and set

RΞ,IR
γ,G (q, m) = RΦ,IR

γ,G (q) + (
∑

e∈EG

m2
eαe)R

Ψ
γ,G .

The degree of RΞ,IR
γ,G is indeed of degree > hγ +1 in the variables αe, for e ∈ Eγ . �

Note that the factorisation formula for ΨG, which is symmetric with respect to
γ and G/γ, occurs in both the UV and IR-factorizations of ΞG.

3. Motic subgraphs

For want of a better adjective, the invented word motic will be used to define a
class of subgraphs of a Feynman graph. It pertains to the word mote, meaning a
speck or particle (leading to notions of indivisibility), and the fact that its letters
stand for ‘members of the inner circle’, leading to the idea of connectedness. The
motive of a graph will be constructed out of its motic subquotients.

3.1. Definition of motic subgraphs. Let G be a Feynman graph. Recall that
at most one component of G carries non-trivial kinematics.

Definition 3.1. An edge-subgraph Γ ⊂ G is motic if, for every edge-subgraph
γ ( Γ which is mass-momentum spanning in Γ, one has hγ < hΓ.

Recall from §1.1 that any edge subgraph Γ ⊂ G which is mass-momentum span-
ning inherits all masses and external momenta from G. When it is not mass-
momentum spanning then it is considered to be a Feynman graph with zero inter-
nal masses and no external momenta. Every subgraph of such a graph is trivially
mass-momentum spanning. In particular, if G has no kinematics

Γ ⊂ G motic ⇐⇒ Γ is 1-particle irreducible .

Another example of a motic subgraph is a minimal mass-momentum spanning sub-
graph Γ ⊂ G (related to the notion of ‘infra-red’ graph in [51]).

Remark 3.2. An edge subgraph Γ ⊂ G is motic if (and only if) every mass-
momentum spanning edge subgraph of Γ of the form Γ\e, where e ∈ EΓ, satis-
fies hΓ\e < hΓ. To see that a subgraph with this property is indeed motic, let
γ ⊂ Γ be any edge subgraph which is mass-momentum spanning in Γ, and choose
e ∈ EΓ\Eγ . Then Γ\e is also mass-momentum spanning in Γ and contains γ, so we
have hγ ≤ hΓ\e < hΓ. Thus a graph is motic when cutting an edge either causes the
loop number to drop, or breaks the property of being mass-momentum spanning.
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It follows from the definition that a subgraph Γ ⊂ G is motic if and only if every
connected component of Γ is a motic subgraph of G.

Example 3.3. Below are the six motic subgraphs of example of 1.1. All subgraphs
are mass-momentum spanning and give rise to an infra-red (and possibly also ultra-
violet) sub-divergence, except for the final subgraph given by the edges 3, 4, which
corresponds to a purely ultra-violet sub-divergence.

1

2

3 4

1

2

3

1

2

4

1

3 4

1

3 4

For motivation, the reader may like to check that the graph polynomial ΞG(q, m)
vanishes on setting αe = 0 for all e ∈ Eγ , for these motic subgraphs γ ⊂ G.

3.2. Properties of motic subgraphs. Throughout this section, we use the ab-
breviation m.m. to stand for mass-momentum spanning.

Lemma 3.4. Let α ⊂ β ⊂ G be edge subgraphs.
(i). α is m.m. in β, and β is m.m. in G⇐⇒ α is m.m. in G.
(ii). β is m.m. in G⇐⇒ β/α is m.m. in G/α.

Proof. Part (i) is clear. For (ii), observe that (G/α)/(β/α) ∼= G/β and hence
ΞG/β = Ξ(G/α)/(β/α). Now apply (2.5). �

Note that the intersection of two m.m. subgraphs is not necessarily m.m. (in
example 2.5, consider the edge subgraphs spanned by edges 1, 2, 3 and 2, 3, 4.)

Remark 3.5. The definition of a motic subgraph is intrinsic in the following sense.
If H ⊂ G is an edge subgraph, and γ ⊂ H , then γ is motic in G if and only if it
is motic in H . This follows immediately from the definition if H is m.m. in G, by
lemma 3.4 (i), since α ⊂ γ is m.m. in H if and only if it is m.m. in G. In the case
when H is not m.m. in G, then neither is γ ⊂ H by the same lemma. It is motic if
and only if it is 1-particle irreducible, which is an intrinsic property.

The main properties of motic subgraphs are summarised below.

Theorem 3.6. Motic graphs have the following properties. Let G be a Feynman
graph and let α, β ⊂ G be edge subgraphs.



FEYNMAN AMPLITUDES AND COSMIC GALOIS GROUP 21

(i). (Quotients) If β is motic in G, then (β ∪ α)/α is motic in G/α.
(ii). (Extensions) Let α ⊂ β. If α is motic in G and β/α is motic in G/α, then

β is motic in G.

(iii). (Unions) If α, β ⊂ G are motic subgraphs then α ∪ β ⊂ G is motic.

(iv). (Contraction of edges) Let e ∈ EG. If (α ∪ e)/e is motic in G/e, then at
least one of α or α ∪ e is motic in G. Thus there is a surjective map

α 7→ (α ∪ e)/e : {motic subgraphs of G} −→ {motic subgraphs of G/e} .

It is not injective: it can happen that both α and α ∪ e are motic.

Proof. (i). First consider the case when α ⊂ β, and let β be motic in G. There is
a one-to-one correspondence

{Edge subgraphs γ s.t. α ⊂ γ ⊂ β} ↔ {Edge subgraphs of β/α}

γ 7→ γ/α

By lemma 3.4 (ii), this bijection preserves the subset of m.m. subgraphs. Now by
(1.15), we have hβ = hα + hβ/α and hγ = hα + hγ/α, whence

hβ − hγ = hβ/α − hγ/α .

Thus γ/α ⊂ β/α is strict and m.m. if and only if γ ⊂ β is. In this case the left-hand
side is strictly positive and hβ/α > hγ/α. This proves that β/α is motic in G/α.

Now consider the general case when β ⊂ G is motic but does not necessarily
contain α. The quotient G/α is obtained by successively contracting edges in
e ∈ Eα. For every such edge which is an edge of β, we can invoke the case proved
above. If e has no common vertices with β, or a single vertex in common with
β, then the image β = (β ∪ e)/e of β in G/e is isomorphic to β, and the proof is
straightforward. It remains to consider the case when e meets β in two vertices
v1, v2 ∈ Vβ , and hence β is obtained from β by identifying v1 and v2. We wish

to show that β is motic. Since Eβ = Eβ there is a one-to-one correspondence

γ ↔ γ between edge subgraphs of β and those of β. First of all, suppose that v1, v2

lie in two distinct connected components of β. Euler’s formula (1.2) implies that
hβ = hβ . Since β is motic, all momentum-bearing vertices lie in a single connected

component of β. Thus a strict subgraph γ ( β is m.m. if and only if γ ( β is m.m.
and we have

hγ = hγ < hβ = hβ

using the fact that β is motic. This proves that β is motic also. Now suppose that
v1, v2 lie in the same connected component of β, and hence hβ = hβ + 1 by (1.2).

Let γ ( β be an m.m. edge-subgraph. If γ is m.m. in β, we deduce that

hγ

(1.2)

≤ hγ + 1 < hβ + 1 = hβ ,

since the middle inequality follows from the fact that β is motic. Now suppose that
γ is not m.m. in β. Since γ is mass-spanning, the set of momentum bearing vertices
of β do not all lie in the same connected component of γ. Since γ is m.m., their
images in γ lie in the same connected component, and we have κγ > κγ and hence
hγ = hγ by (1.2). But then hγ = hγ ≤ hβ < hβ since hβ = hβ + 1. In both cases

we have shown that hγ < hβ , which proves that β is motic.
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(ii). Let α ⊂ β be motic and β/α ⊂ G/α be motic also. Let γ ( β be a strict
m.m. edge subgraph. Denote its image in β/α by

γ = (γ ∪ α)/α .

By lemma 3.4 (i), γ and γ ∪ α are m.m. in β and hence by lemma 3.4 (ii), γ is
m.m. in β/α. By (1.15), we have

hγ = hγ∩α + hγ/(γ∩α) ≤ hγ∩α + hγ ≤ hα + hβ/α = hβ

The first inequality holds because γ is obtained from γ/(γ∩α) by identifying vertices
and therefore hγ/(γ∩α) ≤ hγ . Suppose by contradiction that hγ = hβ. Then

hγ = hβ/α , hγ∩α = hα , hγ/(γ∩α) = hγ .

Since β/α is motic and γ ⊂ β/α is m.m., the first equality implies that γ = β/α.
Suppose that α ∩ γ is m.m. in α. Then the second equality would imply that
α ∩ γ = α, since α is motic, and this, together with γ = β/α, contradicts the fact
that γ is a strict subgraph of β.

Now consider the case when α ∩ γ is m.m. in α. If α is not m.m. in G, then
every subgraph of α is automatically m.m. in α and there is nothing to prove.
Therefore suppose that α is m.m. in G, and hence in β. Consider the set Q of
momentum-bearing vertices in β, and suppose that they lie in k ≥ 1 different
connected components of α ∩ γ. It suffices to show that k = 1, since in that case
α ∩ γ is m.m. from the definition (as both γ and α are m.m. in β). Since γ is
momentum-spanning, the image of Q in γ/(γ ∩ α) consists of exactly k vertices
lying in a single connected component. On the other hand, since α is momentum-
spanning, the image of Q in γ reduces to a single vertex. So γ is obtained from
γ/(γ∩α) by identifying these k connected vertices, and possibly identifying further
vertices. If k > 1 we would have hγ/(γ∩α) < hγ by (1.2) contradicting the third
equality above. Hence k = 1, as required.

(iii). By (i), the graph β = (α ∪ β)/α is motic in G/α. Since α ⊂ α ∪ β, it
follows from the extension property (ii) that α ∪ β is motic in G.

(iv). Let α ⊂ G be an edge subgraph, and e ∈ EG. Let Γ = α ∪ e and suppose
that Γ/e is motic in G/e. Suppose that e is not a tadpole. By the proof of (i)
above, there is a one-to-one correspondence between m.m. subgraphs γ ⊂ Γ which
contain the edge e and m.m. subgraphs γ/e of Γ/e. If γ ( Γ is strict and contains
the edge e, then hγ = hγ/e < hΓ/e = hΓ by (1.15). The strict inequality in the
middle follows since Γ/e is motic. By remark 3.2, Γ will be motic if Γ\e is not
m.m., or if it is m.m. and hΓ\e < hΓ.

Therefore let us suppose that Γ\e is m.m. and hΓ\e = hΓ. The latter equality
implies that e is a bridge in Γ, so we can write Γ\e = Γ1 ∪ Γ2, where Γ1, Γ2 are
disjoint. The quotient Γ/e is the one-vertex join Γ1.Γ2. Now there is a bijection
between the subgraphs γ1∪γ2 of Γ1∪Γ2 and γ1.γ2 of Γ1.Γ2. This bijection preserves
the number of loops and the property of being m.m.. The momentum spanning
property follows from the fact that Γ\e is momentum-spanning by assumption, so
all momenta flow into only one of the parts Γi. Thus if Γ1.Γ2 is motic if and only
if Γ1 ∪ Γ2 is. Since Γ/e is motic we deduce that Γ\e is. It remains to consider the
case when e is a tadpole. Then Γ\e = Γ/e is motic (so too is Γ). �
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4. The motic Hopf algebra of graphs

The notion of motic subgraph gives rise to a Hopf algebra which encapsulates
both infra-red and ultra-violet divergences of Feynman graphs.

Definition 4.1. Let F denote the free Z-module generated by disjoint unions of
motic9 Feynman graphs, modulo the equivalence relation G ∼ G ∪ {v} where v is
an isolated vertex. It is bigraded by

(number of edges, number of loops) .

The disjoint union of graphs defines a commutative ring structure on F , whose
unit is the empty graph 1. Define a coproduct on F by the formula:

∆ : F −→ F ⊗Z F(4.1)

G 7→
∑

γ⊂EG

γ ⊗G/γ

where G is a connected graph and the sum is over all motic subgraphs γ of G. This
is a generalisation of the Connes-Kreimer coproduct for scalar graphs. The map ∆
extends to a unique homomorphism on F .

Theorem 4.2. F is a connected bigraded Hopf algebra.

Proof. The coassociativity of ∆ is a consequence of properties (i) and (ii) of theorem
3.6 by a standard argument (see, for example, [11]). The augmentation map ε is
the projection F → F0

∼= Z. Denote its kernel by I. A generator G is motic, so
∆(G) = 1 ⊗ G + G ⊗ 1 (mod I ⊗ F + F ⊗ I). From this follows the equations
(ε ⊗ id)∆ = id and (id ⊗ ε)∆ = id. The antipode S is constructed by the usual
recursive formula for the antipode in a connected graded commutative Hopf algebra,
and is defined over Z. The fact that the loop number and edge number are gradings
follows from (1.15) and Nγ + NG/γ = NG. �

The grading by loop number is of importance when considering the geometry of
graphs in momentum space and the perturbative expansion, but the edge number
grading will be more relevant in these notes, since we shall focus on the geometry
of graphs in parametric space and their corresponding motives.

Let us denote by FQ,M the free submodule of F generated by motic Feynman
graphs of type (Q, M), i.e., with Q external momenta and M possible non-zero
masses. Then FQ,M is a module over F0,0, where multiplication is that of F :

(4.2) F0,0 ⊗Z FQ,M −→ FQ,M .

In particular, F0,0 is a commutative ring. An important feature of the motic coproduct
is the ‘all or nothing’ property of masses and momenta:

(4.3) ∆FQ,M ⊂
(
FQ,M ⊗Z F0,0

)
⊕

(
F0,0 ⊗Z FQ,M

)
.

The terms landing in the first factor correspond to subgraphs which are m.m., and
the terms in the second factor are those which are not m.m.. In particular, F0,0 ⊂ F
is a Hopf subalgebra. It was defined in [11] and called the core Hopf algebra.

There is a variant of this construction in which one considers graphs whose edges
have distinct labels. We leave the details to the reader.

9G is motic if it is motic as a subgraph of itself.
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Remark 4.3. A more fundamental structure underlying the space of graphs should
be the structure of an operad. For graphs of type (0, 0) it is clear how to define
this by insertion into vertices of graphs, but is more delicate for graphs with masses
and momenta. See [38] for some related categorical notions.

4.1. Coradical filtration. The coradical filtration CiF is defined as follows. Let

∆′ = ∆− 1⊗ id− id⊗ 1

denote the reduced coproduct. Then C0F = Z and x ∈ CnF , for n ≥ 1, if and only
if (∆′)nx = 0. The space C1F consists of primitive linear combinations of (unions
of) graphs.

Lemma 4.4. The coradical filtration of a motic Feynman graph G is ≤ hG if G is
of type (0, 0) and ≤ hG + 1 otherwise.

Proof. A motic graph of type (0, 0) is 1PI and hence satisfies hγ ≥ 1 (for every edge

e of γ we have 0 ≤ hγ\e < hγ). Let G be a generator of F0,0. Then (∆′)nG ⊂ F⊗n+1
0,0

and each component is motic so has loop number ≥ 1. Since the loop number is a
grading, this forces (∆′)n to vanish if n ≥ hG.

In the general case, let G be of type (Q, M). Then by (4.3)

(∆′G)n ⊂ F⊗n
0,0 ⊗Z FP,Q

and the same argument shows that (∆′G)n vanishes if n ≥ hG+1, the only difference
being that the component in FP,Q can satisfy hγ = 0. �

4.2. Motic descendents of graphs. If G is a motic graph, define

de(G) = G/e if e ∈ EG(4.4)

dγ(G) = γ ⊗G/γ if γ ( EG is motic .

Iterating these operations generates a cascade of tensor products of motic graphs.

Definition 4.5. Let T (F) =
⊕

m≥0 F
⊗m denote the tensor algebra on F . The

grading by edge numbers induces a grading we shall call the degree:

(4.5) deg(γ1 ⊗ . . .⊗ γn) =

n∑

i=1

(Nγi − 1) = N∪γi − n .

Given a motic graph G, define the set of motic descendants D(G) of G to be the set
of tensor products of graphs (generators in T (F)) obtained by repeatedly applying
operators of the form id⊗r ⊗ d• ⊗ id⊗s to G, where d• is one of the two operations
(4.4) above. Since these strictly decrease the degree, the set D(G) is finite.

The degree (4.5) is the usual grading in the literature on the bar construction.
It will correspond to the dimension of facets in the Feynman polytope and also to
the cohomological degree of our graph motives (to be defined below).

Remark 4.6. The operator de is not to be confused with the contraction of e, defined
by ceG = G//e. Then the equation

(4.6) ∆ce = (ce ⊗ id + id⊗ ce)∆

is not always satisfied, so F is not a differential Hopf algebra in general. The reason
is the failure of the map in theorem 3.6 (iv) to be injective. More precisely, if G is
a Feynman graph, and Γ an edge subgraph such that Γ and Γ\e are both motic in
G with hΓ = hΓ\e, then ce is not necessarily zero on (Γ\e)/Γ, and (4.6) fails. This



FEYNMAN AMPLITUDES AND COSMIC GALOIS GROUP 25

can only occur if Γ is m.m. and Γ\e is not (for example, let Γ be the subgraph
spanned by edges 1, 3, 4 in example 1.1, and e = 1). For G of type (0, 0) equation
(4.6) is satisfied and F0,0 can be made into a differential graded Hopf algebra [11].

4.3. Uniqueness of graph polynomials. This section is not essential and can
be skipped. It shows that the graph polynomials ΨG and ΞG are nearly uniquely
determined by the factorization and edge-contraction formulae.

Lemma 4.7. Let Γ ⊂ G be an edge-subgraph. Then there exists a 1PI and hence
motic subgraph γ ⊆ Γ such that hγ = hΓ.

Proof. Let e be an edge of Γ. If hΓ\e = hΓ then replace Γ with Γ\e. Repeat until
we obtain a graph γ whose loop number drops whenever any edge is cut. �

Proposition 4.8. For every labelled motic Feynman graph G, let

PG, CG ∈ Q[αe, e ∈ EG]

be homogeneous polynomials of degrees hG, hG + 1 respectively, which respect the
equivalence relation of §1.1 and take the same values on G and G ∪ {v} where v is
an isolated vertex, and satisfy the following properties:

(1) Partial factorisations:

PG ≡γ PγPG/γ

CG ≡γ PγCG/γ if γ not m.m.

CG ≡γ CγPG/γ if γ is m.m.

where AG ≡γ BγCG/γ for homogeneous polynomials A, B, C means that
AG −BγCG/γ is of degree > deg Bγ in the variables αe, for e ∈ Eγ .

(2) Edge contraction:

PG

∣∣
αe=0

= PG//e

CG

∣∣
αe=0

= CG//e

(3) Initial conditions: if G has a single edge then PG = ΨG and CG = ΞG(q, m).
If G is a banana graph (a connected graph with 2 vertices) with all edges
massive, then the coefficient of

∏
e∈EG

αe in CG is

q2 +
∑

e∈EG

m2
e .

With these assumptions, PG = ΨG and CG = ΞG(q, m).

Proof. The proof proceeds by induction on the number of edges. Assume for now
that the theorem is true for all motic graphs G such that hG ≤ 1. For the induction
step, suppose that G is motic and satisfies hG ≥ 2. For any edge e0 ∈ EG, there
exists a non-trivial motic subgraph γ ⊂ G such that e0 /∈ Eγ and hγ = hG − 1, by
lemma 4.7. It may or may not be m.m.. We obtain by induction hypothesis

PG = ΨγΨG/γ + RP
γ,G/γ

on application of (1), where the degree of RP
γ,G/γ in the variables αe, for e ∈ γ is

≥ hγ +1 and hence equal to hG. Thus RP
γ,G/γ does not depend on the variables αe,

for e ∈ G/γ. We deduce that PG is of degree ≤ 1 in αe0 and the coefficient of αe0 is
ΨγΨe0

G/γ . The constant term in αe0 is uniquely determined from (2) and induction
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hypothesis since G//e0 has fewer edges. This proves that PG = ΨG for all G. For
the polynomial CG, an application of (1) and the induction hypothesis gives either

CG = Ξγ(q, m)ΨG/γ + RC,IR
γ,G/γ

or CG = Ψγ ΞG/γ(q, m) + RC,UV
γ,G/γ

depending on whether γ is m.m. or not. The former case proceeds as for PG.

In the latter case, the term RC,UV
γ,G/γ is of degree at most one in αe0 , and hence

the coefficients of (αe0)
k for k ≥ 2 are uniquely determined by induction. The

coefficients of (αe0 )
0 are determined by contracting the edge e0 via (2). Thus the

only undetermined term in CG is the unique monomial
∏

e αe of degree exactly one
in every αe for e ∈ EG. It can only occur in CG if hG + 1 = deg CG = NG. If G
has more than one component, it necessarily contains a self-edge, say e′, which is a
motic subgraph and not m.m.. Applying (1) to this subgraph gives

CG = αe′CG/e′(q, m) + O(α2
e′ )

and so the term linear in αe′ is again determined by induction. The only remaining
case is when G is connected. Then NG = hG +1 implies that it has two vertices by
Euler’s formula (1.2), so it is a banana graph. Furthermore, every edge is massive
otherwise we could construct a non-trivial motic m.m. subgraph γ, and determine
CG using the third formula of (1). Thus we are reduced to the case of (3).

It remains to check the cases when G does not have a non-trivial motic subgraph,
i.e., hG ≤ 1. First suppose that G is a forest (hG = 0). Then PG is constant (of de-
gree 0), and by contracting edges we deduce that PG = P{v} = 1, where v is an iso-
lated vertex. The polynomial CG is homogeneous of degree one, i.e., CG =

∑
e λeαe.

The coefficient λe is uniquely determined by contracting all edges except e, and we
are reduced to the case of a graph with a single edge (3). Now suppose that hG = 1.
The same argument proves the statement for PG. The polynomial CG is homoge-
neous of degree two and hence of the form CG =

∑
e,f λe,fαeαf . By contracting

all edges except e, f we reduce to a two-edge graph. By edge contraction, λe,e and
λf,f are determined via (3). If e, f form a massive 2-edge banana, the coefficient
λe,f is determined by the second part of (3). In all other cases, G has a non-trivial
motic m.m. subgraph and we can reduce to a graph with fewer edges by the partial
factorization formulae as above. �

Remark 4.9. Properties (1) and (2) are essential requirements for the product-
structure on graph hypersurfaces and hence for our results on the action of the
cosmic Galois group. Thinking of the data of P and C as Feynman rules, the
proposition tells us how restrictive these requirements are. The polynomial PG is
essentially uniquely determined, but there is nonetheless a small amount of freedom
to modify the polynomial CG by adding a term

sn

∏

e∈EG

αe

to every massive banana graph G with n loops, where sn is a new parameter. By
properties (1) and (2), the coefficients sn will infiltrate the CG for all other Feynman
graphs. In this way one could, suprisingly, modify the Feynman integrands by
essentially a single quantity sn (which could depend on the labelling of the edges
EG) at every loop order without affecting the mathematical structures studied in
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this paper.10 Observe also that the concept of mass and momenta only enter via
the initial conditions (3). One could allow for more diverse families of polynomials
PG, CG either by restricting the set of graphs under consideration, or by allowing
the polynomials PG, CG to have higher degrees.

An interesting question would be to study similar partial factorisation properties
of Feynman integrands for gauge theories and see what restrictions this imposes on
the set of possible Feynman rules.

5. Linear blow-ups in projective space

We study blow-ups of coordinate linear subspaces of projective space. The role
of local coordinates is emphasised owing to their close relation to sector decompo-
sitions in the physics literature.

5.1. Iterated blow-ups. Let S be a finite set, and let PS = P(QS) denote projec-
tive space over Q of dimension |S|−1 with projective coordinates αs, s ∈ S. Every
subset I ⊂ S defines a linear subspace

LI
∼= PIc

⊂ PS

defined by the vanishing of coordinates αi, i ∈ I. The notation Ic denotes the
complement S\I when the set S is unambiguous. We have

LI1 ∩ LI2 = LI1∪I2 .

Now let B ⊂ 2S be a set of subsets of S with the property that

(5.1) I1, I2 ∈ B =⇒ I1 ∪ I2 ∈ B

and satisfying S ∈ B. Define the iterated blow-up PB of PS along B

πB : PB −→ PS

by the following standard procedure:

(0) First blow up all subspaces LI , for I ∈ B, such that dim(LI) = 0, in any
order, to obtain a space P0 → PS .

(1) Blow up all strict transforms of LI in P0, for I ∈ B, such that dim(LI) = 1,
in any order, to obtain a space P1 → P0.

(k) At the kth stage, blow up the strict transforms of LI in Pk−1, for I ∈ B such
that dim(LI) = k, to obtain Pk → Pk−1.

Finally, define PB = P|S|−1. The key point is that since B is closed under unions
(5.1), the strict transforms of LI in Pk−1 for I ∈ B are disjoint and can be blown
up in any order, and thus PB is well-defined. The scheme PB has a divisor

(5.2) D = π−1(
⋃

i∈S

Li)

given by the total transform of the coordinate hyperplanes Li. If UI ⊂ LI denotes
the open where αj 6= 0 for all j /∈ I, the irreducible components of D are

Di = π−1(Ui) , for all i ∈ S .(5.3)

DI = π−1(UI) , for all I ∈ B, where 2 ≤ |I| ≤ |S| − 1 ,

10This provides Feynman integrals with a new and natural parametrisation, distinct from the
kinematic parameters, which may be useful for setting up differential equations.
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where the closure is with respect to the Zariski topology. By taking repeated
intersections, D defines a stratification on PB. For every I ∈ B define

BI = {J ∈ B such that J ⊆ I}

BI = {J\I where J ∈ B and J ⊇ I} ,

and for every i ∈ S, set

Bi = {J\(J ∩ {i}) for J ∈ B} .(5.4)

Theorem 5.1. The space PB is a smooth scheme over Z and is well-defined (it
does not depend on the order of blow-ups at each stage of the above procedure).

The divisor D is strict normal crossing, and there are canonical isomorphisms

DI = PBI

× PBI where I ∈ B(5.5)

Di = Spec Z× PBi .

Consider any two components DI , DJ (of either type (5.3)), where I, J ∈ B or a
singleton in S. Then DI ∩DJ is non-empty if and only if either

I ⊂ J or J ⊂ I

or
I ∩ J = ∅ and I ∪ J /∈ B .

The latter case only arises when at least one of I, J is a singleton in S, by (5.1).

A proof is outlined below.

5.2. B-polytope. Define a compact real manifold with corners

σ̃B ⊂ PB(R)

to be the closure, in the analytic topology, of π−1
B (

◦
σ), where

◦
σ ⊂ PS(R) is the open

coordinate simplex defined by αi > 0, for all i ∈ S. Its facets inherit the following
product structure from the isomorphisms (5.5) of theorem 5.1.

Corollary 5.2. The facets of σ̃B satisfy

σ̃B ∩Di(C) = {pt} × σ̃Bi for i ∈ S

σ̃B ∩DI(C) = σ̃BI × σ̃BI for I ∈ B, 2 ≤ |I| ≤ |S| − 1 .

The poset structure on the faces of σ̃B, with respect to inclusion, is identical to the
poset structure on the stratification of PB generated by the divisor D.

5.3. Local coordinates and theorem 5.1. The space PB will be covered by
explicit coordinate charts of the form

An = Spec Z[β1, . . . , βn] .

These charts are obtained by iterating the following basic example.

Example 5.3. Consider a single blow-up in affine space. If J ⊂ {1, . . . , n} let LJ

denote the zero locus of αj , j ∈ J . Let I = {1, . . . , m} ⊂ {1, . . . , n}. The blow-up
A→ An of An along LI has local coordinates

β1 =
α1

αm
, β2 =

α2

αm
, . . . , βm−1 =

αm−1

αm
, βm = αm, βm+1 = αm+1, . . . , βn = αn .

This means that there is an affine chart An ⊂ A with a morphism

π : Spec Z[β1, . . . , βn] −→ Spec Z[α1, . . . , αn]
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defined by π∗(αi) = βiβm for 1 ≤ i < m and π∗(αi) = βi for i ≥ m. It is
an isomorphism on the opens defined by βm 6= 0 and αm 6= 0 respectively. The
exceptional divisor in these coordinates is given by the equation βm = 0, and the
strict transform of Li is given by βi = 0 for all i 6= m. The strict transform of Lm in
A does not meet this coordinate chart, and hence neither does the strict transform
of any LJ , for m ∈ J ( I.

More generally, for any choice of element j ∈ I, we have local coordinates

βi =
αi

αj
for i ∈ I\{j}, βj = αj , βi = αi for i /∈ I

and hence a local chart Spec Z[β1, . . . , βn] on A as above. These form an affine
covering of A. Note that if J1, J2 ⊂ I and J1 ∪ J2 = I, then the strict transforms
of LJ1 and LJ2 do not intersect in A, since this is true in every coordinate chart.

We now define a scheme, denoted PB, explicitly using such affine charts. It will
turn out to be isomorphic to the space defined in the previous section.

For every nested sequence (or flag)

(5.6) F : ∅ = I0 ( I1 ( I2 ( . . . ( Ik ( Ik+1 = S

where each Ir ∈ B, and every choice of elements

(5.7) c : jn ∈ In\In−1 for 1 ≤ n ≤ k + 1 ,

which are maximal in the sense that F , c cannot be made larger (i.e., there exists
no I ∈ B and 0 ≤ i ≤ k such that Ii ( I ( Ii+1 and ji+1 /∈ I), define an affine

AF ,c = Spec Z[βF ,c
i , i 6= jk+1]

and a morphism π : AF ,c → Spec Z[αi, i 6= jk+1] where the right-hand side is the
open subset αjk+1

= 1 in PS . The morphism π is defined as follows. Its inverse

(π−1)∗ on the open αjn 6= 0 for all 1 ≤ n ≤ k is given by

βF ,c
i =

αi

αjn

for i ∈ In\({jn} ∪ In−1) , 1 ≤ n ≤ k + 1 ,(5.8)

and βF ,c
jn

=
αjn

αjn+1

for 1 ≤ n ≤ k + 1 ,

where we set αjk+2
= 1; the map π∗ is obtained by writing the α’s in terms of the

βF ,c’s in the previous equations, i.e.,

π∗(αjn) = βF ,c
jn

βF ,c
jn+1

. . . βF ,c
jk+1

(5.9)

π∗(αi) = βF ,c
i βF ,c

jn
βF ,c

jn+1
. . . βF ,c

jk+1
for i ∈ In\({jn} ∪ In−1) .

The morphism π restricts to an isomorphism between the open subsets defined by

βF ,c
jn
6= 0 and αjn 6= 0 for all 1 ≤ n ≤ k. A simple example is given in §12.0.2.

By (5.8), the coordinate rings of the AF ,c are contained in the fraction field of PS,
and glue together to form a scheme PB with a morphism π : PB → PS over Spec Z.
We claim that PB is indeed the space defined by blow-ups in the first paragraph,

and that the βF ,c
j are local coordinates in the neighbourhood of a ‘corner’

(F , c) :
⋂

i∈S\{j1,...,jk}

Di ∩
⋂

1≤n≤k

DIn

where the trace of DIn on the chart AF ,c is given by βF ,c
jn

= 0 and Di by βF ,c
i = 0.

These divisors are clearly normal crossing, and meet according to the rules described
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in the second half of theorem 5.1. For example, divisors of the form DI and DJ

with I, J ∈ B only meet on such a chart if the sets I, J fit into a flag F , in which
case I ⊂ J or J ⊂ I; the remaining cases are left to the reader.

Next observe that the product structure of these divisors is clear from the struc-
ture of the coordinates (5.8) which give a canonical isomorphism:

(5.10) DIr ∩AF ,c = V (βF ,c
jr

)
∼
−→ AFIr ,cIr

× AFIr ,cIr

where FIr ,FIr are the flags in Ir and S\Ir defined by

FIr : ∅ = I0 ( I1 ( I2 . . . ( Ir

FIr : ∅ ( Ir+1\Ir ( . . . ( Ik\Ir ( S\Ir

and cIr , cIr are the obvious restrictions of c to FIk ,FIk
respectively. Gluing the

morphisms (5.10) together for all F , c proves the first equation of (5.5) since every
pair of flags in BIr , BIr is obtained from a flag in B in this way. Similarly,

AF ,c ⊃ V (βF ,c
i )

∼
−→ AFi,ci

where i ∈ Ir\(Ir−1 ∪ {jr}) and Fi is the flag in S\{i} defined by

Fi : ∅ = I0 ( I1 ( . . . ( Ir−1 ( Ir\{i} ( . . . ( Ik\{i} ( Ik+1 = S\{i} ,

which proves the second equation of (5.5). It remains to show that the spaces PB

as defined above are indeed given by the blow-up procedure. This can be proved
by induction. First of all, if B is empty, then PB is simply PS and the coordinate
charts AF ,c are the usual affine covering of PS . Let P−1 = PS , and suppose by
induction that Pn−1 is isomorphic to PB(n−1) where B(n − 1) is the subset of B
consisting of all I ∈ B such that |I| ≥ |S| − n, where n ≥ 0. It is stable under
unions. Let I ∈ B of cardinality |I| = |S| − n− 1.

Lemma 5.4. Let F , c be a maximal flag in B(n−1) given by (5.6) and (5.7) where
I1, . . . , Ik ∈ B(n−1). Let I ∈ B(n) as above. The strict transform of LI in PB(n−1)

meets the chart AF ,c if and only if I ⊂ I1\{j1}.

Proof. If jr ∈ I for any 1 ≤ r ≤ k + 1 then the strict transform of LI is contained
in the strict transform of Ljr , which does not meet AF ,c by inspection of the first
equation of (5.9) (its total transform is contained in the union of the vanishing locus

of the βF ,c
jk

, which are all exceptional divisors). On the other hand, suppose that I
does not contain any jr, and is not contained in I1. Let m be the smallest integer
such that I ⊂ Im+1. Then I ( Im so

Im ( I ∪ Im ( Im+1 .

Since B is closed under unions, I∪Im is an element of B(n−1) which contradicts the
maximality of F , c (as jm+1 /∈ I). Thus for the strict transform of LI to meet AF ,c,
we must have I ⊂ I1 and j1 /∈ I. Conversely, when this holds, the intersection of the

strict transform of LI with AF ,c is given by the equations βF ,c
i = 0 for i ∈ I. �

Now, in the situation of the previous lemma, we can blow up the strict transform
LI explicitly in the affine chart AF ,c using example 5.3. It is covered by the affine
charts AF ′,c′ where F ′, c′ extends F , c to the left:

F ′ : ∅ ( I ( I1 ⊆ . . . ( Ik ( S

and the restriction of c′ to F is c. Proceeding in this way, we can blow up the
strict transforms of LI , for I ∈ B of cardinality |I| = |S| − n − 1 in any order, to
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give exactly the space PB(n) together with its affine covering AF ′,c. This proves
by induction that the two descriptions of PB, by explicit coordinates and also by
iterated blow-ups, are one and the same.

5.4. An affine model. Given B satisfying (5.1) with S ∈ B, we shall construct
an affine subspace AB ⊂ PB by removing strict transforms of certain linear hyper-
planes, in such a way that the product-structure of PB is also satisfied by AB.

We can assume that for every I ∈ B, |I| ≥ 2. For any subset J ⊂ S, denote by

αJ =
∑

j∈J

αj .

Let HJ = V (αJ ) ⊂ PS denote the corresponding hyperplane. Write AS = PS\HS,
and consider the hyperplane complement AS\ ∪I∈B HI . We shall directly define a
partial compactification of this space as follows. Write B+ = B ∪ {{i}, i ∈ S}.

Definition 5.5. Let RB = Z[bI/J : I ⊂ S, J ∈ B such that ∅ 6= I ⊆ J ]/I, where I
is the ideal generated by the following relations:

bI/J =
∑

i∈I

b{i}/J(5.11)

bJ/J = 1

bI/JbJ/K = bI/K if J, K ∈ B

For every I ∈ B+\{S}, let DI = V (bI/J for all I ( J ∈ B) ⊂ Spec (RB).

There is a homomorphism

RB −→ Z[αi for i ∈ S, α−1
J for J ∈ B, |J | ≥ 2](5.12)

bI/J 7→
αI

αJ

which respects the relations (5.11), and hence a morphism

(5.13) AS\ ∪I∈B HI −→ Spec (RB) .

Let π : PB → PS denote the blow-up defined in the previous paragraphs. Let H̃I

denote the strict transform of HI , for I ∈ B+.

Definition 5.6. Let AB = PB\ ∪I∈B H̃I . For every I ∈ B+\{S}, let DI ⊂ PB

denote the divisor defined in §5.3, and, by abuse of notation, let us also denote by
DI its intersection with AB. Let D denote their union.

Observe that AS\ ∪I∈B HI is an open subspace of AB, since the image in PS

of every exceptional divisor in PB is contained in some such hyperplane HI . More

precisely, AS\ ∪I∈B HI
∼= PB\(D ∪ ∪I∈BH̃I).

Theorem 5.7. The morphism (5.13) extends to a canonical isomorphism

AB ∼
−→ Spec RB .

In particular, (5.13) has Zariski-dense image, and furthermore, AB is affine and
Spec RB is smooth over Z. The divisors denoted DI in AB and Spec RB are mapped
isomorphically to each other, and there are canonical isomorphisms

Di = Spec Z×ABi and DI = ABI

×ABI .
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If the set S = {1, . . . , n} is ordered, and B consists of all consecutive sets {k, k+
1, . . . , k + ℓ}, for 1 ≤ k ≤ n− ℓ and ℓ ≥ 2, then AB is isomorphic to the affine space
Mδ

0,n+2 defined in the author’s thesis11. The strategy of §5.5 gives a new proof
of its main properties. On the other hand, if we take B to be all subsets of S of
cardinality ≥ 2, we obtain an affine algebraic model of a permutohedron.

Example 5.8. Let S = {1, 2}, and let B = S. Then there is nothing to blow up
and PB = P1. Its affine version is AB = P1\{α1 + α2 = 0} ∼= A1. In the explicit
coordinates above, RB = Z[b1/12, b2/12]/I where I is the ideal generated by the

relation b1/12 + b2/12 = 1, and the composition with inclusion into A2

AB ∼
−→ Spec RB ⊂ A2

is given in projective coordinates by (α1 : α2) 7→ (α1/(α1 + α2), α2/(α1 + α2)).

5.5. Outline of proof of theorem 5.7. Let (F , c) denote a maximal pair (5.6)
and AF ,c the corresponding chart of PB. Let us denote by UF ,c the open AF ,c∩AB.
We must first show that the morphism (5.13) canonically extends to a morphism

UF ,c −→ Spec RB .

To see this, compute the strict transform of HJ , for J ∈ B in the coordinates βF ,c
i .

It follows from the definition of the coordinates βF ,c in (5.8) that

π∗αJ = PJ ×
k∏

r≥ℓ

βF ,c
jr

where PJ is an irreducible polynomial in the βF ,c
i , and ℓ is the smallest integer such

that J ⊆ Iℓ. We have P{jn} = 1. The strict transform H̃J of HJ is given locally on

AF ,c by the zero locus of PJ . It follows from this calculation that

O(UF ,c) = Spec
(
Z[βF ,c][P−1

J , for J ∈ B, |J | ≥ 2]
)

and that we have explicitly

RB −→ O(UF ,c)(5.14)

bI/J 7→
PI

PJ
×

ℓ2−1∏

r=ℓ1

βF ,c
jr

where ℓ1 ≤ ℓ2 are minimal such that I ⊂ Iℓ1 , J ⊂ Iℓ2 . The point is that there

are no terms βF ,c
jr

in the denominator. One can check that (5.14) is well-defined

(respects the relations in the defining ideal of RB), since it is compatible with π∗

and (5.13). Gluing the resulting maps UF ,c → Spec RB together, we deduce that
(5.13) extends to a morphism

AB =
⋃

F ,c

UF ,c −→ Spec RB .

For the next step, observe that if jr ∈ J ⊂ Ir then by the maximality of (F , c)
there is no smaller ℓ < r such that J ⊂ Iℓ and therefore under (5.14)

bJ/Ir
7→

PJ

PIr

.

11To write down the isomorphism, it suffices to observe that the simplicial coordinates ti for
1 ≤ i ≤ n − 3 correspond to bI/S where I = {1, 2, . . . , i} and S = {1, 2, . . . , n − 2}.
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Setting J = {jr}, we have bjr/Ir
7→ P−1

Ir
, which is invertible in O(UF ,c). It follows

that (5.14) factorizes through the ring

(5.15) RB[b−1
j1/I1

, . . . , b−1
jk+1/Ik+1

] −→ O(UF ,c) ,

where Ik+1 = S. Note that the defining relation bjr/Ir
= bjr/JbJ/Ir

implies that
inverting bjr/Ir

also inverts bJ/Ir
and bjr/J for J ∈ B. We claim that (5.15) is an

isomorphism. To see this, we can write down a map in the opposite direction

βF ,c
i 7→ bi/In

b−1
jn/In

if i ∈ In\({jn} ∪ In−1) , 1 ≤ n ≤ k + 1 ,

and βF ,c
jn

7→ bjn/In+1
b−1
jn+1/In+1

for 1 ≤ n ≤ k + 1 ,

consistent with (5.8). It clearly lands in RB[b−1
j1/I1

, . . . , b−1
jk+1/Ik+1

], and one checks

that it is indeed the inverse of (5.14). We omit the details.
For the final step, define open affine subspaces V F ,c ⊂ Spec RB by

V F ,c = Spec RB[b−1
j1/I1

, . . . , b−1
jk+1/Ik+1

] .

We have shown that UF ,c ∼= V F ,c are canonically isomorphic. It suffices to check
that the opens V F ,c form a covering of Spec RB. To see this, observe that

⋃

i∈I1

Spec RB[b−1
i/I1

, b−1
j2/I2

, . . . , b−1
jk+1/Ik+1

] ⊆ Spec RB [b−1
j2/I2

, . . . , b−1
jk+1/Ik+1

]

is an equality, which follows from the partition of unity relation
∑

i∈I1
bi/I1 = 1 in

RB. By varying c in (F , c), and eliminating the b−1
jr/Ir

in turn, we deduce that

⋃

(F ,c)

V F ,c = Spec RB .

This proves that AB ∼
→ Spec RB is an isomorphism. The next statements follow

by transferring information along this isomorphism: SpecRB is clearly affine, and
AB, defined by the complement of divisors in a blow-up, is smooth over Z.

For the last statement concerning the product structure of the divisors DI , we
refer to theorem 6.5. Note that AB = PB\Y , where Y is the strict transform of the
zero locus of the polynomials φB(n) =

∏
J∈B αnJ

J , where n = (nJ)J∈B are integers
nJ ≥ 0. They satisfy the same factorisation properties as graph polynomials which
are used in the proof of theorem 6.5, namely

φB(n) = φBI (n′)φBI (n
′′) + R

for every I ∈ B, where R is of higher degree in the variables αi, i ∈ I than φBI .

6. Motives of graphs with kinematics

We define the motive (or rather, its image in a category of realisations) of a
Feynman graph by applying the linear blow-up construction of the previous section
to the set of motic subgraphs of a Feynman graph. In the case where the graph has
no kinematic dependence, and is primitive log-divergent, this retrieves the definition
of graph motive due to Bloch-Esnault-Kreimer [10].
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6.1. Orders of vanishing. Let G be a Feynman graph, and consider the projective
space PEG . There is a bijection between coordinate linear subspaces

PEG ⊃ LI for I ( EG ←→ edge subgraphs I ( G .

Given a homogenous polynomial P in Z[αe, e ∈ EG], let

vI(P ) = order of vanishing of P along LI .

Lemma 6.1. Assume generic kinematics (1.17) and (1.18). Let γ ⊂ EG. Then

(6.1) vγ(ΨG) = hγ ,

(6.2) vγ(ΞG) =

{
hγ + 1 if γ is m.m.

hγ if γ is not m.m.

Proof. This follows from the factorisations (2.6) and (2.7), the degree formulae for
graph polynomials (1.8), and lemmas 1.11 and 1.13 which assert that ΨG/γ and
ΞG/γ(m, q) are non-zero, via equation (2.5). �

The principle motivation for the definition of motic subgraphs comes from the
following proposition. We again assume generic kinematics (1.17), (1.18).

Proposition 6.2. An edge subgraph Γ ⊂ EG is motic if and only if

vγ(ΞG) < vΓ(ΞG)

for all strict edge subgraphs γ ( Γ. In particular, vΓ(ΞG) > 0 if Γ is motic.

Proof. Let γ ( Γ be a strict edge subgraph. Let Iγ,G equal 1 if γ is mass-momentum
spanning in G and 0 otherwise. We have hΓ ≥ hγ .

Equation (6.2) implies that

(6.3) vΓ(ΞG)− vγ(ΞG) = (hΓ − hγ) + (IΓ,G − Iγ,G) .

Furthermore, IΓ,G ≥ Iγ,G, because if γ is mass-momentum spanning in G, then
so too is Γ by lemma 3.4 (i). Thus (6.3) is strictly positive for all strict edge
subgraphs γ ⊂ Γ if and only if hγ < hΓ whenever Iγ,G = IΓ,G. By lemma 3.4 (i),
this is precisely the set of mass-momentum spanning subgraphs γ ( Γ. �

6.2. Graph hypersurfaces and the motive. Let G be a graph of type (Q, M).
We shall construct various families of schemes over the space of kinematics KQ,M ,
defined in (1.20). In order to lighten the notation, we shall abusively write PEG ,
LI , and so on, to denote the base change of the schemes defined in the previous
section from Spec Z to KQ,M . Define graph hypersurfaces

XΨG = V (ΨG) ⊂ PEG and XΞG(q,m) = V (ΞG(q, m)) ⊂ PEG .

These are to be viewed as families of hypersurfaces over KQ,M . The former were
considered in [10] when Q = M = 0. Note that the intersection XΨG ∩XΞG(q,m) is
given by the zero locus V (ΦG(q)) of the second Symanzik polynomial, by (1.9).

If Γ ⊂ G is motic, then by proposition 6.2, vΓ(ΞG(q, m)) > 0 and so the linear
subspace LΓ is contained in the graph hypersurface on each fiber, i.e.,

LΓ ⊂ XΞG(q,m) .
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If Γ is not m.m. in G, then we also have LΓ ⊂ XΨG by (6.1) since hΓ > 0. Thus the
loci LΓ meet both the boundary of the chain of integration σ, and the singularities
of the Feynman integrand (1.11), causing potential divergences12.

Definition 6.3. Let G be a motic Feynman graph of type (Q, M). Define

πG : PG = PBG −→ PEG

where BG = {Γ ( G motic}, which is stable under unions by theorem 3.6 (iii).

Let us define XG ⊂ PEG (viewed as a family over KQ,M ) to be

(6.4) XG =

{
XΨG ∪XΞG(q,m) if G has non-trivial kinematics

XΨG if G has no masses or momenta
.

Because of exceptional cases when the Feynman integrand (1.11) has no term ΨG

in the denominator (i.e., when NG ≥ (hG + 1)d/2)), we can also define

(6.5) X ′
G = XΞG(q,m) .

Denote the strict transforms of XΨG , XΞG(q,m), XG, X ′
G in PG by

YΨG , YΞG(q,m) , YG , Y ′
G

respectively. Note that if G has connected components G1, . . . , Gn, then YΨG =⋃n
i=1 YΨGi

. Recall that D ⊂ PG is the divisor defined by (5.2), base-changed from

Spec Z to KQ,M . Denote the canonical projection by πG : PG → PEG .

Definition 6.4. Let G be a motic Feynman graph of type (Q, M). Let

motG = HNG−1(PG\YG, D\(D ∩ YG))/S .

It is a triple motG = ((motG)B, (motG)dR, c) in a category H(S), for some Zariski-
open S ⊂ KQ,M , defined immediately below, via the construction of [17] §10.2.
There is also a variant

mot′G = HNG−1(PG\Y ′
G, D\(D ∩ Y ′

G))/S .

6.3. Reminders from [17]. Let S be a smooth geometrically connected scheme
over Q. Then H(S) is the category of triples (VB ,VdR, c) where VB is a local system
of Q-vector spaces on S(C), and VdR is an algebraic vector bundle on S equipped
with an integrable connection ∇ with regular singularities at infinity. These are
equipped with a weight (and for VdR, a Hodge) filtration satisfying the conditions

of §7.2 of [17], and c : Van
dR

∼
→ VB ⊗Q OSan is an isomorphism of analytic vector

bundles with connection, respecting the weight filtrations.

6.4. Recursive structure. Let D ⊂ PG denote the divisor defined by (5.2). Its
irreducible components are De, for e ∈ EG an edge, and Dγ for γ ( EG a strict
motic subgraph of G. All schemes are viewed over KQ,M where G is of type (Q, M).

Theorem 6.5. For every edge e ∈ EG and γ ( EG motic, we have

Dγ = P γ × PG/γ ,(6.6)

De = {pt} × PG/e

12As suggested by T. Damour, such loci could be termed problemotic.
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and the strict transforms of the graph hypersurfaces satisfy:

YG ∩Dγ =
(
Yγ × PG/γ

)
∪

(
P γ × YG/γ

)
,(6.7)

YG ∩De = {pt} × YG/e .

Note that at most one of γ and G/γ has non-trivial momenta and masses. Here,
{pt} means the family of points Spec Z×SpecZ Spec KQ,M over Spec KQ,M .

Proof. Recall that PG = PBG , where BG consists of the set of strict motic subgraphs
of G. Let γ ( EG be motic. By theorem 5.1, and the notation preceding it,

Dγ = P (BG)γ

× P (BG)γ .

By remark 3.5, (BG)γ = Bγ since a subgraph of γ is motic if and only if it is
motic in G. Finally, (BG)γ = BG/γ by theorem 3.6 (i) and (ii). This proves the

first line of (6.6). Now consider an affine chart AF ,c defined in §5.3, where the flag
F contains γ (otherwise Dγ does not meet AF ,c, by lemma 5.4). In the coordinates
(5.8), let β = 0 denote the equation of Dγ ∩ AF ,c in AF ,c. Write π∗

GΨG in these
coordinates and apply (2.4) to obtain

π∗
GΨG = βhγ (π∗

γΨγ)(π∗
G/γΨG/γ) + O(βhγ+1) ,

where the right-hand side is written using AF ,c ∼= A1 ×AFγ ,cγ

×AFγ ,cγ and where
the coordinate on the component A1 is β (see the discussion following (5.10)). This
proves that YΨG ∩Dγ = (YΨγ × PG/γ) ∪ (P γ × YΨG/γ

). A similar argument using

formulae (2.6) and (2.7) proves that

YΞG(q,m) ∩Dγ = (YΞγ (q,m) × PG/γ) ∪ (P γ × YΨG/γ
) when γ is m.m.

YΞG(q,m) ∩Dγ = (YΨγ × PG/γ) ∪ (P γ × YΞG/γ(q,m)) γ not m.m.

Since YG = YΨG ∪ YΞG(q,m), this proves the first equation of (6.7).
Now, by theorem 5.1, we have

De = {pt} × P (BG)e .

We must show that (BG)e = BG/e. The left-hand side is given by the sets of
edges γ\(γ ∩ {e}) for motic γ ( EG, and this is the set of edges of the subgraph
(γ ∪ e)/e ⊂ EG/e. By theorem 3.6 (i) and (iv), such a graph is motic in G/e, and
every motic subgraph of G/e arises in this way. (Note that the failure of injectivity
stated in the last line of theorem 3.6 (iv) poses no problem, since we are only
concerned with γ ∪ e). This proves the second line of (6.6). If e is not a tadpole, it
follows from corollary 1.10 that

XΨG ∩ Le = XΨG/e
and XΞG(q,m) ∩ Le = XΞG/e(q,m) ,

and we deduce the corresponding statements for their strict transforms. If e is a
tadpole it is motic, and we are reduced to the previous case, since P e = {pt}. �

Remark 6.6. The analogous statement of theorem 6.5 for Y ′
G = YΞG(q,m) is

Y ′
G ∩De = {pt} × Y ′

G/e(6.8)

Y ′
G ∩Dγ =

(
Y ′

γ × PG/γ
)
∪

(
P γ × YG/γ

)
if γ is m.m.

=
(
Yγ × PG/γ

)
∪

(
P γ × Y ′

G/γ

)
if γ is not m.m.

Note that every time a YH (with no prime) occurs in these formulae, it is because
the graph H (either γ or G/γ) has no masses or momentum dependence.
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By induction, the theorem implies that the intersection of the strict transform
YG of the graph hypersurface with a facet of D of codimension n is of the form

⋃

i

P γ1 × . . .× P γi−1 × Yγi × P γi+1 × . . .× P γn

where the γi are quotients of motic subgraphs of G. In fact, γ1 ⊗ . . . ⊗ γn is a
descendant of G according to definition 4.5.

6.5. Feynman polytope and Betti class. Let G be a Feynman graph of type
(Q, M). Define the Feynman polytope, following §5.2, to be

σ̃G := σ̃BG × Ugen
Q,M ⊂ PG(R) .

It is a constant family of compact manifolds with corners over the locus Ugen
Q,M ⊂

Kgen
Q,M (C) where masses and momenta have positive real parts (§1.7).

Theorem 6.7. We have σ̃G ∩ YG(C) = ∅. A fortiori, σ̃G ∩ Y ′
G(C) = ∅.

Proof. Since the polytope σ̃G is stratified, it suffices to show that YG(C) does not
meet any open stratum. We shall do this by induction. We have an isomorphism

(
PG\D

) ∼
−→

(
PEG\

⋃

e∈EG

Le

)

which induces a homeomorphism from the big open stratum
◦
σG ⊂ σ̃G to

◦
σ×Ugen

Q,M ,

the open coordinate simplex. It also sends YG\(YG ∩D) to XG. Thus

YG(C) ∩
◦
σG
∼= XG(C) ∩ (

◦
σ × Ugen

Q,M ) ,

and it suffices to show that XΨG(C) ∩ (
◦
σ × Ugen

Q,M ) is empty, and likewise that

XΞG(q,m)(C) ∩ (
◦
σ × Ugen

Q,M ) is non-empty, in the case when G has non-trivial kine-
matics. Since ΨG is non-zero by lemma 1.11 and only has positive coefficients, it is
clear that ΨG > 0 when all αi > 0. Similarly, if G has non-trivial kinematics then
ΞG(q, m) is non-zero by lemma 1.13 since (1.17) and (1.18) is automatically satis-
fied if (1.22) holds. Using the explicit expression (1.9), we have Re(ΞG(q, m)) > 0

when all αi > 0 and (q, m) ∈ Ugen
Q,M . This proves that XG(C) ∩ (

◦
σ × Ugen

Q,M ) = ∅.
Now theorem 6.5 implies that the facets of σ̃G satisfy

σ̃G ∩De(C) = {pt} × σ̃G/e and σ̃G ∩Dγ(C) = σ̃γ × σ̃G/γ .

Using the recursive structure (6.7), we are reduced to proving an identical statement
for quotients of motic subgraphs of G, and proceed by induction by decreasing
dimension of the strata. �

Definition 6.8. Let us write σG ⊂ (PG\YG)(R) (with no tilde) for the intersection

σG = σ̃G ∩ (PG\YG)(C) .

It follows from the previous theorem that σG is homeomorphic to σ̃G, and its
boundary is contained in D ∩ YG(C). It therefore defines a canonical Betti class

(6.9) [σG] ∈ Γ
(
Ugen

Q,M , HNG−1(P
G\YG, D\(D ∩ YG))

)
.

which we view as a local section of the dual Betti local system

[σG] ∈ Γ
(
Ugen

Q,M , (motG)∨B
)

.

Likewise we can replace YG by Y ′
G in the case when NG ≥ (hG + 1)d/2.
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One reason why we emphasise the action of the de Rham Galois group (as op-
posed to the Betti Galois group) on motivic Feynman integrals is because the Betti
class is uniformly defined for all graphs and we wish to keep it fixed. Furthermore,
we prefer to compute with differential forms rather than homology cycles.

6.6. De Rham class and power-counting. Let G be as above. The pull-back
of the form (1.11) along the map πG : PG\D\YG −→ PEG\XG

π∗
G(ωG(q, m)) ∈ ΩNG−1(PG\D\YG; kQ,M )

may have poles along the exceptional divisors Dγ ⊂ PG for γ motic.

Definition 6.9. The superficial degree of divergence of a graph G is

(6.10) sdG = d hG/2−NG .

This is an integer, since d, the dimension of spacetime, was assumed to be even.

The following lemma gives necessary and sufficient conditions for the convergence
of the Feynman integral in the enlarged Euclidean region in terms of the superficial
degrees of divergences of motic subgraphs.

Lemma 6.10. Let γ ( EG be motic. Then π∗
G(ωG(q, m)) has a pole along Dγ of

order given by the following formula:

(6.11) −vγ(π∗
G(ωG(q, m))) =

{
1 + sdγ if γ is not m.m.

1 + sdγ − sdG if γ is m.m.
.

It has no poles along any divisors of the form De, where e ∈ EG is an edge which
is not motic. It follows that the Feynman integral IG(q, m) (1.10) is absolutely
convergent in the region Ugen

Q,M if and only if

sdγ < 0 for all γ ( EG motic and not m.m.(6.12)

sdγ < sdG for all γ ( EG motic and m.m. .

Proof. Recall (1.11). From equations (6.2) and (6.1), we have

−vγ

( 1

Ψ
d/2
G

( ΨG

ΞG(m, q)

)NG−hGd/2)
= hγd/2− Iγ sdG

where Iγ is 1 if γ is m.m., and 0 otherwise. Now consider an affine chart AF ,c where

F : ∅ = I0 ( I1 ( I2 ( . . . ( Ik ( Ik+1 = EG

is a flag containing γ = Ir and Dγ is given by the equation βjr = 0. The chart AF ,c

lies over the affine αjk+1
= 1. In the local coordinates (5.8) we find that

π∗
G(

∏

i6=jk+1

dαi) = β
|I1|−1
j1

β
|I2|−1|
j2

. . . β
|Ik|−1
jk

∏

i6=jk+1

dβi

vanishes along βjr = 0 to order 1− |Ir| = 1−Nγ . Thus

−vγ(π∗(ωG(q, m))) = 1−Nγ + hγd/2− Iγ sdG

which proves (6.11). For the second part, observe that ΨG and ΞG(q, m) vanish
along a coordinate hyperplane Le if and only if e is motic. Therefore ωG(q, m) has
no pole along De if e is not motic.

For the last part, suppose that (6.12) holds. Then ωG(q, m) is continuous and
has no poles on the domain σG, which has compact fibers over Ugen

Q,M . Its integral
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IG(q, m) is therefore absolutely convergent. Conversely, suppose that IG(q, m) is
absolutely convergent for some (q, m) in the Euclidean region Kgen

Q,M (R) defined

in §1.7, where all momenta qi and masses me are real. Then ωG(q, m) is strictly
positive on σG, and so for any subset U ⊂ σG we have

∫

U

ωG(q, m) ≤ IG(q, m) <∞ .

If ωG(q, m) had a pole along a boundary divisor Dγ , it follows from positivity by
taking U to be a neighbourhood of Dγ ∩ σG that the left-hand side is infinite.
Therefore ωG(q, m) has no poles along any Dγ and hence (6.12) holds. �

Note that one can interpret the quantity sdγ − sdG as −sdG/γ . We say that a
Feyman integral is convergent if the conditions (6.12) are satisfied. In this case,

π∗
G ωG(q, m) ∈ ΩNG−1((PG\YG)∗; kQ,M )

where (PG\YG)∗ denotes the generic fiber of PG\YG over KQ,M . This in turn
defines a relative de Rham cohomology class at the generic point

[π∗
G ωG(q, m)] ∈ Γ(Spec kQ,M , (motG)dR) .

In the case when NG ≥ (hG + 1)d/2, we can replace YG by Y ′
G in the above.

Remark 6.11. The formulae for the degrees of divergence of a Feynman integral
with respect to a subgraph are due to Weinberg [54], and are known as power-
counting. Finding a minimal class of subgraphs which give necessary conditions for
convergence is more subtle since the inequalities (6.12) are not independent. This
problem was studied by Speer [51, 52] for generic Feynman integrals.

6.7. Convergence of ‘global periods’: integrals with numerators. Gauge
theories can produce Feynman integrals with numerators [41]:

(6.13)

∫

σ

ω(q, m) where ω(q, m) =
P ΩG

ΨA
G ΞG(q, m)B

,

where A, B are integers, and P ∈ Q[αe, e ∈ EG] is homogeneous of degree

(6.14) deg P = AhG + B(hG + 1)−NG

to ensure that ω(q, m) is homogeneous of degree zero. We take B = 0 if G is of
type (0, 0), in which case ΞG(q, m) vanishes.

Lemma 6.12. Suppose that

(6.15) vγ(P ) ≥ Ahγ + B(hγ + Iγ)−Nγ + 1

for all motic subgraphs γ ( EG, where Iγ is 0 if γ is not m.m., and 1 if it is m.m..
Then π∗

G(ω(q, m)) has no poles along D for (q, m) ∈ Ugen
Q,M . Therefore

π∗
G(ω(q, m)) ∈ ΩNG−1(PG\YG; kQ,M )

and the integral (6.13) is convergent for all (q, m) ∈ Ugen
Q,M .

Proof. Similar to lemma 6.10. �

Thus in this case also [π∗
G ωG(q, m)] ∈ Γ(Spec kQ,M , (motG)dR). The integral

(6.13) is an example of what we shall call a Feynman period.
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Example 6.13. Consider the banana graph G with three edges, no external mo-
menta and no masses. Its graph polynomial is ΨG = α1α2 + α1α3 + α2α3, and its
Feynman amplitude is divergent. However, the previous lemma provides examples
of Feynman periods such as∫

σ

α1α2α3

Ψ3
G

ΩG =

∫

α1,α2≥0

α1α2

(α1α2 + α1 + α2)3
=

1

2
.

One easily shows (see section §9) that all periods of this graph are rational.

7. Motivic Feynman amplitudes

Armed with the definition of the motive of a Feynman graph, we can give the
definition of the motivic Feynman amplitude and draw some first consequences.

7.1. Reminders on motivic periods from [17]. Let S ⊂ KQ,M be Zariski open
as in §6.3, let s ∈ S(C), and denote by Spec kQ,M the generic point of S.

Then H(S) has two fiber functors ([17] §7.2.1)

ωgen
dR : H(S) −→ VeckQ,M

ωs
B : H(S) −→ VecQ

where ωgen
dR is the fiber of VdR at the generic point Spec kQ,M of KQ,M , and

ωB,s(VB ,VdR, c) = (VB)s is the fiber at s. The ring of H(S)-periods

Pm,s,gen
H(S)

is the space generated by the matrix coefficients ([17], §2.2, §8.2) of the form
[V, σ, ω]m where V = (VB , VdR, c) is an object of H(S), σ ∈ ωs(VB)∨, and ω ∈
ωgen

dR (V ). Now suppose that s1, s2 ∈ Ugen
Q,M ∩ S(C) are two points in the region of

generic kinematics. A path γ ⊂ Ugen
Q,M ∩ S(C) from s1 to s2 yields an isomorphism

Pm,s1,gen
H(S)

∼= P
m,s2,gen
H(S)

by continuation along paths [17], (7.10) and hence a canonical isomorphism

(Pm,s1,gen
H(S) )π1(U

gen
Q,M∩S(C),s1) = (Pm,s2,gen

H(S) )π1(Ugen
Q,M∩S(C),s2)

where the action of the topological fundamental group is on the right, and commutes
with the action of the de Rham Tannaka group (resp. the de Rham coaction). If
S′ → S is a smooth morphism and s′ ∈ S′(C) is in the pre-image of s, then the
pullback defines a functor H(S)→ H(S′) and hence a homomorphism Pm,s,gen

H(S) →

Pm,s′,gen
H(S′) . By taking π1-invariants, we can move the complex point s ∈ S(C) to

ensure that it lies in the image of S′(C), and hence take the limit.

Definition 7.1. For Q, M ≥ 0, following [17] §8.2, let

Pm

Q,M = lim
−→
S

(Pm,s,gen
H(S) )π1(U

gen
Q,M∩S(C),s)

where the limit ranges over Zariski open S ⊂ Kgen
Q,M which are defined over Q and

s ∈ Ugen
Q,M ∩ S(C), ordered with respect to inclusion.

The point of this construction is that the Feynman motivic periods will have
poles on the complement of some unspecified Zariski-open set S, but will always
be single-valued on the region Ugen

Q,M (extended ‘Euclidean sheet’). The ring Pm
Q,M

captures exactly this property.
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There is a corresponding ring of de Rham periods Pdr
Q,M = lim

−→S
Pdr,gen
H(S) . It

is generated by equivalence classes of triples [V, f, ω]dr where f ∈ ωgen
dR (V )∨ and

ω ∈ ωgen
dR (V ) and V is an object of H(S) for some S ⊂ KQ,M as above.

Recall that for (Q, M) = (0, 0) the ring k0,0 = Q and H0,0 = H is the category
of realisations over Q considered in [17] §2. Its ring of periods Pm

0,0 = Pm
H is simply

the ring of periods over Q considered in [17] §3.

7.2. Motivic Feynman amplitudes and motivic Feynman periods. We make
frequent use of the definitions and constructions from [17].

Definition 7.2. Let G be a Feynman graph of type (Q, M) and IG(q, m) a con-
vergent Feynman amplitude (1.10). Define the motivic Feynman amplitude to be

Im

G (q, m) = [motG, [π∗
G ωG(q, m)], [σG]]m ∈ Pm

Q,M .

To check that this makes sense, note that the general theory implies that motG is an
object of H(S) for S some Zariski-open set in Kgen

Q,M . Since [σG] is in a fact constant

section of Γ(Ugen
Q,M ∩ S(C), (motG)∨B), the fundamental group of Ugen

Q,M ∩ S(C) acts

trivially upon Im
G (q, m). Pick any s ∈ Ugen

Q,M ∩S(C). The element Im
G (q, m) therefore

can be viewed as an element of Pm,s,gen
H(S) , invariant under πtop

1 (Ugen
Q,M ∩S(C)). It can

therefore be viewed as an element of Pm
Q,M .

For all (q, m) ∈ Ugen
Q,M , its period is given by the convergent Feynman integral

per(Im

G (q, m)) = IG(q, m) .

We can also define (for instance in the case NG ≥ (hG + 1)d/2) a variant:

Im

G (q, m)′ = [mot′G, [π∗
G ωG(q, m)], [σG]]m ∈ Pm

Q,M .

Since the action of the de Rham Galois group on motivic Feynman integrals
will generate new integrands, and since quantum field theory (e.g., gauge theories)
naturally produce integrands with numerators, we make the following definition.

Definition 7.3. A motivic Feynman period of type (Q, M) is

Im

G (ω) = [motG, [ω], [σG]]m ∈ Pm

Q,M(7.1)

where [ω] ∈ ωgen
dR (motG) is any relative de Rham cohomology class at the generic

point. Write

IG(ω) = per(Im

G (ω)) ,

which we call a Feynman period. It is a multivalued meromorphic function on
Kgen

Q,M (C). Note that graphs for which the Feynman amplitude ωG(q, m) does not
converge may still have non-trivial Feynman periods. The notion of Feynman period
is therefore more general, but contains, the notion of Feynman amplitude. Feynman
periods may not necessarily always have a physical interpretation.

One can consider a variant for NG ≥ (h + 1)d/2, by replacing motG by mot′G.

Remark 7.4. Many, but not all, cohomology classes in ωgen
dR (motG) are of the form

[π∗
G(ω(q, m))], where ω(q, m) is a Feynman integrand with numerator (6.13).
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7.3. Coaction formula and cosmic Galois group. By [17] §8.2, the rings of
periods considered above admit a coaction

∆ : Pm

Q,M −→ P
m

Q,M ⊗kQ,M P
dr

Q,M .

Applied to a motivic Feynman period we have the formula [17] (2.3)

(7.2) ∆Im

G (ω) =
∑

ei

[motG, [σG], ei]
m ⊗ [motG, e∨i , [ω]]dr

and the corresponding variant in which I and motG are replaced by I ′ and mot′G.
In this formula, ei is a basis of ωgen

dR (motG) and e∨i the dual basis. The elements
on the right-hand side of the tensor product in (7.2) are again motivic Feynman
periods of G.

It is customary in the physics literature to restrict to one-particle irreducible
graphs. Likewise, we shall restrict to the larger class of motic graphs.

Definition 7.5. The comodule of de Rham Feynman periods of type (Q, M) is the
subspace FPdr

Q,M ⊂ P
dr
Q,M spanned by de Rham Feynman periods

[motG, f, v]dr , where v ∈ ωgen
dR (motG) and f ∈ ωgen

dR (motG)∨ ,

and G is motic of type (Q, M). The coproduct is given by the formula

∆[motG, f, v] =
∑

ei

[motG, f, ei]
dr ⊗ [motG, e∨i , v]dr ,

where ei is a basis of ωgen
dR (motG) and e∨i the dual basis as above. It is not an

algebra since it is not closed under products when (Q, M) 6= (0, 0).
The space of motivic Feynman periods of type (Q, M) is the subspace

FPm

Q,M ⊂ P
m

Q,M

spanned by motivic Feynman periods Im
G (ω), where G is motic of type (Q, M). It

is a right comodule over FPdr

Q,M . The coaction is given by equation (7.2):

(7.3) ∆ : FPm

Q,M −→ FP
m

Q,M ⊗kQ,M FP
dr

Q,M .

Define the cosmic Galois group CQ,M for convergent Feynman periods to be

(7.4) CQ,M = Spec FPdr

Q,M .

It is an affine group scheme over kQ,M , and acts on ωgen
dR (motG) for all G motic of

type (Q, M). The coaction (7.3) is equivalent to a group action

CQ,M ×FP
•
Q,M −→ FP

•
Q,M with • = m, dr .

The cosmic Galois group itself should be taken with a pinch of salt (in the same
way as the Galois group of all algebraic numbers): it is an enormous pro-algebraic
group scheme over kQ,M , and in practice one is interested in its finite-dimensional
representations.
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7.4. First applications. The notion of motivic Feynman amplitude leads to a
number of immediate consequences. We briefly mention just a few.

Definition 7.6. The representation associated to a motivic Feynman period Im
G (ω)

is the representation of CQ,M which it generates:

VG(ω) ⊂ FPm

Q,M .

The Galois conjugates of a motivic Feynman period are the elements of VG(ω), or
equivalently, the elements of the comodule it generates under the coaction (7.2).

(1) (Weight filtration). We can speak of the weights of Feynman periods. Say
that a motivic Feynman period Im

G (ω) is of weight at most n if

Im

G (ω) ∈ WnFP
m

Q,M

This holds in particular if ω ∈ Wnωgen
dR (motG). Note that the weight is a

filtration, not a grading, except in very special circumstances. We can say
that a Feynman period is of weight ≤ n if it is the period per Im

G (ω) of a
motivic Feynman period Im

G (ω) of weight ≤ n.13

(2) (Picard-Fuchs equations). There is an integrable connection

∇ : FPm

Q,M −→ FP
m

Q,M ⊗kQ,M Ω1
kQ,M

.

See [17] §7.4 for its compatibilities with the period homomorphism and
coaction. It follows from general theory and the construction of motG that
Feynman periods are solutions to differential equations of Fuchsian type.

(3) (Invariants attached to VG(ω)). The representation VG(ω) of a Feynman
period carries a barrage of new information. This is discussed in [17]. For
example, a motivic Feynman period has a rank (the dimension of VG(ω));
a Hodge polynomial ; and a filtration by the unipotency degree (this is the
coradical filtration on FPm

Q,M induced by the coaction (7.3).).

(4) (Mixed Tate amplitudes). Call a motivic Feynman period mixed Artin-Tate
if it is equivalent to a motivic period of a variation of Hodge-Tate type (all
Hodge numbers hp,q = 0 unless p = q). Call it mixed Tate if it is equivalent
to a motivic period of H where grW

n H is zero if n is odd, and a direct sum
of constant Tate objects Q(−k) if k = 2n is even. The weight filtration is
a grading on such motivic periods. This case is discussed in §7.7.

Remark 7.7. The Betti realisation of motG is a local system on the complex points
of some open S = Kgen

Q,M\LG, where LG is a closed subscheme we call the Landau

variety14 of G. The fiber of this local system at a point s carries an action of
the fundamental group πtop

1 (Kgen
Q,M (C)\LG(C), s), corresponding to monodromy of

amplitudes, and commutes with the action of CQ,M . In these notes, it plays a
subordinate role because we do not know how to control LG in general.

13The Hodge-theoretic weights here are double those commonly used in physics and the field of
multiple zeta values and polylogarithms. For example, ζ(3) has weight 6 and not 3. If one wishes
to divide the weight by two, one will encounter half-integral weights. The simplest example of
this phenomenon occurs already for amplitudes which are given by elliptic integrals.

14This is more complex [18] than the Landau variety as commonly understood in the physics
literature. The Landau equations in the classical sense describe a certain subset, but by no means
all, of the components of LG.
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7.5. Face relations. The recursive structure of graph motives gives rise to rela-
tions between the periods of different Feynman graphs.

Let G be a motic Feynman graph. From theorem 6.5, the irreducible components
of the divisor D ⊂ PG define morphisms ‘inclusion of facets’:

ie : PG/e\YG/e →֒ PG\YG(7.5)

iγ : (P γ\Yγ)× (PG/γ\YG/γ) →֒ PG\YG

where e ∈ EG or γ ( EG is a motic subgraph. They induce morphisms of relative
cohomology as described in [17], §10.3.

Theorem 7.8. The maps ie, iγ induce morphisms

ie : motG/e −→ motG(7.6)

iγ : motγ ⊗motG/γ −→ motG

in the category H(S), where S is a Zariski open subset of Kgen
Q,M on which the above

objects are defined. On the Betti realisation, this map gives

ωB(ie)
∨ [σG] = [σG/e] and ωB(iγ)∨ [σG] = [σγ ]⊗ [σG/γ ] .

This implies equalities of motivic periods in FPm

Q,M

[motG/e, ω, σG/e]
m = [motG, ωgen

dR (ie)(ω), σG]m(7.7)

[motγ , ω1, σγ ]m × [motG/γ , ω2, σG/γ ]m = [motG, ωgen
dR (iγ)(ω1 ⊗ ω2), σG]m .

Proof. Theorem 6.5 implies that the facet map

ie : PG/e\YG/e
∼
→ De\(YG ∩De)

is an isomorphism of stratified spaces, where the stratification is induced by the
divisor De ∩ (D\De) on both sides of the equation. The face morphisms defined in
[17] §10.4, therefore define the required morphism motG/e → motG in the category
H(S). In the Betti realisation, this map corresponds to taking the boundary com-
ponent of a relative homology cycle which is contained in De(C). By corollary 5.2
this gives exactly σG ∩De(C) ∼= σ̃G ∩De(C) ∼= σ̃G/e

∼= σG/e.
The corresponding equation in the case of the face map iγ follows from a similar

argument, using the isomorphism of stratified spaces

iγ : (P γ\Yγ)× (PG/γ\YG/γ)
∼
→ Dγ\(YG ∩Dγ) ,

where the stratification on the left is the product of the stratifications induced by
the divisors (5.2) on P γ and PG/γ , which follows from theorem 6.5. �

This theorem implies an analogous statement corresponding to the inclusions
of faces of higher codimension. We shall call (7.7) the face relations.15 They are
preserved by the action of the cosmic Galois group CQ,M .

15Although the face relations are stated here as identities between periods of a category of Betti
and de Rham realisations, it is obvious that they should be true ‘motivically’ for any reasonable
definition of the word, since they come from the morphisms ie, iγ of algebraic varieties.
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7.6. Multiplicative structure. It is important to observe that in the second
equation of (7.7), one of γ or G/γ has no dependence on external kinematics (4.3),
and hence defines a constant motivic period in the sense of [17] §7.3.1. There-
fore even if one is only interested in processes with Q external momenta and M
non-zero particle masses, one is inexorably led to consider the case of Feynman
integrals with no kinematics (these only depend on the graph polynomial ΨG and
not ΞG(q, m)). The following proposition gives another example of the special role
played by periods of Feynman graphs of type (0, 0).

Proposition 7.9. The vector space FPm

Q,M is closed under multiplication by ele-

ments of FPm

0,0. In other words, multiplication defines a map

FPm

0,0 ⊗Q FP
m

Q,M −→ FP
m

Q,M .

Thus the space of Feynman periods of type (0, 0) is a commutative algebra, and the
space of Feynman periods of type (Q, M) is a module over it.

Proof. Let γ be a motic graph of type (0, 0), and let H be a motic Feynman graph
of type (Q, M). Choose any vertex v of H . By inserting γ into v and attaching
the edges of H (both internal and external) which are incident to v to vertices of
γ in any way, defines a new graph G of type (Q, M), such that γ ⊂ G is motic and
G/γ ∼= H is also motic. By theorem 3.6 (ii), G is motic. Now apply the face
equation in the second line of (7.7). This proves that a product of motivic periods
of γ and H are motivic periods of G. �

The same statement is evidently true also for de Rham periods: multiplication
yields a map FPdr

0,0 ⊗Q FP
dr

Q,M −→ FP
dr

Q,M , and FPdr

0,0 is an algebra.

7.7. Single-valued amplitudes and symbols. The right-hand side of the coac-
tion involves de Rham Feynman periods. It is an important problem to determine
properties of the right-hand side of the coaction and try to interpret these quantities
physically. Note that they do not have periods.

As a substitute, we have a notion of single-valued period [17] §8.3. Restricting
to the space of de Rham Feynman amplitudes, it is a homomorphism

sm : FPdr

Q,M −→ P
m

Q,M ⊗Q P
m

Q,M .

Composing with the period homomorphism defines a real analytic single-valued
function on Kgen

Q,M (C), with possible poles, which we call the single-valued period.

In the case when a de Rham Feynman period ξ is unipotent [17] §9.2, we can
associate various notions of symbol to it. This holds in particular when ξ is mixed
Artin-Tate, and therefore can be applied to large classes of Feynman periods. The
symbol is a class in the reduced bar construction

smb(ξ) ∈ H0(B(Ω1
kQ,M

))

and has an invariant called its length. The cohomological symbol cmbℓ(ξ) is the
length-ℓ part of the symbol of length ≤ ℓ and can be viewed as an integrable
word in logarithmic one-forms on kQ,M . See [17] §9.4. This notion of symbol is a
generalisation of the notion of symbol used extensively in the physics literature.
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7.8. Total Feynman motive. Using the face maps we can take the limit over all
graphs of type (Q, M) and assemble them into a single object.

Definition 7.10. The total (convergent) Feynman motive of type (Q, M) is

(7.8) motQ,M = lim
−→
G

motG

where the limit is over all motic graphs of type (Q, M) and the morphisms are given
by the face maps ie of (7.6). It is an ind object of Rep (CQ,M ).

The periods of (7.8) do not a priori contain the renormalised amplitudes of
graphs. It would be interesting to write down the object which does capture the
amplitudes of all graphs of type (Q, M) after renormalisation. Note also that (7.8)
has a number of variants: for instance one can take the limit over all planar graphs,
or indeed any family of graphs closed under the operation of contracting edges.

8. Weights and stability

We now apply results on weight filtrations from [17] §9.

8.1. Motives of descendants. We attach a motive to the motic descendants of
graphs (defined in §4.2), in the following way. To a motic descendent γ1 ⊗ . . .⊗ γn

of G of type (Q, M), assign the object

mot(γ1 ⊗ . . .⊗ γn) = mot(γ1)⊗ . . .⊗mot(γn) ∈ H(S) ,

where S is some Zariski-open in the space of kinematics Kgen
Q,M . Define a Betti class

in (ωBmot(γ1 ⊗ . . .⊗ γn))∨ by

[σγ1⊗...⊗γn ] = [σγ1 ]× . . .× [σγn ] .

Exactly one of the graphs γi is of type (Q, M); the others are of type (0, 0). There
is a canonical face map mot(γ1)⊗ . . .⊗mot(γn)→ mot(G) that sends σγ1⊗...⊗γn to
σG, defined by inclusion of the corresponding face of σG, or by iterating (7.6). By
the face equations (7.7) the motivic periods of descendants of G (i.e., the motivic
periods [mot(γ1 ⊗ . . .⊗ γn), [σγ1⊗...⊗γn ], [ω]]m) are also motivic periods of G.

The degree (4.5) coincides with the cohomological degree of the corresponding
motive, and the dimension of the corresponding facet in the Feynman polytope.

Lemma 8.1. Let G be a Feynman graph of type (Q, M). Then W0 mot(G) = Q(0).

Proof. Let NG = |EG| ≥ 2. Apply the results from [17], corollary 10.6. The irre-
ducible components of D ⊂ PG, defined in (5.2), are in one-to-one correspondence
with the facets of the Feynman polytope σ̃G, whose boundary is homotopic to an
n−1-sphere, where n = NG−1. Its cohomology in degree n−1 is one-dimensional.
The case when NG ≤ 1 is trivial, since PG is a just a point. �

Remark 8.2. If deg(G) = 0 then mot(G) = H0(Spec Q) = Q(0). It follows that
there are only finitely many motives attached to the set of all possible tensors
γ1 ⊗ . . .⊗ γn of bounded degree.
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8.2. Weight relations. Let G be a Feynman graph of type (Q, M). Recall that
mot(G) = HNG−1(PG\YG, D\(D ∩ YG)). Let D(k) denote the union of the k-
dimensional facets of D. Then there is a morphism

WkHk(D(k)\D(k) ∩ YG) −→Wkmot(G)

which is surjective (proposition 10.4 in [17]). The dual map on Betti homology

sends the class of the Feynman polytope [σG] to the class of the union [σ
(k)
G ] of its

k-dimensional facets. This implies the following theorem.

Theorem 8.3. Every motivic period of mot(G) of weight ≤ k is equivalent to a

motivic period of the form [Hk(D(k)\D(k) ∩ YG), [σ
(k)
G ], [ω]]m.

Its period is a k-dimensional integral
∫

σ
(k)
G

ω

where [ω] ∈ Hk
dR(D(k)\D(k) ∩YG). By triangulating the domain of integration into

affine regions, as discussed in Appendix 1, and taking limits, this integral can be
written as a sum of regularised limits of integrals over each facet of D(k). Since
each facet is isomorphic to a product of graph hypersurface complements of motic
descendants of G of total degree ≤ k, this gives a heuristic justification, via the
argument of §11.4, for conjecture 1. The missing ingredient is to define a notion
of regularisation on the level of motivic periods, which is beyond the scope of the
notes. This would also have applications to the theory of renormalisation.

Remark 8.4. It is not the case that PG\YG are affine, since there exist cohomology
classes in PG\YG of degree greater than its dimension. Therefore proposition 10.7
in [17] cannot be applied, and we cannot deduce that the face maps surject onto
WkmotG, which would have implied that all motivic periods of motG of weight ≤ k
are in the image of the face maps. We do not know, therefore, whether the motivic
periods of weight ≤ k of mot(G) relative to σG are generated by the motivic periods
of weight ≤ k of its motic descendents of degree ≤ k, as one might hope.

8.3. Stability. A first application of this theory is to show that the weight-graded
parts of the total motive grW

k motQ,M stabilize.

Theorem 8.5. Let G be a Feynman graph of type (Q, M). Then grW
k mot(G) is a

sub-quotient of
⊕

γ=γ1×...×γr

⊕

i1+...+ir≤k

grW
k Hi1(P γ1\Yγ1)⊗ . . .⊗Hir (P γr\Yγr)

where the direct sum is over motic descendents of G of degree i1 + . . . + ir ≤ k.

Proof. Apply corollary of 10.5 of [17] to mot(G). We deduce that grW
k mot(G) is a

sub-quotient of
⊕

|I|≥n−k grW
k Hn−|I|(DI\DI∩YG)/S , where DI are the codimension

|I|, and hence dimension n− |I| ≤ k facets of D. By theorem 6.5,

DI\(DI ∩ YG) ∼= P γ1\Yγ1 × . . .× P γr\Yγr ,

where γ1 ⊗ . . . ⊗ γr is a descendant of G of degree n − |I|. The statement follows
from the Kunneth formula. (Note that the degree of γij is unrelated to ij .) �
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The theorem gives a constraint on the Hodge polynomials of the motivic periods
of G of weight ≤ k. Combined with the Galois coaction, this gives a constraint on
motivic periods to all orders. For example, we can deduce the following corollary.

Corollary 8.6. Suppose that all 1PI graphs of type (0, 0) up to N + 1 edges have
mixed Tate cohomology in all degrees. Then the Galois conjugates of any motivic
Feynman amplitude of type (0, 0) which is of weight ≤ N is mixed Tate.

By computation, one knows that the assumption of the corollary is true for N
up to about 10. This corollary therefore already provides a very strong constraint
on the possible periods which can occur to all orders in perturbation theory.

We can be more precise and try to bound not only the weight-graded parts,
but also the extensions between them. This is the spirit of conjecture 1. In this
direction we can prove the following weaker version of the conjecture.

Theorem 8.7. The space WkFP
m

Q,M is finite-dimensional.

Remark 8.8. A proof of this theorem is given in §8.5 using affine models. A different
way to find an upper bound for the vector space of periods perWkFP

m

Q,M is as
follows. Apply theorem 8.3 to write any motivic period of weight ≤ k as a motivic
period of a union D(k) of k-dimensional facets. Using our canonical affine covering
of PG, and triangulating as in Appendix 1, its period can be written as a sum of
periods of affine pieces of each facet. Since the number of graphs with at most k+1
edges is finite, and each facet is a product of such graphs, there are only finitely
many such affine pieces. This argument gives a crude but effective upper bound for
the periods of weight ≤ k in terms of periods of the relative cohomology of (blow-
ups of ) graph hypersurfaces of graphs with ≤ k + 1 edges where we now integrate
over a cube [0, 1]n (see comments after corollary 11.2). These can in principle be
computed for small k.

8.4. A principle of small graphs. Combined with the action of the cosmic Galois
group, CQ,M ×FP

m

Q,M −→ FP
m

Q,M or rather, the fact that the motivic periods of
any graph G are closed under the action of CQ,M , theorem 8.7 gives constraints on
Feynman amplitudes to all orders. The space WkFP

m

Q,M is determined from the
finitely many ‘small’ graphs with at most k + 1 edges. This forces constraints on
the Galois conjugates of Feynman periods of all graphs. For an example, see §9.3.

8.5. Affine motive and proof of finiteness theorem 8.7. Let G be a Feynman
graph of type (Q, M). Define the affine motive mota

G of G in an identical way to
definition 6.4 except that we replace PG with its affine open AG of §5.4:

mota
G = HNG−1(AG\YG, D\(D ∩ YG))/S ,

as an object of H(S), for some Zariski-open S in the space of kinematics Kgen
Q,M .

It follows from the construction of AG, which is obtained by removing from PG

hyperplanes with strictly positive coefficients, that

σ̃G ⊂ AG(C) .

See the proof of theorem 6.7. Thus mota
G has a canonical Betti element defined by

σG in an identical manner to definition 6.8:

[σG] ∈ Γ
(
Ugen

Q,M , (mota
G)∨B)

)
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Furthermore, the inclusion AG\YG ⊂ PG\YG defines a morphism of objects

i : motG −→ mota
G

in H(S), which respects the Betti-clases [σG] on both sides. This morphism defines
an equivalence on the level of motivic periods [17] §2.

Corollary 8.9. There is an equality of motivic periods

Im

G (ω) = [mota
G, idR[ω], [σG]]m ,

where the left-hand side was defined in definition 7.3. In particular, every Feynman
period of G is a period of the affine motive mota

G. We could thus use the affine
motives mota

G to study the weights, representations and so on of Feynman periods.

Note that the affine motive is excessively large: it has many periods which are
unrelated to Feynman graphs. One advantage of the previous corollary, however,
is that it enables us to express every Feynman period as an integral of a globally-
defined algebraic differential form, since, by a theorem due to Grothendieck, the de
Rham cohomology of an affine variety is the cohomology of the complex of global
regular differential forms. The price to pay is that the integrand may involve linear
denominators of the form

∑
e∈γ αe, where γ is a motic subgraph of G. This remark

may or may not be of practical use in computing Feynman periods.

Definition 8.10. Let us call the affine motivic periods of a graph G to be the
space of motivic periods of mota

G with respect to σG. By the above remarks, it
contains the space of motivic periods of G.

Now, it follows from the product structure on the spaces AG that the analogue of
theorem 6.5 holds on replacing PG by AG, and hence the face relations (theorem 7.8)
hold for mota

G. Now apply proposition 10.7 in [17], which exploits Artin vanishing
for the cohomology of affine schemes, to deduce the following theorem.

Theorem 8.11. The affine motivic periods of G of weight ≤ k are kQ,M -linear
combinations of the affine motivic periods of motic descendents of G of degree ≤ k.

Since there are only finitely many descendents of bounded degree (remark 8.2),
we immediately deduce theorem 8.7.

9. The constant cosmic Galois group

The motivic periods of graphs of type (Q, M) = (0, 0), which have no dependence
on external kinematics, play a special role in the Galois theory of all Feynman
amplitudes and are of particular number-theoretic interest.

9.1. A Galois theory of graph periods. We recall the main definitions in this
case. We shall make no restrictions on the ‘physicality’ of the graphs under consid-
eration, i.e., our graphs can have arbitrary vertex-degrees for the time being.

Definition 9.1. For any graph G of type (0, 0), recall that

mot(G) = HNG−1(PG\YG, D\(D ∩ YG)) ,

is an effective object in the category H defined in [17] §2. It consists of triples
(VB, VdR, c) where VB , VdR are finite-dimensional Q vector spaces, and c is an iso-

morphism c : VdR ⊗C
∼
→ VB ⊗C. These spaces are equipped with filtrations which

define a mixed Hodge structure. In this context, the word effective means that the
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Hodge numbers of mot(G) satisfy hp,q = 0 if p or q is negative. Denote the ring of
motivic graph periods to be the Q-vector space spanned by the motivic periods:

FPm

0,0 = 〈[mot(G), [σG], [ω]]m〉Q ⊂ Pm,+
H

where G is motic (i.e., 1PI) and [σG] ∈ mot(G)∨B is the canonical Betti framing. It

actually lands in the subspace Pm,+ ⊂ Pm,+
H defined in [17], Definition 3.4. Define

the space of motivic periods of a fixed graph G to be the vector space

(9.1) FPm(G) = 〈[mot(G), [σG], [ω]]m for [ω] ∈ mot(G)dR〉Q

spanned by its motivic graph periods. We say that a graph G has weight at most
n and write w(G) ≤ n if WnFP

m(G) = FPm(G), in accordance with §7.4.16

In the special case when G is overall log-divergent (NG = 2hG) and primitive
(Nγ > 2hγ for all γ ( EG), the mixed Hodge structure underlying mot(G) coincides
with the graph motive of [10]. In this case the amplitude is given by the integral

(9.2) IG = per([mot(G), [ωG], [σG]]m) =

∫

σG

ΩG

Ψ2
G

which converges by lemma 6.10. Thanks to [13, 48] we know hundreds of examples
of periods (9.2), and many identities between them. These identities, when taken
alone, do not give much control on the possible integrals (9.2), since every new
algebra generator is arbitrary. However, if these identities hold on the level of
the motivic periods Im

G , as we expect, then when combined with the action of the
cosmic Galois group and stability, we obtain a very rigid structure, since the Galois
conjugates are constrained by the periods of smaller graphs.

9.2. Invariants and classification. Motivic periods over Q are studied in some
detail in [17], §3. Two constructions worth mentioning are the unipotency degree

(or coradical filtration) CiP
m,+
H and the decomposition into primitives. Say that a

motivic Feynman period is of unipotency degree at most n if it lies in CnFP
m

0,0. In
the case of motivic multiple zeta values, the unipotency degree is bounded above
by the depth. The decomposition into primitives is a homomorphism [17], §5

Φ : grCFPm

0,0 −→ grC
0 FP

m

0,0 ⊗Q T c(grC
1 O(UdR

H ))

where T c denotes the tensor coalgebra, or shuffle algebra, and grC
1 O(UdR

H ) is a
vector space which can be made explicit. The unipotency grading on the left-hand
side coincides with the length grading of tensors on the right. This map generalises
the (highest-length part of) the decomposition of motivic multiple zeta values into
an alphabet of letters f2n+1 to all motivic periods.

We have constructed a map from graphs to representations

{Graphs of type (0, 0)} −→ RepQ(C0,0)(9.3)

G 7→ FPm(G)

where C0,0 is the constant cosmic Galois group. This is more subtle than the naive
map which sends G to the object mot(G)dR, since it takes into account the Betti
framing σG. In the notation of [17] §2.4 we have

FPm(G) ∼= (σmot(G))dR

16This is a more subtle notion than the naive weight of a graph defined by the weight of the
object motG in H. If Wnmot(G) = mot(G) then it is certainly true that the periods of G have
weight ≤ n, but the examples given below show that the converse is false.
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where σmot(G) denotes the smallest quotient of mot(G) in the category H such
that σG ∈ (σmot(G))∨B . We can apply any of the invariants of motivic periods
defined in [17] to FPm(G). The challenge, then, is to relate invariants of motivic
graph periods to topological invariants of their graphs, and find relations between
graphs through which the map (9.3) factorizes (see §9.4).

For example, we called G mixed Artin-Tate if all elements of FPm(G) have
Hodge numbers hp,q = 0 if p 6= q. Graphs of vertex-width ≤ 3 are of this type [18].

Furthermore, let us call G separated17 if it satisfies

(motG)dR = W0(motG)dR ⊕ F 1(motG)dR .

In this case, [17] §4.3 provides a canonical projection

πdr,m+ : FPm(G) −→ FPdr(G)

from the motivic periods of G to the de Rham periods of G, and gives a handle on
the right-hand terms in the motivic coaction. There is evidence to suggest, using
methods from [20], that a large class of graphs indeed satisfy this property. In
particular, all graphs of mixed Artin-Tate type are separated.

For any separated Feynman graph G of type (0, 0), apply the projection followed
by the single-valued map sm [17], §4.1 to obtain a linear map

FPm(G)
πdr,m+

−→ FPdr(G)
s

m

−→ Pm

H .

This defines canonical single-valued versions of its motivic periods smπdr,m+Im
G (ω).

For multiple zeta values, the corresponding single-valued versions occur in string
perturbation theory, and have a physical significance since they relate open and
closed superstring amplitudes [53, 55, 33]. Indeed, the formula for the closed string
vertex operator for the emission of a closed string state as a product of open string
vertex operators precisely mimics the definition of the single-valued motivic periods
([17], last line of §4.1.)

9.3. Small-graphs principle. By way of illustration, we compute the motivic pe-
riods of graphs with at most three edges and deduce some non-trivial consequences.
We first dispense with two degenerate families of graphs.

Lemma 9.2. If G has a single vertex, or a single loop, then mot(G) ∼= Q(0).

Proof. Let n = EG − 1. Suppose that hG = 1. Then ΨG =
∑

e∈EG
αe and XG

is a hyperplane H . Since G has no non-trivial motic subgraphs, PG = Pn and
PG\YG = Pn\H ∼= An. Similarly, every stratum DI ∩ (DI\YG) is an affine space
and has the cohomology of a point. Therefore the relative cohomology spectral
sequence Ep,q

1 =
⊕

|I|=p Hq(DI ∩ (DI\YG)), which converges to mot(G), satisfies

Ep,q
1 = 0 if q > 0 and hence mot(G) ∼= Q(0).
Now suppose that G has one vertex. Every subgraph of G is motic, and the

graph polynomial is ΨG =
∏

e∈EG
αe. Since the graph hypersurface XG is the

union L of coordinate axes, its strict transform YG in PG is empty. Therefore

mot(G) = Hn(PG, D) ∼= Hn(PG\D)∨(−n) ,

by Poincaré-Verdier duality. Since PG\D ∼= Pn\L ∼= Gn
m, the right-hand side is

Hn(Gn
m)∨(−n) = Q(−1)⊗(−n)(−n) = Q(0). �

17Or, better, the weaker condition σ(motG)dR = W0 (σ(motG))dR ⊕ F 1(σ(motG))dR
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All two-edge motic (i.e. 1PI) graphs are covered by the previous lemma. The
four 1PI graphs with three edges are depicted below. Their graph polynomials
are underneath. The two outer graphs are trivial by the previous lemma. The

α1 + α2 + α3 α1α2+α1α3+α2α3 α1(α2 + α3) α1α2α3

middle two have non-global periods which are in fact trivial (they satisfy mot(G) ∼=
Q(0)⊕ Q(−1)). This can be seen in two ways: either by a similar analysis to §12,
or by observing that mot(G) defines a mixed Tate motive which is unramified at all
primes. Every Kummer extension of mixed Tate motives which is defined over Z

splits as a direct sum of Tate motives, so mot(G) has no non-trivial motivic periods.

Lemma 9.3. We have W2FP
m

0,0 = W0FP
m

0,0
∼= Q

Proof. By theorem 8.5 and the above calculations, grW
i FP

m

0,0 vanishes for i = 1,
and is a direct sum of Tate motives Q(0) and Q(−1) for i = 0, 2 respectively since
it is generated by the cohomology of graphs of degree ≤ 2. Therefore W2FP

m

0,0 is a
linear combination of Kummer motivic periods (motivic logarithms), which are the
motivic periods of extensions of Q(−1) by Q(0). By theorem 8.3 the motivic periods
of mot(G) of weight ≤ 2 are equivalent to the motivic periods of its 2-dimensional
skeleton D(2), each of whose faces is of one of the above types, or, more trivially,
corresponds to a product of two 2-edge graphs (when |EG| = 2, PG\YG is either
P1 if G has one vertex or A1 if it has two, see lemma 9.2). From the explicit
description of PG as a blow-up, one can check that D(2) is a mixed Tate motive
over Q unramified at all primes by applying the criterion of [35], proposition 4.3.
It therefore has no non-trivial periods. It follows that the only possible periods in
weight ≤ 2 are rational numbers (periods of Q(0)), and rational multiples of the
Lefschetz motivic period Lm, whose period is 2πi. The latter is anti-invariant under
the action of the real Frobenius involution. On the other hand, motivic periods of
graphs are invariant under the real Frobenius, since the Betti class σG is fixed under
its action. This rules out the second case. �

Since a motivic logarithm logm(x) is determined by its period log(x), an alterna-
tive approach to proving this lemma would be by direct computation of the periods
of the two and three-edge graphs, along the lines of the method of Appendix 2.

This innocuous-looking statement provides a constraint to all orders in pertur-
bation theory, i.e., an equation satisfied by all motivic Feynman amplitudes.

Theorem 9.4. Let G be a primitive log-divergent graph, and Im
G its motivic am-

plitude. Then every Galois conjugate which is of weight ≤ 2 is rational.

In fact, no element of FPm

0,0 can have a Galois conjugate of the form logm(p) for
p prime. This theorem is consistent with the coaction conjecture 2 below.

Example 9.5. In [46], Schnetz and Panzer give examples of amplitudes of graphs
P9,36 = P9,75 and P9,107 = P9,111 with 9 loops which are Euler sums and are
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constrained in a non-trivial way by this theorem. One verifies by replacing them
with their motivic versions (assuming the period conjecture for Euler sums) that
they never have a Galois conjugate logm(2).

In a similar way, one easily checks that the motivic period Lim2 (ζ6), where ζ6 is
a primitive 6th root of unity does not occur in W4FP

m

0,0. This gives a non-trivial
constraint on the amplitudes P7,11, P8,33 and P9,136 = P9,149 at seven, eight and
nine loops respectively. See [46] for further details.

9.4. A programme for a Galois theory of graphs. There are several known
families of algebraic relations between amplitudes of graphs of type (0, 0). We
expect that many of these relations also hold between motivic periods. This suggests
the following list of relations through which the map (9.3) might factorize:

(1) (Tadpoles). G ∼ G/e where e is a tadpole (self-edge).
(2) (Series-Parallel operations). G ∼ G′ where G′ is obtained from G by sub-

dividing an edge or duplicating an edge.
(3) (Planar duals). G ∼ G∨ where G is planar, and G∨ is its dual graph.
(4) (One and two-vertex joins). If G is a one or two-vertex join of graphs G1 and

G2 then we expect a relationship between FPm(G) andFPm(G1)FP
m(G2).

(5) (Completion and twist identities). G ∼ G′ where G and G′ are twist-related
or obtained from a four-regular graph by deleting a vertex [48].

Note that (3) could be extended to non-planar graphs if one considers graph mo-
tives of matroids. If one replaces mot(G) with a cubical version motc(G) following
[18], then (3) holds automatically. The series and parallel operations are (planar)
dual to each other. The three-edge examples of §9.3 are equivalent to the empty
graph by (2). The relation (5) is considerably more speculative than the others.

In addition, we can hope for precise information about the weights of graphs. We
expect that the highest weight-graded quotient of FPm(G) should be related to the
c2-invariant of a graph,18 which is known to satisfy several further combinatorial
identities. This suggests, at the very least for graphs satisfying NG = 2hG, that

(6) w(G) ≤ 2NG − 6, and w(G) ≤ 2NG − 8 if G has weight-drop.
(7) w(G) ≤ 2NG − 8 if G contains a sub-divergence.
(8) w(G) ≤ n if and only if w(G′) ≤ n whenever G, G′ are equivalent under

double-triangle reduction.

It is highly likely that there are further relations between motivic periods of graphs
which have three-valent vertices or triangles, which remain to be discovered.19

Finally, one would like to have some control on the degree of unipotency of
motivic periods. This has not been investigated.

9.5. Coaction conjecture and speculation. Recall that a graph G of type (0, 0)
is said to be in φn if every vertex of G has degree at most n.

Definition 9.6. Let FPm

φ4 ⊂ FPm

0,0 denote the Q-vector space spanned by the

motivic amplitudes (9.2) of primitive log-divergent graphs in φ4 theory.

18to set this up rigorously, we could enhance the category of realizations H to include an ℓ-
adic component. The c2-invariant should be obtained from the action of Frobenius on the highest
non-trivial weight-graded piece of (motG)ℓ.

19we know, for example, that graphs of vertex width ≤ 3 evaluate to multiple zeta values but
the numbers of such graphs greatly exceeds the dimension of the space of multiple zeta values of
the appropriate weight, so there must exist many relations between these amplitudes.
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The following extraordinary conjecture was formulated in [46] and called the
coaction conjecture. It was a principal motivation for the present paper.

Conjecture 2. [46] FPm

φ4 is stable under the action of C0,0.

This conjecture goes far beyond what we can presently prove, but has been
verified numerically in hundreds of examples [46]. However, proving any or all of
the properties of §9.4 would lead to spectacular consequences for graph amplitudes
in the direction of this conjecture. For example, let us assume only (2), and call
two graphs sp-equivalent if they are obtained from each other by series-parallel
operations. The smallest graph not equivalent to the trivial graph is the wheel
with three spokes W3 with six edges (whose amplitude is 6ζ(3); we expect that
ζm(3) is its unique non-trivial motivic period) followed by the wheel with four
spokes W4 with eight edges. By stability, we would deduce that

W7FP
m

0,0 = Q⊕ ζm(3)Q .

In particular, no ζm(2) occurs, which would then imply that no motivic period
at any loop order can have a Galois conjugate ζm(2). Since W3 is primitive log-
divergent in φ4 this would also prove conjecture 2 up to weight seven:

WnFP
m

φ4 = WnFP
m

(0,0) for n ≤ 7 ,

since the right-hand side is stable under the action of C0,0 by definition. Things
become interesting at nine edges. There are three non-trivial sp-equivalence classes
of graphs: the graph obtained by deleting an edge from the complete graph K5;
the complete bipartite graph K3,3; and a planar graph which is the skeleton of
triangular prism. By continuing in this manner, and computing motivic periods
of ever-larger graphs, one could deduce infinite families of constraints on motivic
periods of Feynman graphs to all orders. This would go a long way to explain the
remarkable structure observed in [46].

Example 9.7. To illustrate how the topology of graphs can impinge upon their
periods, consider any class of graphs C which is stable under edge contraction and
motic subgraphs. It defines a subspace FPm

C ⊂ FP
m

(0,0) which is stable under the
action of the constant cosmic Galois group C0,0. For example, the motivic periods
of planar graphs are Galois-stable.

Specialising further still, consider the following thought-experiment for the wheel
with n-spokes graphs Wn. Since there are several missing elements we shall be
very brief. The key topological property of the wheel graphs is that, modulo sp-
equivalence, the vector space they span is stable under motic descendants. Another
way to say this is contracting an edge in a wheel leads to a graph which is either
sp-equivalent to another wheel, or the trivial graph. Every motic subgraph of a
wheel has the same property.

Bloch-Esnault-Kreimer have proved that (e.g., as an object of H),

(9.4) H2n−1(P2n−1\XWn) ∼= Q(3− 2n) .

Let us assume (2) of §9.4 and furthermore that the wheel motives are mixed Tate
over Z and have no non-trivial non-global motivic periods (i.e., the conclusion, but
not necessarily the hypotheses of proposition 10.7 in [17] hold). This would imply
that all elements in (σmot(G))dR are images of classes (9.4) via face maps and hence
have weights ≡ 2 (mod 4). By the following proposition,

FPm(Wn) = Q⊕Qζm(3)⊕Qζm(5)⊕ . . .⊕Qζm(2n− 3) .
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In particular, this would imply that all periods of the wheels graphs are linear
combinations of odd zeta values only. It is known that the wheel amplitude (9.2)
itself is an explicit rational multiple of a single odd zeta value of highest weight.
In this case, therefore, we expect to see a direct relationship emerging between the
topological properties of wheel graphs in the motic Hopf algebra and the Galois-
theoretic properties of their periods.

Proposition 9.8. Let M be an effective mixed Tate motive over Z such that

grW
4nM = 0 for all n ≥ 1 .

Then the real (i.e., Frobenius-invariant) motivic periods of M are Q-linear combi-
nations of 1 and ζm(2n + 1), for n ≥ 1.

Proof. Choose generators σ2n+1 of the de Rham graded Lie algebra of MT (Z) in
odd degrees −2n − 1 for n ≥ 1, where the degree is the ‘MZV-weight’, or one
half of the Hodge-theoretic weight. The non-rational motivic periods of M have
only odd degrees by assumption. Consider a motivic period ξ2m+1 of M of degree
2m + 1 > 0. Since σ2n+1ξ2m+1 has even degree 2(n −m), it is zero unless n = m
and σ2n+1ξ2m+1 ∈ Q. Therefore ξ2n+1 has de Rham Galois conjugates itself and
1. It is therefore primitive (unipotency degree ≤ 1). By theorem 3.3 of [15] it is in
the space ζm(2n + 1)Q⊕ (Lm)2n+1Q. Since it has real periods and per(Lm) = 2iπ
is imaginary, it is a rational multiple of ζm(2n + 1). �

Remark 9.9. The previous argument fails for a weight-drop graph such as the
bipartite graph K3,4, since its motive is non-trivial in weight 16 ≡ 0 (mod 4) and
the previous proposition does not apply. It has motic graph sub-quotients W3 and
W4, so the same argument would allow the motivic amplitude of K3,4 to have Galois
conjugates ζm(3) and ζm(5). This is entirely consistent with the fact that

IK3,4 = −
216

5
ζ(5, 3)− 81ζ(5)ζ(3) +

522

5
ζ(8)

which, assuming the period conjecture for multiple zeta values, indeed has non-
trivial Galois conjugates ζ(3) and ζ(5).

In conclusion, the Galois theory of graphs described here, with a few extra spec-
ulative ingredients such as those outlined in §9.4, seems to predict quite accurately
the observed patterns of periods in amplitude computations at low loops.

10. Examples with general kinematics and conjectures

10.1. General kinematics. It is possible to undertake a classification of the mo-
tivic periods of graphs with few edges and arbitrary external kinematics as above.
By the small graphs principle and Galois action, it leads, in the same way as §9.3, to
all order constraints on Feynman periods of any type (Q, M). We shall not discuss
this here, but only make a few brief comments.

First of all, the cohomology of generic one-loop graphs was studied in [11] and
can be re-expressed in the language of motivic periods. Applying formula (7.2)
it provides a computation of the motivic coaction. The case of graphs with sub-
divergences can be treated using the techniques described here, and one example
is treated in full detail in an appendix §12. The recent preprints [1] and [2] give
conjectural formulae for the coaction on some examples of graphs (with the caveat
that one side of the coaction needs to be expressed in terms of de Rham periods).
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I expect that these formulae can be proved from first principles using the cohomo-
logical techniques described here. A very interesting observation of loc. cit. is that
the coaction formulae apparently continue to hold on the level of ε-expansions in
dimensional regularisation.

Note also that a complete analysis of Feynman graphs with up to three edges
would include the sunrise graph, which involves the cohomology of a family of
elliptic curves and has a very extensive literature. The results of [14] likewise can
be used to deduce information about the corresponding motivic periods .

Remark 10.1. Other interesting classes of graphs to study in this framework are
those of type (Q, M) = (2, 0) or (0, 1) which depend on a single scale. When
the scale factorizes out of the graph polynomials, the corresponding amplitudes
effectively depend upon a single number. The massive banana graphs (see [12]),
for example, would seem to generate a small family of motivic periods which are
stable under the cosmic Galois group, and hence should have interesting arithmetic
properties. We suspect that this could explain why certain combinations of periods
related to banana graphs are periods of pure motives, and hence, by Deligne’s
conjecture, are critical values of the underlying L-functions.

10.2. Graphs with many external legs. The parametric representation is inef-
ficient for graphs with many edges, and the number of edges does not accurately
predict the expected weight of the amplitude. The existence of the momentum
space representation suggests the weight depends on the loop number.

Conjecture 3. Let G be a Feynman graph with h loops, in d ∈ 2N space-time
dimensions, and let ωG be the integrand of the Feynman amplitude. Then

(10.1) ωG ∈ ωgen
dR WdhmotG .

Remark 10.2. This conjecture only gives a bound on the weights of amplitudes,
and not general Feynman periods, which could potentially have higher weights.

The heuristic rationale behind the conjecture is as follows:

• There should exist objets motmom
G in a category of realisations such that

the amplitude in momentum space is the period of [motmom
G , ωmom

G , σmom
G ]m.

• The Schwinger trick (universal quadric) should give an equivalence

[motmom
G , ωmom

G , σmom
G ]m = [motG, ωG, σG]m

This was partly carried out in [10], equation (10.4), in the case of no kine-
matics or subdivergences, and for the absolute (not relative) cohomology.
• The momentum space integrand should satisfy ωmom

G ∈Wdh(motmom
G )dR.

This conjecture, combined with the stability conjecture 1, would yield powerful
identities for Feynman amplitudes. In particular, it suggest the following.

Conjecture 4. Let G be as in conjecture 3. The amplitude of G is a (regularised)
period of the motic descendants of G of degree ≤ dh.

Let d = 4. Since, for every h there are only finitely many graph topologies
of degree ≤ dh, this would give a finite set of ‘master integrals’ for graphs with
arbitrarily many external legs, at every loop order.

Examples 10.3. Conjecture 3 is certainly true for one-loop graphs. Let G be
such a graph. Then its Feynman amplitude is of weight ≤ 4. It is expressible as
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a Feynman period of quotients of G with at most five edges (in this case one can
do slightly better and replace ‘five’ with ‘three’). This is a theorem due to Nickel
[43], reproved in [11], and can be made effective. The analogue of this theorem
for graphs with two loops is not presently known, it seems, and the programme
outlined above suggests a generalisation to all higher loop orders.

10.3. Further directions. Some directions for further research include:

(1) One would like to incorporate ultraviolet divergent graphs and the theory of
renormalisation along the lines of [21]. Since the geometry of the Feynman
polytope is very close to the BPHZ forest formula, the theory of renormali-
sation fits very naturally in the present framework. One approach, which is
closest to that used in physics, would be to allow integrals with logarithmic
terms in the numerators. This can be done by defining a notion of motivic
periods with coefficients (one needs to interpret an integral of a family of
motivic periods20 as a motivic period).21 Another approach, which is per-
haps less satisfactory, is to differentiate with respect to a scale in order to
turn all integrands into algebraic differential forms, as in [21]. Indeed, one
can define the graph motives of UV divergent graphs simply by using the
decomposition into angles and scales of [21] and taking the renormalised
graph motive defined there.

(2) It would be interesting for applications to understand situations with infra-
red singularities when the genericity assumptions (1.17) are not satisfied.
The graph factorisation theorems partially break down in this case, but
by enlarging the class of polynomials considered, one might still retrieve a
Galois theory of graphs. The QED contributions to the anomalous magnetic
moment g − 2 are a fascinating case study.

(3) One would like to rethink the problems of resummation of the perturbative
expansion in the context of motivic periods. Taking a sum of amplitudes
viewed merely as complex numbers ignores the fact that they are periods
and all the structure that that entails. We expect the perturbative ex-
pansion can be lifted canonically to a series whose coefficients are motivic
periods. The invariants of motivic periods defined in [17] should enable one
to sum this perturbative series in a more organised manner, e.g., according
to various types, which may lead to better convergence properties.

(4) In our theory, the domain of integration is trivial and all the content of the
physical theory is in the integrand. For this reason the de Rham Galois
group plays a privileged role. The remarks in this chapter also suggest that
the graph motive in parametric space is not optimal (at least for graphs
with many edges), and one must also consider momentum space or other
integral representations, which will give a different bound on the space of
Galois conjugates of amplitudes. It seems to be an important fact that
amplitudes have several quite different integral representations, each giving
different constraints on their Galois theory.

(5) We worked exclusively in Euclidean space. In order to analytically continue
to Minkowski space, one would like to know where the singularities of the
Feynman integrals are. A worrying possibility is that the set of singularities

20For example, one can make sense of a formula of the form ζm(2) = −
R

1

0
logm(1 − x)dx

x
21This also seems to be a possible way to study dimensional regularisation: the coefficients of

a Taylor expansion in ε are integrals with logarithmic numerators.
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of graphs of a fixed type (Q, M) could become dense in the space KQ,M as
the loop number increases. This is why our de Rham fiber functor is at the
generic point. It would be interesting to know if there is an open region in
kinematic space where all Feynman amplitudes are non-singular.

(6) There is good evidence to suggest that superstring amplitudes have a Galois
theory of their own (at least at tree-level [47]). This seems entirely reason-
able given that the moduli spaces Mg,n have the same product-structure
on their stratification as the one exploited here for amplitudes.

11. Appendix I: some cohomological tools for periods

Not every cohomology class in the de Rham realisation of the graph motive
can be represented by a global differential form such as (6.13). A study of non-
global periods is necessary for understanding the conjugates of amplitudes under the
cosmic Galois group. Therefore in this section we provide some tools for studying
such non-global cohomology classes and their periods. The first is a complex which
we use to show that the periods of graphs are limits of divergent integrals of globally-
defined forms. The second is a spectral sequence which allows us to import known
results about the cohomology of graph hypersurfaces in projective space to the
study of graph motives. It is related to the motic Hopf algebra.

11.1. A relative algebraic Čech-de Rham complex. Let D ⊂ X be a simple
normal crossing divisor in a smooth scheme X over Q. Let Ui ⊂ X , for i ∈ I, be a
covering of X by a finite collection of smooth affine varieties defined over Q. Let Dj,
for j ∈ J , denote the irreducible components of D. Write as usual UP = ∩i∈P Ui

for ∅ ( P ⊂ I and DQ = ∩i∈QDi for Q ⊂ J with the convention D∅ = X .
Consider the triple complex

(11.1) Ωn,p,q({Ui}, D) =
⊕

|P |=p,|Q|=q

Ωn(UP ∩DQ)

where Ωn(UP ∩DQ) denotes the global sections of the sheaf of Kahler differential
forms over Q. The differentials Ωn,p,q({Ui}, D) → Ωn+1,p,q({Ui}, D) are given by
the usual differential d in the de Rham complex. The differentials Ωn,p,q({Ui}, D)→
Ωn,p+1,q({Ui}, D) are given by the differentials in the usual Čech complex, and
the differentials Ωn,p,q({Ui}, D) → Ωn,p,q+1({Ui}, D) are given by restriction of
differential forms to closed subsets DQ∪{q} ⊂ DQ with the standard sign convention.
The relative algebraic de Rham cohomology

Hn
dR(X, D) = Hn(Tot(Ωn,p,q({Ui}, D))

is the cohomology of the total complex associated to the triple complex (11.1). A
cohomology class of degree n in the latter can be represented by a collection

(11.2) ωP
Q ∈ Ωn+1−p−q(UP ∩DQ)

where P ⊂ I and Q ⊂ J with |P | = p, |Q| = q that are mapped to zero by the
total differential. Associated to the triple complex (11.1) are a number of spectral
sequences, for example

Ep,q
1 =

⊕

|P |=p+1

Hq
dR(UP , UP ∩D) =⇒ Hp+q

dR (X, D)

where the differential is induced by inclusions as for the Čech complex.
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11.2. A relative Stokes’ theorem. Let Cn(UP ∩ DQ) denote the complex of
singular n-chains with coefficients in Q on the topological space UP ∩DQ(C). By
analogy with (11.1), define a triple complex of singular chains

(11.3) Cn,p,q({Ui}, D) =
⊕

|P |=p,|Q|=q

Cn(UP ∩DQ)

where the differentials are given by the boundary map on chains, and the inclusion
maps, with the appropriate signs. The homology of the total complex is the relative
Betti homology

Hn
B(X, D)∨ = Hn(X(C), D(C)) = Hn(Tot(Cn,p,q({Ui}, D))) .

A relative homology class can be represented by a collection of chains

(11.4) σP
Q ∈ Cn+1−p−q(UP ∩DQ)

whose total differential is zero. Denote such a collection by σ = {σP
Q}.

Given such a chain of degree n, and a cohomology class ω ∈ Hn
dR(X, Z) repre-

sented by a collection (11.2), define the period (or integration pairing) by

(11.5)

∫

σ

ω :=
∑

P,Q

∫

σP
Q

ωP
Q .

Note that there can be signs in this formula depending on sign conventions for the
differentials in the complexes defined earlier. These are not important for the gen-
eral discussion which follows. The following theorem is a corollary of Grothendieck’s
theorem [37]. I was unable to find a suitable reference in the literature.22

Theorem 11.1. The pairing (11.5) is well-defined and computes the isomorphism

compB,dR : Hn
dR(X, D)⊗Q C

∼
−→ Hn

B(X, D)∨ ⊗Q C .

Proof. (Sketch). The pairing is well-defined by Stokes’ formula, along with the
definition of the differentials in the complexes (11.1) and (11.3). By some standard
homological algebra, the result follows from Grothendieck’s algebraic de Rham theo-
rem for affine varieties, which implies that integration defines a natural isomorphism
Hi

dR(UP ∩DQ)⊗Q C
∼
−→ Hi

B(UP ∩DQ)⊗Q C for all P, Q. �

11.3. Sectors and blow-ups in projective space. We can apply the above to
the following situation. With the notation of §5, let S be a finite set and B ⊂ 2S

be a set of subsets of S closed under unions. Let PB denote the corresponding
blow-up of PS , and DB ⊂ PB the normal crossing divisor defined in (5.2). Let
Y ⊂ PB be a closed subvariety with the property that Y ∩ σ̃B = ∅. We set

X = PB\Y and D = DB\(DB ∩ Y ) .

The spaces PB come with a natural affine covering {UF ,c} = {AF ,c\(AF ,c ∩ Y )}
where the AF ,c are isomorphic to affine spaces An. We have in mind, of course, the
case where B is the set of motic subgraphs of a Feynman graph, and Y the strict
transform of graph hypersurfaces.

The polytope σ̃B defined in §5.2 can be decomposed into regions in the following
way. Choose any point which lies in the interior of σ:

(11.6) z = (z1 : . . . : zn) ∈ PS(R) where zi > 0 for all i .

22Although, whilst writing up these notes, Huber and Müller-Stach kindly sent me a prelimi-
nary draft of their book project on periods, which contains similar considerations.
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It defines a point on every open UF ,c ⊂ AF ,c in our covering. Let β1, . . . , βn be
the coordinates on AF ,c defined by (5.9). Then the inverse image of z is given by
equations βi = zai/zbi for some indices ai, bi. The equations βi = 0 and βi = zai/zbi

define a hypercube Hz in UF ,c. Let σA
B(z) be a face of this hypercube:

σA
B(z) := {(β1, . . . , βn) ∈ Hz : βi = 0 for i ∈ A, βi = zai/zbi for i ∈ B} ,

where A, B ⊂ {1, . . . , n} are disjoint. One can verify that σ is tessellated by a set of
σP

Q(z), over the different charts F , c, for certain sets P, Q, and that {σP
Q(z)} defines

a relative Betti homology class representing σ.
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Figure 1. A decomposition of the coordinate simplex in P3 (here
B = ∅), defined by hyperplanes ziαi = zjαj for 0 < zi < ∞ and
i = 1, 2, 3. The affine open sets Ui : αi 6= 0 for i = 1, 2, 3 are
depicted schematically by grey arcs. On the right, z2, z3 → 0.

Corollary 11.2. Any relative period of PB\Y over the domain σ is given by

(11.7)

∫

σ

ω =
∑

P,Q

∫

σP
Q(z)

ωP
Q ,

where the ωP
Q are differential forms (11.2) on an affine UP ∩DQ.

This corollary gives a means, albeit an inefficient one, to compute non-global
Feynman periods. It is adapted to the method of parametric integration [44]. For
instance, letting all zi = 1, each term in the sum in local coordinates is an integral
of an algebraic differential form over a cube [0, 1]m for some m ≤ n.

Remark 11.3. This procedure is not to be confused with the notion of sector decom-
position in the physics literature. In that setting, one integrates the (pull-back of)
the same globally-defined form ω over each sector σP and sums the contributions.
In the above, we are integrating different forms ωP

Q over each sector.

11.4. Limits and regularisation. The integral (11.7) does not depend on the
point z. Since each open affine Ui(C) contains the preimage of z for any point z
(11.6) in the interior of the coordinate simplex σ, we can take limits in (11.7):

∫

σ

ω = lim
z→∞

∑

P,Q

∫

σP
Q(z)

ωP
Q
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as z tends to any point on the boundary of σ. Many of the terms in the sum on the
right-hand side will tend to zero and can be dropped. By repeatedly taking limits,
one obtains an expression for the integral on the left-hand side as limits of possibly
divergent integrals over facets of σB.23

11.5. The exceptional locus spectral sequence. In this section, let X, D de-
note fibres of X, D as defined in §11.1. For reasons which will become apparent
in a moment, let us write E = D. The divisor E defines a stratification on X by
closed subvarieties. Write

Eo
J = EJ\(EJ ∩

⋃

j /∈J

Ej) .

For instance, Eo
∅ = X\E. There is a ‘Gysin’ or residue spectral sequence

(11.8) Ep,q
1 =

⊕

|J|=p

Hq−p(Eo
J )(−p) =⇒ Hp+q(X)

where the differentials d1 are given by residues along the irreducible components
of E and p, q ≥ 0. From now on, let X = PG\YG where G is a Feynman graph,
and let E = D be defined by (5.2). If G has no masses or momenta, we obtain the
spectral sequence considered by Bloch in [9]. The open strata Eo

J are complements
of graph hypersurfaces in Gn

m. This spectral sequence is hard to control since the
cohomology of the latter is large and there are many cancellations.

Returning now to the case of a general Feynman graph G, and X = PG\YG, we
see that it is more economical to take E ⊂ D to be the exceptional divisor:

E = ∪γ⊂GDγ ,

where the union is only over the set of motic subgraphs of G. We shall call the
corresponding spectral sequence (11.8) the exceptional locus spectral sequence.

Theorem 11.4. In this situation, the non-empty strata EJ are indexed by strictly
increasing sequences of motic subgraphs of G:

(11.9) J : γ1 ( γ2 ( · · · ( γr .

If we write γ′
i = γi/γi−1 for the successive quotients, where γ0 denotes the empty

graph, then there is a canonical isomorphism

(11.10) Eo
J
∼=

(
P

Nγ′

1
−1
\Xγ′

1

)
× · · · ×

(
P

Nγ′
r
−1\Xγ′

r

)
.

When J = ∅ is the empty set, Eo
∅
∼= PNG−1\XG. Therefore the E1 terms of the spec-

tral sequence (11.8) only involve the cohomology of graph hypersurface complements
in projective space of quotients of motic subgraphs of G. In particular,

Ep,q
1 = 0

if q ≥ NG or if p ≥ hG + 1. If G has no masses or momenta, Ep,q
1 = 0 for p ≥ hG.

23It would be interesting, by studying the asymptotic behaviour of these integrals as z tends
to the boundary, to define a consistent notion of regularisation of divergent integrals over faces of
the polytope σB which commutes with these limits. In this case, we could write the period of any
non-global form as a linear combination of regularised integrals of global forms over faces of σB .
There is no shortage of regularisation techniques for Feynman integrals in the physics literature.

For instance, if P B = P G is obtained from a Feynman graph, and YG the graph hypersurface,
the boundary strata of P G are related to the motic Hopf algebra, and closely resembles the
combinatorics of the BPHZ forest formula (see [21]). This suggests a possible way to renormalise
divergent integrals using the subtraction of counter-terms.
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Proof. By theorem 5.1 and the fact that the union of two motic subgraphs is motic,
two irreducible components Eγ1 , Eγ2 of E meet if and only if γ1, γ2 are nested.
Iterating, we see that every EJ corresponds to a nested sequence of motic graphs
(11.9), and furthermore, by applying theorem 6.5, that

EJ
∼= (P γ′

1\Yγ′

1
)× . . .× (P γ′

r\Yγ′

r
) .

Now every divisor Ej with j /∈ J which meets EJ corresponds to a motic subgraph
γ ⊂ G such that γi−1 ( γ ( γi for some i. The latter are in one-to-one correspon-
dence with the motic subgraphs of γ′

i = γi/γi−1 by theorem 3.6. Therefore E0
J is

obtained from EJ by removing all the exceptional divisors in each factor, which
gives (11.10).

That Ep,q
1 = 0 for q ≥ EG is a consequence of the fact that P

Nγ′

i
−1
\Xγ′

i
is affine

of dimension Nγ′

i
− 1, since Xγ′

i
is a non-empty hypersurface by lemmas 1.11 and

1.13, and hence Hr
B/dR(P

Nγ′

i
−1
\Xγ′

i
) = 0 for r ≥ Nγ′

i
. Finally Ep,q

1 = 0 whenever

p + 1 is strictly larger than the maximal length of any chain (11.9). This is hG + 1
if G has kinematics, and hG otherwise by lemma 4.4. �

The terms (11.10) are in one-to-one correspondence with the terms in the r-fold
iteration of the reduced motic coproduct.

The previous theorem implies that the graph motives defined here are extensions
of the cohomology of the complements of graph hypersurfaces in projective space.

Remark 11.5. There are some variants. Firstly, if G has a motic subgraph γ with
exactly one edge e, then the graph hypersurface has an irreducible component
V (αe). If we remove all such components from XG then we can consider the smaller
spectral sequence using E = ∪γDγ , where γ are motic subgraphs of G with ≥ 2
edges. Finally, there is an obvious variant on replacing XG but X ′

G.

12. Appendix II: worked example

For the benefit of physicists who may not be accustomed to the techniques of
the previous section, we give a complete worked example in a simple situation. The
amplitudes computed here can be obtained directly, but we shall use completely
general methods without taking any shortcuts, except in the very final section.
Consider the graph

3

1

q

−q

2

G

Its graph polynomial is

ΞG = q2α3(α1 + α2) + (m2
1α1 + m2

2α2)(α1 + α2 + α3)

whose zero locus defines a family of quadrics XΞG ⊂ P3. For generic values of
q, m1, m2, this quadric meets the coordinate axes at a single point α1 = α2 = 0



FEYNMAN AMPLITUDES AND COSMIC GALOIS GROUP 63

which corresponds to the motic subgraph of G spanned by the edges 1, 2. Let
PG → P2 be the blow up of P2 at the point D1 ∩ D2, i.e., α1 = α2 = 0, and let
YG ⊂ PG be the strict transform of XΞG (only). The situation is depicted below.

XΞG ⊂ P2 YG ⊂ PGD12

D3 D3

D2 D2D1 D1

The exceptional divisor is called D12. For simplicity, we shall only consider the
graph hypersurface XΞG , and not XΨG , and compute the fibres of

mot′G = H2(PG\YG, D\D ∩ YG)

over Ugen
2,2 , where D is defined in (5.2). It satisfies grW

2 mot′G
∼= Q(−1)⊕Q(−1), and

hence has two non-trivial periods. These were computed in an indirect manner in
[19], §5.3.2, using the fact they are necessarily logarithms of projective invariants
of seven points in P2. We give full details of the period computation using the
general methods described above. The calculations are somewhat tedious but are
more subtle than they may at first appear.

12.0.1. Exceptional locus spectral sequence. Let G be the graph above. It has ex-
actly one non-trivial motic subgraph γ, which is the subgraph spanned by the edges
1, 2. Since D12 is isomorphic to a copy of P1, the relevant terms Ep,q

1 in the excep-
tional locus spectral sequence, for (p, q) ∈ [0, 1]× [1, 2], are therefore

H2(P2\XΞG) → H1(P1\XΞγ )(−1)(12.1)

H1(P2\XΞG) → H0(P1\XΞγ )(−1)

since G/γ has only one edge and hence P0\XΞG/γ
is a point. Since XΞG is an odd-

dimensional quadric, Hi(P2\XΞG) = 0 for i = 1, 2, and since Ξγ = (q2 + m2
1)α1 +

(q2 + m2
2)α2, we have P1\XΞγ = A1. Therefore the above Ep,q

1 terms in (12.1) are

0 0

0 Q(−1)

and hence H2(PG\YG) = Q(−1). Now consider the relative cohomology spectral

sequence Ep,q
1 =

⊕
|I|=p Hq(DI\DI ∩ YG) converging to mot′G. The terms E1,1

1 all

vanish except for
H1(D3\YΞG/3

) = H1(Gm) ∼= Q(−1)

since the other faces D•\(D• ∩ YG), for • ∈ {1, 2, 12}, are copies of A1. The face

D3 is given by α3 = 0 and ΞG/3 = (m2
1α1 + m2

2α2)(α1 + α2). Since E2,0
1 is in

weight zero, and by the previous computations E0,2
1 = H2(PG\YG) = Q(−1), and

E1,2
1 = 0, we deduce that grW

2 mot′G = Q(−1)⊕2. We shall compute the period of
a class [ω̃] ∈ (mot′G)dR which maps to a generator [ω] ∈ H2

dR(PG\YG) ∼= Q(−1).
Note that its image is zero in H2

dR(P2\XΞG) = 0. The other period comes from the
face D3 via a face map, so is a period of the quotient graph G/3.
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12.0.2. Affine covering. The prescription of §5 defines the following affine spaces
corresponding to maximal flags of subgraphs of G, where B = {∅, {1, 2}, {1, 2, 3}},

A12,1 = AF ,c where (F , c) = (∅ ⊂ {1, 2} ⊂ {1, 2, 3}, j1 = 2, j2 = 3)

A12,2 = AF ,c where (F , c) = (∅ ⊂ {1, 2} ⊂ {1, 2, 3}, j1 = 1, j2 = 3)

A1 = AF ,c where (F , c) = (∅ ⊂ {1, 2, 3}, j1 = 2)

A2 = AF ,c where (F , c) = (∅ ⊂ {1, 2, 3}, j1 = 1) .

Let (α1 : α2 : α3) be projective coordinates on P2. The affine rings of the above

spaces are O(A12,1) = Z[β12,1
1 , β12,1

2 ], where, by abuse of notation,

β12,1
1 =

α1

α2
, β12,1

2 = α2 ,

and similarly O(A12,2) = Z[β12,2
1 , β12,2

2 ], with

β12,2
1 = α1 , β12,2

2 =
α2

α1
,

and α3 = 1 in both cases. Denote the coordinate rings of A1 and A2 by Z[α1, α3]
(α2 = 1) and Z[α2, α3] (α1 = 1) respectively. The charts A• provide a canonical

affine covering of PG. The exceptional divisor D12 is given by the equations β12,1
2 =

0 and β12,2
1 = 0 in the charts A12,1 and A12,2 respectively.

Let q2, m2
1, m

2
2 satisfy the genericity conditions (1.18), namely

q2 + m2
1 6= 0 , q2 + m2

2 6= 0 , m2
1 6= 0 , m2

2 6= 0 ,

and for a fixed choice of such q, m1, m2, let us write

Q = q2α3(α1 + α2) + (m2
1α1 + m2

2α2)(α1 + α2 + α3) ,(12.2)

Q = q2(α1 + α2) + (m2
1α1 + m2

2α2)(α1 + α2 + 1) .

Let us denote by U• ⊂ A• the open subsets obtained by removing the strict trans-
form of V (Q). Thus O(U12,i) = Z[β12,i

1 , β12,i
2 , Q−1

i ] for i = 1, 2, where

Q1 = q2(β12,1
1 + 1) + (m2

1β
12,1
1 + m2

2)(β
12,1
1 β12,1

2 + β12,1
2 + 1)

Q2 = q2(β12,2
2 + 1) + (m2

1 + m2
2β

12,2
2 )(β12,2

1 β12,2
2 + β12,2

1 + 1)

Likewise O(U1) = Z[α1, α3, Q|
−1
α2=1] and O(U2) = Z[α2, α3, Q|

−1
α1=1].

12.0.3. Absolute Čech-de Rham class. The sets U1, U2, U12,1, U12,2 form our canon-
ical open affine covering of PG\YG. Define four closed differential forms:

ωab = d log Q
∣∣
U12,a∩Ub

∈ Ω1(U12,a ∩ Ub) where a, b ∈ {1, 2} ,

where Q is defined in (12.2). Consider the element {ω} of degree 2 in the total
complex of the absolute Čech-de Rham double complex24 Ωn(UP ) whose only non-
zero components are the ωab. The element {ω} is closed for the total differential
and so defines a class

[ω] ∈ H2
dR(PG\YG) .

24this is the triple complex (11.1) in the special case when the divisor D is empty.
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12.0.4. Relative Čech-de Rham class. We next wish to extend {ω} to a closed
element in the relative Čech-de Rham triple complex (11.1) where D has four
irreducible components D12, D1, D2, D3. This will necessarily use the fact that
Di\(Di ∩ YG) is isomorphic to A1, for i = 1, 2, and hence has vanishing H1.

Define four closed 1-forms

µi ∈ Ω1(Di ∩ U12,i) , νi ∈ Ω1(Di ∩ Ui)

where i ∈ {1, 2}, by

µ1 =
2m2

2 dβ12,1
2

q2 + m2
2(β

12,1
2 + 1)

and ν1 =
(q2 + m2

2)dα3

q2α3 + m2
2(1 + α3)

and µ2, ν2 are defined by interchanging all subscripts ‘1’ and ‘2’ (and ‘12, 1’ with
‘12, 2’). Note that Di does not meet U12,j or Uj if i 6= j. Consider the element
{ω̃} of degree 2 in the total complex associated to (11.1) which is zero in every
component of Ωn(UP ∩DQ) except for the eight elements ωab ∈ Ω1(U12,a ∩ Ub) for
a, b ∈ {1, 2} as above and µi, νi, for i = 1, 2. The element {ω̃} is closed for the total
differential essentially because of the equations

ωii|Di = µi − νi for i = 1, 2 ,

on the open U12,i ∩ Ui ∩ Di ⊂ Di (recall that the left-hand side is d log Q|αi=0).
This defines a class in relative de Rham cohomology

[ω̃] ∈ H2
dR(PG\YG, D\(D ∩ YG)

whose image in absolute de Rham cohomology is [ω] ∈ H2
dR(PG\YG).

12.0.5. The period. We can compute the period

I =

∫

σG

{ω̃}

following the prescription of §11.3. Let t > 0 and let zt ∈ P2(R) denote the point
with projective coordinates (t : t : 1). Only six regions σP

Q(z) of the domain of
integration provide a non-zero contribution to the period integral, shown below.

D1 σ
12

1 σ
1

1

U12,1 U1

D12 D3

U12,2 U2

D2 σ
12

2 σ
2

2

σ
1

zt

σ
2

D1

a1

a2

σ
12

1 b1

b2

D12

σ
12

2D2

D3

Figure 2. Integration of a period. Left: the non-trivial contribu-
tions to the period integral. Right: taking the limit as t→∞ and
replacing the paths with tangential base points.

Here, σ1 = {(x : t : 1), 0 ≤ x ≤ t} and σ2 = {(t : x : 1), 0 ≤ x ≤ t}.



66 FRANCIS BROWN

From the general formula (11.5) we have

I =
∑

i=1,2

∫

σ12
i (t)

µi +

∫

σi
i(t)

νi +

∫

σi(t)

ωii .

It can be computed directly, and does not depend on t. Instead, we shall compute
it by letting t→∞ and using tangential base points.

12.0.6. Limits and tangential basepoints. Consider the following basepoints on D1:
an ordinary base point a1 = D1 ∩D12 (given by β12,1

2 = 0), and a tangential base

point b1 on D1 at the point D1 ∩D3 defined by −∂/∂β12,1
2 . Denote the analogous

basepoints on D2 by a2, b2, as shown in the figure. Since our forms have at most
logarithmic poles, we deduce on taking t→∞, that

I =

∫ b1

a1

µ1 +

∫ a2

b2

µ2 +

∫ b2

b1

d log Q

as shown in the previous figure. The third term is given by

lim
t→∞

log
(Q(t, 0)

Q(0, t)

)
= lim

t→∞
log

(q2 + m2
1(t + 1)

q2 + m2
2(t + 1)

)
= log

(m2
1

m2
2

)
.

The first term is given by

lim
t→−1∞

∫ t

0

2m2
2 dx

q2 + m2
2(x + 1)

= 2 lim
t→−1∞

log
(q2 + m2

2(t + 1)

q2 + m2
2

)
= 2 log

( m2
2

q2 + m2
2

)

where limt→−1∞
denotes the regularised limit as t→∞ with respect to the tangen-

tial base point −∂/∂t (set log t to zero). The second term is obtained by replacing
m2 by m1 in this formula and changing the sign. In total,

I = 2 log
(q2 + m2

1

q2 + m2
2

)
− log

(m2
1

m2
2

)
.

We see that I is a linear combination of limits of divergent generalised amplitudes.
On the other hand, the amplitude of the one-loop graph G/3 is proportional to

log m2
1m

−2
2 . By the face relations, this provides another period of G. From the

cohomology calculations, we know that the motivic periods of mot′G are motivic
logarithms. Since these are uniquely determined by their period, we deduce the:

Corollary 12.1. The motivic periods of mot′G are spanned by 1 and the two motivic
logarithms (on the space of generic kinematics Ugen

2,2 )

logm

(m2
2

m2
1

)
and logm

(q2 + m2
2

q2 + m2
1

)
.

Thus the periods of G are regularised limits of linear combinations of amplitudes
of the three graphs G/1, G/2, G/3. See [19] §5.3.2 for an interpretation of these
periods in terms of hyperbolic geometry. This example illustrates how the motivic
periods of small graphs can in principle be computed algorithmically.
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