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Lévy-Khintchine type Hamilton functions

Yana A. Butko (Kinderknecht)
Saarland University

Department of Mathematics
P.O. Box 15 11 50
66041 Saarbrücken

Germany
kinderknecht@math.uni-sb.de, yanabutko@yandex.ru

Martin Grothaus
Technical University of Kaiserslautern

Department of Mathematics
Postfach 3049

67653 Kaiserslautern
Germany

grothaus@mathematik.uni-kl.de

Oleg G. Smolyanov
Lomonosov Moscow State University

Department of Mechanics and Mathematics
119992, Vorob’evy gory, 1, Moscow

Russia
Smolyanov@yandex.ru



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

This note is devoted to representation of some evolution semigroups.
The semigroups are generated by pseudo-differential operators, which are
obtained by different (parame-trized by a number τ) procedures of quanti-
zation from a certain class of functions (or symbols) defined on the phase
space. This class contains functions which are second order polynomials with
respect to the momentum variable and also some other functions. The con-
sidered semigroups are represented as limits of n-fold iterated integrals when
n tends to infinity (such representations are called Feynman formulae). Some
of these representations are constructed with the help of another pseudo-
differential operators, obtained by the same procedure of quantization (such
representations are called Hamiltonian Feynman formulae). Some repre-
sentations are based on integral operators with elementary kernels (these
ones are called Lagrangian Feynman formulae and are suitable for compu-
tations). A family of phase space Feynman pseudomeasures corresponding
to different procedures of quantization is introduced. The considered evolu-
tion semigroups are represented also as phase space Feynman path integrals
with respect to these Feynman pseudomeasures. The obtained Lagrangian
Feynman formulae allow to calculate these phase space Feynman path in-
tegrals and to connect them with some functional integrals with respect to
probability measures.

Keywords Feynman formulae; Phase space Feynman path integrals, Hamil-
tonian Feynman path integrals, symplectic Feynman path integrals, Feynman–
Kac formulae, functional integrals; Hamiltonian (symplectic) Feynman pseu-
domeasure, Chernoff theorem, pseudo-differential operators, approximations
of semigroups, approximations of transition densities.
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1 Introduction

This paper is devoted to approximations of evolution semigroups e−tĤ generated
by pseudo-differential operators Ĥ. The operators Ĥ are obtained from a given
function (q, p) 7→ H(q, p) (which is called a symbol of Ĥ) by some linear procedure
(which is called a quantization). We consider a class of such procedures, parame-
terized by a number τ ∈ [0, 1]. This class includes qp-, pq- and Weyl quantizations.
We obtain representations of the considered evolution semigroups by phase space
Feynman path integrals which we define as limits of some usual integrals over fi-
nite dimensional spaces when the dimension of these spaces tends to infinity. Our
approach is to approximate the semigroup e−tĤ (for a given procedure of quan-

tization) by a family of pseudo-differential operators ê−tH obtained by the same
procedure of quantization from the function e−tH . Note, that if the function H

depends on both variables q and p, then e−tĤ 6= ê−tH . Nevertheless, under certain
conditions one succeeds to prove that

e−tĤ = lim
n→∞

[
ê−

t
n

H

]n

. (1.1)

The limit in the right hand side is the limit of n-fold iterated integrals over the
phase space when n tends to infinity (such expressions are called Hamiltonian
Feynman formulae). This limit can be interpreted as a phase space Feynman path

integral with exp

(
−

t∫
0

H(q(s), p(s))ds

)
in the integrand.

On a heuristic level the same approach was used already in Berezin’s papers [3],

[4] for investigation of Schrödinger groups e−itĤ . Berezin has assumed the identity

e−itĤ = lim
n→∞

[
ê−i t

n
H

]n

(1.2)

and has interpreted the pre-limit expressions in the right hand side of the iden-
tity (1.2) as approximations to a phase space Feynman path integral. Moreover,
Berezin has remarked that Feynman path integral is “very sensitive to the choice of
approximations, and nonuniqueness appearing due to this dependence has the same
character as nonuniqueness of quantization” (see [4]). In other words, Feynman
path integral is different for different procedures of quantization. This difference
may appear both in integrands and in the set of paths over which the integration
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takes place. Berezin has considered the case of Weyl quantization and his calcu-
lations have lead to a quit odd expression in the integrand of his Feynman path
integral. The question, how to distinguish the procedure of quantization on the
language of Feynman path integrals, remained open.
The rigorous justification of the above mentioned approach for approximation of
evolution (semi)groups was first obtained only in 2002 in the paper [41]. The
main technical tool suggested in [41] was the Chernoff Theorem (see Theorem 2.1
below, cf. [16]). It is a wide generalization of the classical Trotter’s result used for
rigorous handling of Feynman path integrals over paths in configuration space of a
system (see, e.g., [31]). In the paper [41] the identity (1.2) has been established for
τ -quantization of a class of functions (q, p) 7→ H(q, p) whose main ingredient is a
function (q, p) 7→ h(q, p), which is Fourier transform of a finite σ-additive measure.
This ingredient allows to use Parseval equality to succeed the proof. A scheme to
construct a phase space Feynman path integral is also presented in [41] (however,
quit independently on the established Hamiltonian Feynman formulae (1.2)).

Later on, evolution semigroups e−tĤ have been treated by the same approach in
papers [13], [14], [7]. In [13] the identity (1.1) has been established for the case
of qp-quantization of a function (q, p) 7→ H(q, p), which corresponds to a particle

with variable mass in a potential field. The semigroup e−tĤ has been considered
on the Banach space C∞(Rd) of continuous, vanishing at infinity functions. The
scheme of [41] was adopted (for the case of qp-quantization) to interpret the ob-
tained Hamiltonian Feynman formula (1.1) as a phase space Feynman path integral
with respect to a Feynman type pseudomeasure. In [14] the identity (1.1) has been

established for the semigroup e−tĤ on C∞(Rd) in the case of qp-quantization of a
function (q, p) 7→ H(q, p), which is continuous and negative definite with respect
to p, continuous and bounded with respect to q. This class of functions H con-
tains, in particular, Hamilton functions of particles with variable mass in potential
and magnetic fields and relativistic particles with variable mass. The semigroup
e−tĤ (again on C∞(Rd)) generated by τ -quantization of a function H, which is
polynomial with respect to p with variable, depending on q coefficients, has been
approximated in [7] by a family of pseudo-differential operators with some qp-
symbols. The obtained Hamiltonian Feynman formula has been interpreted as a
phase space Feynman path integral with respect to the Feynman pseudomeasure
defined in [13].
This article continues the researches of [41], [13], [14], [7]. We consider Banach

space L1(Rd) and evolution semigroups e−tĤ generated by τ -quantization of a
function (q, p) 7→ H(q, p), which is polynomial with respect to p with variable,
depending on q coefficients. For all τ ∈ [0, 1] we prove that the considered semi-
groups are being approximated as in (1.1) by families of pseudo-differential oper-
ators with τ -symbols e−tH . We develop the scheme of [41] to construct a family
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of Feynman pseudomeasures Φτ , τ ∈ [0, 1], and show that the limit in the right
hand side of (1.1) for each τ ∈ [0, 1] does coincide with a phase space Feynman
path integral with respect to the corresponding pseudomeasure Φτ . For the case
of qp-quantization we obtain the same result for a slightly more general class of
functions H. We plan to obtain analogous formulae for Schrödinger groups e−itH

by the method of analytic continuation in our subsequent work. The considered
semigroups e−tĤ are represented for all τ ∈ [0, 1] also by some limits of integral
operators with (more or less) elementary kernels (such representations are called
Lagrangian Feynman formulae). These representations are suitable for direct cal-
culations. Moreover, the pre-limit expressions in the obtained Lagrangian Feynman
formulae coincide with some functional integrals with respect to probability mea-
sures corresponding to stochastic processes associated to the generators Ĥ. These
different representations of the same semigroups allow to calculate some phase
space Feynman path integrals and to connect them with stochastic analysis.

2 Notation and preliminaries

2.1 The Chernoff theorem and Feynman formulae

Let (X, ‖ · ‖X) be a Banach space, L(X) be the space of all continuous linear
operators on X equipped with the strong operator topology, ‖·‖ denote the operator
norm on L(X) and Id be the identity operator in X. If Dom(L) ⊂ X is a linear
subspace and L : Dom(L) → X is a linear operator, then Dom(L) denotes the
domain of L. A one-parameter family (Tt)t>0 of bounded linear operators Tt :
X → X is called a strongly continuous semigroup, if T0 = Id, Ts+t = Ts ◦ Tt for all
s, t > 0 and limt→0 ‖Ttϕ−ϕ‖X = 0 for all ϕ ∈ X. If (Tt)t>0 is a strongly continuous
semigroup on a Banach space (X, ‖ · ‖X), then the generator L of (Tt)t>0 is defined
by

Lϕ := lim
t↘0

Ttϕ− ϕ

t

with domain

Dom(L) :=

{
ϕ ∈ X

∣∣∣∣ lim
t↘0

Ttϕ− ϕ

t
exists in X

}
.

Consider an evolution equation ∂f
∂t

= Lf . If L is the generator of a strongly
continuous semigroup (Tt)t>0 on a Banach space (X, ‖·‖X), then the (mild) solution
of the Cauchy problem for this equation with the initial value f(0) = f0 ∈ X is
given by f(t) = Ttf0 for all f0 ∈ X. Therefore, solving the evolution equation
∂f
∂t

= Lf means to construct a semigroup (Tt)t>0 with the given generator L. If
the desired semigroup is not known explicitly it can be approximated. One of the
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tools to approximate semigroups is based on the Chernoff theorem [16] (here we
present the version of Chernoff’s theorem given in [41]).

Theorem 2.1 (Chernoff). Let X be a Banach space, F : [0,∞) → L(X) be a
(strongly) continuous mapping such that F (0) = Id and ‖F (t)‖ 6 eat for some
a ∈ [0,∞) and all t > 0. Let D be a linear subspace of Dom(F ′(0)) such that the
restriction of the operator F ′(0) to this subspace is closable. Let (L, Dom(L)) be
this closure. If (L, Dom(L)) is the generator of a strongly continuous semigroup
(Tt)t>0, then for any t0 > 0 the sequence (F (t/n))n)n∈N converges to (Tt)t>0 as
n →∞ in the strong operator topology, uniformly with respect to t ∈ [0, t0], i.e.

Tt = lim
n→∞

[F (t/n)]n . (2.1)

Here the derivative at the origin of a function F : [0, ε) → L(X), ε > 0, is a linear
mapping F ′(0) : Dom(F ′(0)) → X such that

F ′(0)g := lim
t↘0

F (t)g − F (0)g

t
,

where Dom(F ′(0)) is the vector space of all elements g ∈ X for which the above
limit exists.
A family of operators (F (t))t>0 suitable for the formula (2.1) is called Chernoff
equivalent to the semigroup (Tt)t>0, i.e. this family satisfies all the assertions of
the Chernoff theorem with respect to this semigroup. In many cases the operators
F (t) are integral operators and, hence, we have a limit of iterated integrals on the
right hand side of the equality (2.1). In this setting it is called Feynman formula.

Definition 2.2. A Feynman formula is a representation of a solution of an initial
(or initial-boundary) value problem for an evolution equation (or, equivalently, a
representation of the semigroup solving the problem) by a limit of n-fold iterated
integrals as n →∞.

We use this notation since it was Richard Feynman ([19], [20]) who introduced a
functional (path) integral as a limit of iterated finite dimensional integrals. The
limits in Feynman formulae coincide with (or in some cases define) certain func-
tional integrals with respect to probability measures or Feynman type pseudomea-
sures on a set of paths of a physical system. A representation of a solution of an
initial (or initial-boundary) value problem for an evolution equation (or, equiva-
lently, a representation of the semigroup resolving the problem) by a functional
integral is usually called Feynman–Kac formula. Hence, the iterated integrals in a
Feynman formula for some problem give approximations to a functional integral in
the Feynman-Kac formula representing the solution of the same problem. These
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approximations in many cases contain only elementary functions as integrands and,
therefore, can be used for direct calculations and simulations.
The notion of a Feynman formula has been introduced in [41]. The method to
obtain Feynman formulae has been developed in a series of papers [41]–[46]. This
method is based on the Chernoff theorem and has been successfully applied recently
to obtain Feynman formulae for different classes of problems for evolution equations
on different geometric structures, see, e.g. [12], [8]–[14], [22], [32], [33], [35], [36],
[37], [38], [39].
We call the identity (2.1) a Lagrangian Feynman formula, if the F (t), t > 0,
are integral operators with elementary kernels; if the F (t) are pseudo-differential
operators (the definition is given in Section 2.2), we speak of Hamiltonian Feynman
formulae. This terminology is inspired by the fact that a Lagrangian Feynman
formula gives approximations to a functional integral over a set of paths in the
configuration space of a system (whose evolution is described by the semigroup
(Tt)t>0), while a Hamiltonian Feynman formula corresponds to a functional integral
over a set of paths in the phase space of some system.

2.2 Pseudo-differential operators, their symbols and tau-
quantization

Let us consider a measurable function H : Rd × Rd → C and τ ∈ [0, 1]. We

define a pseudo-differential operator (ΨDO) Ĥτ with τ -symbol H on a Banach
space (X, ‖ · ‖X) of some functions on Rd by

Ĥτϕ(q) = (2π)−d

∫

Rd

∫

Rd

eip·(q−q1)H(τq + (1− τ)q1, p)ϕ(q1) dq1 dp, q ∈ Rd (2.2)

where the domain Dom(Ĥτ ) is the set of all ϕ ∈ X such that the right hand side of
the formula (2.2) is well defined as an element of (X, ‖·‖X). We always assume that
the set of smooth compactly supported functions C∞

c (Rd) belongs to the domain

of the operator Ĥτ .
The mapping H 7→ Ĥτ from a space of functions on Rd × Rd into the space
of linear operators on (X, ‖ · ‖X) is called the τ -quantization, the operator Ĥτ

is called the τ -quantization of the function H. Note that if the symbol H is a
sum of functions depending only on one of the variables q or p then the ΨDOs
Ĥτ coincide for all τ ∈ [0, 1]. If H(q, p) = qp = pq, q, p ∈ R1 then Ĥτϕ(q) =
−iτq ∂

∂q
ϕ(q) − i(1 − τ) ∂

∂q
(qϕ(q)). Therefore, different τ correspond to different

orderings of non-commuting operators such that we have the “qp”-quantization
for τ = 1, the “pq”-quantization for τ = 0 and the Weyl quantization for τ = 1/2.
A function H is usually considered as a Hamilton function of a classical system.
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Then the operator Ĥτ is called the Hamiltonian of a quantum system obtained by
τ -quantization of the classical system with the Hamilton function H.
In the sequel we use the following result (cf. [41][Lemma4]). The Schwartz space
of smooth rapidly decreasing functions on Rd we denote by S(Rd).

Lemma 2.3. Let τ = 1. Let f, g : Rd → C be bounded continuous functions and
λ : Rd × Rd → C be the 1-symbol of ΨDO λ̂1. Let H(q, p) = f(q)g(p)λ(q, p),q, p ∈
Rd. Then

Ĥ1ϕ =
(
f̂ ◦ λ̂1 ◦ ĝ

)
ϕ

for all ϕ ∈ S(Rd) ∩Dom(Ĥ1) ∩Dom(f̂ ◦ λ̂1 ◦ ĝ).

Proof. Let ϕ ∈ S(Rd) ∩ Dom(Ĥ1) ∩ Dom(f̂ ◦ λ̂1 ◦ ĝ). Let F and F−1 stand for
Fourier transform and its inverse respectively. Then

Ĥ1ϕ(q) = (2π)−d

∫

Rd

∫

Rd

eip·(q−q1)H(q, p)ϕ(q1) dq1 dp =

= (2π)−d/2

∫

Rd

eip·qf(q)g(p)λ(q, p)F [ϕ](p)dp,

and
(
f̂ ◦ λ̂1 ◦ ĝ

)
ϕ(q) =

(
f̂ ◦ λ̂1

)
F−1[gF [ϕ]](q) =

= f(q)(2π)−d/2

∫

Rd

eip·qλ(q, p)F [F−1[gF [ϕ]]](p)dp =

= (2π)−d/2

∫

Rd

eip·qf(q)g(p)λ(q, p)F [ϕ](p)dp.

3 Feynman formulae for tau-quantization of some

Lévy-Khintchine type Hamilton functions.

In the sequel we consider τ ∈ [0, 1] and (X, ‖ · ‖X) := (L1(Rd), ‖ · ‖1) the space of
functions on Rd absolutely integrable with respect to the Lebesgue measure. Let
us introduce two Hamilton functions h and H. Let the function h : Rd ×Rd → C

be given by the formula

h(q, p) = c(q) + ib(q) · p + p · A(q)p, q, p ∈ Rd, (3.1)
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where for each q ∈ Rd we have b(q) ∈ Rd, c(q) ∈ R, A(q) is a symmetric d × d-
matrix. Let us consider also a function r : Rd → C given by the formula

r(p) =

∫

Rd\{0}

(
1− eiy·p +

iy · p
1 + |y|2

)
N(dy), (3.2)

where N is a Radon measure on Rd \ {0} with
∫

Rd\{0}

|y|2
1+|y|2 N(dy) < ∞. Note that

we consider the case when N does not depend on q ∈ Rd. We assume that for
q, p ∈ Rd we have

H(q, p) = h(q, p) + r(p) (3.3)

= c(q) + ib(q) · p + p · A(q)p +

∫

Rd\{0}

(
1− eiy·p +

iy · p
1 + |y|2

)
N(dy).

If c > 0 then the Hamilton function H is continuous negative definite with respect
to the variable p ∈ Rd and the formula (3.3) is just the Lévy-Khintchine formula.
We don’t assume in the sequel that c > 0, that’s why we call our symbol H a
Lévy-Khintchine type function.
To handle the proofs we need to assume (sometimes different) boundness and
smoothness conditions on the symbol H. All the assumptions, we use in the sequel,
are collected below.

Assumtion 3.1. (i) There exist constants 0 < a0 6 A0 < +∞ such that for all
p ∈ Rd and all q ∈ Rd the following inequalities hold

a0|p|2 6 p · A(q)p 6 A0|p|2.

(ii) The coefficients A, b, c with all their derivatives up to the 4th order are con-
tinuous and bounded.
(iii) The coefficients A, b, c are infinite differentiable and bounded with all their
derivatives.
(iv) The function H(q, ·) is of class C∞(Rd) for each q ∈ Rd.

Consider an operator Ĥτ with the τ -symbol H for τ ∈ [0, 1] in L1(Rd), i.e. for any

function ϕ ∈ Dom(Ĥτ ) ⊂ L1(Rd)

Ĥτϕ(q) = (2π)−d

∫

Rd

∫

Rd

eip·(q−q1)H(τq + (1− τ)q1, p)ϕ(q1) dq1 dp, q ∈ Rd. (3.4)
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Remark 3.2. Note that (due to [7] and [14]) the operator Ĥτ with τ -symbol H
given by the formula (3.3) for A ∈ C2(Rd), b ∈ C1(Rd), c ∈ C(Rd) and each
τ ∈ [0, 1] can be extended to the set C2

b (Rd) of twice continuously differentiable
functions bounded with all their derivatives by

Ĥτϕ(q) =− tr(A(q) Hess ϕ(q)) + [b(q)− 2(1− τ) div A(q)] · ∇ϕ(q)+ (3.5)

+ [c(q) + (1− τ) div b(q)− (1− τ)2 tr(Hess A(q))]ϕ(q)+

+

∫

y 6=0

(
ϕ(q + y)− ϕ(q)− y · ∇ϕ(q)

1 + |y|2
)

N(dy),

i.e. Ĥτ is a sum of a second order differential operator with continuous coefficients
and an integro-differential operator generating a Lévy process.

Assumtion 3.3. We assume that the coefficients A, b, c, N are such that the
closure (Lτ , Dom(Lτ )) of a ψDO (Ĥτ , C

∞
c (Rd)) with the τ -symbol H as in (3.3)

generates a strongly continuous semigroup (T τ
t )t>0 on the space X.

Remark 3.4. Due to the representation (3.5) it is clear that the requirement
C∞

c (Rd) ⊂ Dom(Lτ ) is equivalent to the requirement C∞
c (Rd) ⊂ Dom( r̂ ). The

last one holds for example if the measure N has a compact support. In the case
c = 0, N = 0 the explicit conditions on A, b to fulfill the Assumption 3.3 are
given in [47]. Then the case with nonzero coefficients c and N can be proceeded
by the technique of relatively bounded perturbations of generators (see Def.4.4.1
and Th.4.4.3 in [25]).

Consider a family (Fτ (t))t>0 of ψDOs with the τ -symbol e−tH(q,p) in the space X,
i.e. for any ϕ ∈ Dom(Fτ (t))

Fτ (t)ϕ(q) = (2π)−d

∫

Rd

∫

Rd

eip·(q−q1)e−tH(τq+(1−τ)q1,p)ϕ(q1)dq1dp. (3.6)

Lemma 3.5. Under Assumption 3.1(i),(ii) for any ϕ ∈ C∞
c (Rd) and any τ ∈ [0, 1]

we have Fτ (t)ϕ ∈ X. For all t > 0 the operators Fτ (t) can be extended to bounded
mappings on the space X and there exists a constant k > 0 such that for all t > 0
holds the estimate:

‖Fτ (t)‖ 6 etk. (3.7)

Proof. Using the inequalities of Assumption 3.1(i) and the fact, that the real part
of each continuous negative definite function is nonnegative (see inequalities (3.123)
and (3.117) in [25]), we obtain the estimate

sup
q∈Rd

|e−tH(q,p)| 6 e−ta0p2

exp

(
−t min

q∈Rd
c(q)

)
. (3.8)
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Hence, the function ft,q = (2π)−d/2e−tH(q,·) ∈ L1(Rd) for each q ∈ Rd and t > 0.
Moreover, ft,q(0) = (2π)−d/2e−tc(q). Therefore, the inverse Fourier transform of ft,q

has the view e−tc(q)P q
t , where for each q ∈ Rd and t > 0 the function P q

t ∈ C∞(Rd)
is a density of a probability measure. This follows from the Bochner Theorem and
the fact that Fourier transform maps L1(Rd) into C∞(Rd).
Consider first the case τ = 0. Then for each ϕ ∈ C∞

c (Rd) by Fubini–Tonelly
Theorem we have

F0(t)ϕ(q) =
1

(2π)d

∫

Rd

∫

Rd

eip·(q−q1)e−tH(q1,p)ϕ(q1)dq1dp

=

∫

Rd

ϕ(q1)e
−tc(q1)P q1

t (q − q1)dq1.

Again by Fubini–Tonelli Theorem for each ϕ ∈ C∞
c (Rd)

‖F0(t)ϕ‖1

=

∥∥∥∥
∫

Rd

ϕ(q1)e
−tc(q1)P q1

t (q − q1)dq1

∥∥∥∥
1

6
∫

Rd

∫

Rd

|ϕ(q1)|e−tc(q1)P q1
t (q − q1)dq1dq

=

∫

Rd

|ϕ(q1)|e−tc(q1)

[ ∫

Rd

P q1
t (q − q1)dq

]
dq1 6 exp

(
−t min

x∈Rd
c(x)

)
‖ϕ‖1.

Therefore, for any ϕ ∈ C∞
c (Rd) we have F0(t)ϕ ∈ L1(Rd) and F0(t) is a bounded

operator from C∞
c (Rd) into L1(Rd). Then due to the B.L.T. Theorem the operator

F0(t) can be extended to a bounded operator on L1(Rd) with the same norm.
Hence, the lemma is true for τ = 0. Let us now prove the lemma for the case
τ ∈ (0, 1].

Let us now consider the function H given by (3.3) as a sum of functions h and r
(see formulas (3.1), (3.2), (3.3)). Under Assumption 3.1(i),(ii) consider a family
(Gθ

A,b,c(t))t>0 of operators on L1(Rd) defined for each fixed θ ∈ (0, 1] by the formula

Gθ
A,b,c(t)ϕ(q) =

1

(2π)d

∫

Rd

∫

Rd

eip·(q−q1)e−th(θq,p)ϕ(q1)dq1dp =
e−tc(θq)

(4πt)d/2(det A(θq))1/2

×
∫

Rd

exp

(
−(q − q1 − tb(θq)) · A−1(θq)(q − q1 − tb(θq))

4t

)
ϕ(q1)dq1, q ∈ Rd.

(3.9)
Each Gθ

A,b,c(t) is a integral operator with the kernel

gx
t (z) = (4πt)−d/2(det A(x))−1/2e−tc(x) exp

{
− (z − tb(x)) · A−1(x)(z − tb(x))

4t

}
,

(3.10)

10



for x = θq and z = q − q1. Note, that gx
t is an inverse Fourier transform of the

function (2π)−d/2e−th(x,·). Due to [35] there is a constant k < ∞ such that for θ = 1
the estimate ‖G1

A,b,c(t)‖ 6 ekt holds. For each fixed θ ∈ (0, 1] the operator Gθ
A,b,c(t)

equals the operator G1
Aθ,bθ,cθ

(t) with new coefficients Aθ(q) = A(θq), bθ(q) = b(θq),
cθ(q) = c(θq) which remain as smooth and bounded as the original A, b and c are.
Therefore, the estimate ‖Gθ

A,b,c(t)‖ 6 ekt still holds for each θ ∈ (0, 1] and the same

k. Hence, by Fubini–Tonelli Theorem for ϕ ∈ C∞
c (Rd) we have

Fτ (t)ϕ(q) = (2π)−d

∫

Rd

∫

Rd

eip·(q−q1)e−tH(τq+(1−τ)q1,p)ϕ(q1)dq1dp

= (2π)−d

∫

Rd

ϕ(q1)

[ ∫

Rd

eip·(q−q1)e−th(τq+(1−τ)q1,p)e−tr(p)dp

]
dq1

=

∫

Rd

ϕ(q1)
[
g

τq+(1−τ)q1

t ∗ µt

]
(q − q1)dq1. (3.11)

Here the function in the squared brackets for each fixed q, q1 ∈ Rd and τ ∈ (0, 1] is
an inverse Fourier transform of the product e−th(τq+(1−τ)q1,·) · (2π)−d/2e−tr(·), i.e. a

convolution of a function g
τq+(1−τ)q1

t given by the formula (3.10) and a probability
measure µt corresponding to the Lévy process with the symbol r. And this function
is taken at the point (q − q1). Hence, with y := q + 1−τ

τ
q1 and x := q1/τ

∥∥Fτ (t)ϕ
∥∥

1
=

∫

Rd

∣∣∣∣
∫

Rd

ϕ(q1)
[
g

τq+(1−τ)q1

t ∗ µt

]
(q − q1)dq1

∣∣∣∣dq

6
∫

Rd

∫

Rd

|ϕ(q1)|
[
g

τq+(1−τ)q1

t ∗ µt

]
(q − q1)dq1dq =

=

∫

Rd

[ ∫

Rd

∫

Rd

|ϕ(q1)|gτq+(1−τ)q1

t (q − q1 − z)dq1dq

]
µt(dz) 6

6
∫

Rd

µt(dz) · sup
z∈Rd

[
τ d

∫

Rd

∫

Rd

gτy
t (y − z − x)|ϕ(τx)|dxdy

]

= τ d sup
z∈Rd

∫

Rd

Gτ
A,b,c(t)|ϕτ |(y − z)dy,

where ϕτ (q) := ϕ(τq) and the operator Gτ
A,b,c is given by the formula (3.9) for each

τ ∈ (0, 1]. Therefore, due to the estimate ‖Gτ
A,b,c(t)‖ 6 ekt for each ϕ ∈ C∞

c (Rd)
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we have

∥∥Fτ (t)ϕ
∥∥

1

6 τ d sup
z∈Rd

∫

Rd

Gτ
A,b,c(t)|ϕτ |(y − z)dy 6 τ dekt‖ϕτ‖1 = τ dekt

∫

Rd

|ϕ(τq)|dq = ekt‖ϕ‖1.

Once again by the B.L.T. Theorem the estimate
∥∥Fτ (t)ϕ

∥∥
1

6 ekt‖ϕ‖1 is true for

all ϕ ∈ L1(Rd).

Remark 3.6. Due to results of [14] in the case τ = 1 the statement of the Lemma
is also valid in the space X = C∞(Rd) with k = 0. Therefore, in the case τ = 1
by Riesz–Thorin theorem the estimate (3.7) holds also in all spaces Lp(Rd), p > 1
(with some other constants k).

Remark 3.7. As it follows from the representation (3.11), the operators Fτ (t) can
be considered as integral operators acting on ϕ ∈ C∞

c (Rd) as

Fτ (t)ϕ(q) =

∫

Rd

ϕ(q1)
[
g

τq+(1−τ)q1

t ∗ µt

]
(q − q1)dq1, q ∈ Rd. (3.12)

Hence, this representation can be used to construct a Lagrangian Feynman formula.

Lemma 3.8. Let N = 0 in the formula (3.2), i.e. H = h. Under Assumption
3.1(i),(ii) and Assumption 3.3 for any ϕ ∈ C∞

c (Rd), any τ ∈ [0, 1] and any t0 > 0
we have

lim
t↘0

∥∥∥∥
Fτ (t)ϕ− ϕ

t
+ Ĥτϕ

∥∥∥∥
1

= 0 and lim
t→t0

‖Fτ (t)ϕ− Fτ (t0)ϕ‖1 = 0.

Proof. Let ϕ ∈ C∞
c (Rd) ⊂ Dom(Ĥτ ), t > 0. By Taylor’s formula with θ ∈ (0, 1)

we have
∥∥∥∥
Fτ (t)ϕ− ϕ

t
+ Ĥτϕ

∥∥∥∥
1

= t

∫

Rd

∣∣∣∣∣∣
(2π)−d

∫

Rd

∫

Rd

eip·(q−q1)h2(τq + (1− τ)q1, p)e−θth(τq+(1−τ)q1,p)ϕ(q1)dq1dp

∣∣∣∣∣∣
dq.

Here p 7→ h2(τq + (1− τ)q1, p) is a 4th order polynomial with bounded coefficients
continuously depending on q and q1. Let us present the calculations for the case

12



d = 1 and b = 0, c = 0 for simplicity. General case can be handled similarly.
∥∥∥∥
Fτ (t)ϕ− ϕ

t
+ Ĥτϕ

∥∥∥∥
1

=
t

2π

∫

R

∣∣∣∣∣∣

∫

R2

eip·(q−q1)A2(τq + (1− τ)q1)p
4e−θtA(τq+(1−τ)q1)p2

ϕ(q1)dq1dp

∣∣∣∣∣∣
dq

=
t

2π

∫

R

∣∣∣∣∣∣

∫

R2

∂4
q1

[
eip·(q−q1)

] [
A2(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)
]
dq1dp

∣∣∣∣∣∣
dq

=
t

2π

∫

R

∣∣∣∣∣∣

∫

R2

[
eip·(q−q1)

]
∂4

q1

[
A2(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)
]
dq1dp

∣∣∣∣∣∣
dq.

(3.13)

Consider first the case τ = 1. Then

∂4
q1

[
A2(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)
]

= A2(q)e−θtA(q)p2

ϕ(4)(q1)

and by the Fubini–Tonelli theorem
∥∥∥∥
F1(t)ϕ− ϕ

t
+ Ĥ1ϕ

∥∥∥∥
1

= t

∫

R

∣∣∣∣∣∣
(2π)−1

∫

R

∫

R

[
eip·(q−q1)

] ·
[
A2(q)e−θtA(q)p2

ϕ(4)(q1)
]
dq1dp

∣∣∣∣∣∣
dq

= t

∫

R

∣∣∣∣∣∣
A2(q)

∫

R

(4πθtA(q))−1/2e−
(q−q1)2

4θtA(q) ϕ(4)(q1)dq1

∣∣∣∣∣∣
dq

6 tA2
0

∫

R

∫

R

(4πθta0)
−1/2e

− (q−q1)2

4θtA0 |ϕ(4)(q1)|dq1dq = t(A
5/2
0 a

−1/2
0 )‖ϕ(4)‖1.

Consider now the case when τ ∈ [0, 1). Then

∂4
q1

[
A2(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)
]

= e−θtA(τq+(1−τ)q1)p2
4∑

k=0

(θtp2)kψk(τq + (1− τ)q1, q1),

where the functions (x, y) 7→ ψk(x, y) are linear combinations of the products
Ak(x)(A2)(m)(x)ϕ(n)(y) with m,n = 0, . . . , 4. Hence, ψk(x, ·) ∈ Cc(R) and ψk(·, y) ∈
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Cb(R) for all x, y ∈ R. Therefore, with the change of variables
√

θtp = ρ, q−q1√
θt

= y
we have
∥∥∥∥
Fτ (t)ϕ− ϕ

t
+ Ĥτϕ

∥∥∥∥
1

=
t

2π

∫

R

∣∣∣∣∣∣

∫

R2

eip·(q−q1)e−θtA(τq+(1−τ)q1)p2
4∑

k=0

(θtp2)kψk(τq + (1− τ)q1, q1)dq1dp

∣∣∣∣∣∣
dq

=
t

2π

∫

R

∣∣∣∣∣∣

∫

R2

eiρ·ye−A(q−
√

θt(1−τ)y)ρ2
4∑

k=0

(ρ2)kψk(q −
√

θt(1− τ)y, q −
√

θty)dρdy

∣∣∣∣∣∣
dq

= t

∫

R

∣∣∣∣
∫

R

4∑

k=0

(−1)k ∂2k
ξ


 exp

{
− ξ2

4A(q−
√

θt(1−τ)y)

}

(4πA(q −
√

θt(1− τ)y))1/2




∣∣∣∣∣∣
ξ=y

× ψk(q −
√

θt(1− τ)y, q −
√

θty)dy

∣∣∣∣dq

6 t

∫

R

(4πa0)
−1/2e

− y2

4A0 C5(1 + y8)
4∑

k=0

Ck

∫

R

|ϕ(k)(q −
√

θty)|dqdy 6 t

4∑

k=0

C ′
k‖ϕ(k)‖1

with some positive constants Ck < ∞ and C ′
k < ∞. Analogously, for ϕ ∈ C∞

c (Rd)
by Taylor’s formula with θ ∈ (0, 1) and t, t0 > 0, t → t0 we have

‖Fτ (t)ϕ− Fτ (t0)ϕ‖1 = |t− t0|

×
∫

Rd

∣∣∣∣∣∣
(2π)−d

∫

R2d

eip·(q−q1)h(τq + (1− τ)q1, p)e−[t0+θ(t−t0)]h(τq+(1−τ)q1,p)ϕ(q1)dq1dp

∣∣∣∣∣∣
dq.

Once again let us present the calculations for the case d = 1 and b = 0, c = 0 for
simplicity. For any fixed t0 > 0 take t ∈ (t0/2, 2t0). Hence, α(t) := t0 + θ(t− t0) ∈
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(t0/2, 2t0) and

‖Fτ (t)ϕ− Fτ (t0)ϕ‖1 = |t− t0|

×
∫

R

∣∣∣∣∣∣
(2π)−1

∫

R2

eip·(q−q1)A(τq + (1− τ)q1)p
2e−α(t)A(τq+(1−τ)q1)p2

ϕ(q1)dq1dp

∣∣∣∣∣∣
dq

= |t− t0|

×
∫

R

∣∣∣∣∣∣

∫

R

(4πα(t)A(τq + (1− τ)q1))
−1/2∂2

ξ

[
e
− ξ2

4α(t)A(τq+(1−τ)q1)

] ∣∣∣∣
ξ=q−q1

ϕ(q1)dq1

∣∣∣∣∣∣
dq

6 |t− t0|
∫

R

∫

R

(2πt0a0)
−1/2e

− (q−q1)2

8t0A0 C(t0)(1 + (q − q1)
2)|ϕ(q1)|dq1dq

6 |t− t0|C ′(t0)‖ϕ‖1

with some positive constants C < ∞ and C ′ < ∞ depending only on t0. In the
case t0 = 0 we have F (t0) = Id and we proceed as before

‖Fτ (t)ϕ− ϕ‖1

= t

∫

R

∣∣∣∣∣∣
(2π)−1

∫

R2

eip·(q−q1)A(τq + (1− τ)q1)p
2e−θtA(τq+(1−τ)q1)p2

ϕ(q1)dq1dp

∣∣∣∣∣∣
dq

= t

∫

R

∣∣∣∣∣∣
(2π)−1

∫

R2

∂2
q1

[
eip·(q−q1)

]
A(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)dq1dp

∣∣∣∣∣∣
dq

= t

∫

R

∣∣∣∣∣∣
(2π)−1

∫

R2

eip·(q−q1)∂2
q1

[
A(τq + (1− τ)q1)e

−θtA(τq+(1−τ)q1)p2

ϕ(q1)
]
dq1dp

∣∣∣∣∣∣
dq

6 t

2∑

k=0

Ck‖ϕ(k)‖1,

where the integrals in the penultimate line can be handled as in (3.13). A 3-ε–
argument concludes the proof of lim

t→t0
‖Fτ (t)ϕ − Fτ (t0)ϕ‖1 = 0 for all ϕ ∈ L1(Rd).

Theorem 3.9. Let L1(Rd), τ ∈ [0, 1] and H = h, where h is given by the formula
(3.1). Under Assumption 3.1(i),(ii) and Assumption 3.3 the family (Fτ (t))t>0 given
by the formula (3.6) is Chernoff equivalent to the semigroup (T τ

t )t>0, generated

by the closure (Lτ , Dom(Lτ )) of a ψDO (Ĥτ , C
∞
c (Rd)) with the τ -symbol H(q, p).
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Therefore, the Feynman formula

(T τ
t )ϕ = lim

n→∞
(Fτ (t/n))nϕ (3.14)

holds in L1(Rd) locally uniformly with respect to t ∈ [0,∞). Moreover, this Feyn-
man formula (3.14) converts into the Lagrangian one:

(T τ
t )ϕ(q0) = lim

n→∞

∫

Rd

· · ·
∫

Rd

ϕ(qn)
n∏

k=1

g
τqk−1+(1−τ)qk

t/n (qk−1 − qk)dq1 . . . dqn, (3.15)

where Gaussian type density gx
t (z) is given by the formula (3.10). Additionally, un-

der Assumption 3.1(iii) we have Fτ (t) : S(Rd) → S(Rd) and the Feynman formula
(3.14) with ϕ ∈ S(Rd) converts also into the Hamiltonian one:

(T τ
t )ϕ(q0) = lim

n→∞
(2π)−nd

∫

R2nd

exp

(
i

n∑

k=1

pk · (qk+1 − qk)

)
(3.16)

× exp

(
− t

n

n∑

k=1

H(τqk+1 + (1− τ)qk, pk)

)
ϕ(q1)dq1dp1 . . . dqndpn,

where qn+1 := q0 for all n ∈ N in the pre-limit expressions in the right hand side.

This Theorem follows immediately from two previous Lemmas, Remark 3.7 and
the Chernoff Theorem 2.1.

Remark 3.10. If we consider the case H(q, p) = p · Ap + c(q), q, p ∈ Rd, where
the matrix A doesn’t depend on q (it is the Hamilton function of a particle with

constant mass in a potential field c), then ψDOs Ĥτ (and hence the semigroups
(T τ

t )t>0 ) do coincide for all τ ∈ [0, 1]. However, the families (Fτ (t))t>0, given
by (3.6), are different since they are ψDOs whose τ -symbols e−t[p·Ap+c(q)] nontriv-
ially depend on both variables q and p. Nevertheless, one can easily show, that
‖Fτ1(t)ϕ− Fτ2(t)ϕ‖1 = C(τ1, τ2)t with some constant C depending only on τ1 and
τ2 (see [34] for further discussion).

Remark 3.11. Let τ = 1. Under Assumptions 3.1(i),(ii) and Assumption (3.3)
with N = 0 and ϕ ∈ C∞

c (Rd) the function T τ
t ϕ can be represented also by a

Feynman–Kac formula (cf. [21] §2.1, [26] §5.7):

T τ
t ϕ(q0) = Eq0

b

[
exp

( t∫

0

c(ξs)ds

)
ϕ(ξt)

]
, (3.17)
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where Eq0

b is the expectation of a (starting at q0) diffusion process (ξt)t>0 with
variable diffusion matrix A and drift b. Therefore, the Lagrangian Feynman for-
mula (3.15) gives (suitable for direct calculations) approximations of a functional
integral in the Feynman–Kac formula (3.17). Moreover, due to the representation
(3.17) for the case b = 0 one can expect (compare with the formula (3) in [30]) that
the expression in the right hand side of the Lagrangian Feynman formula (3.15)
does coincide with the following functional integral

T τ
t ϕ(q0) =Eq0

[
exp

( t∫

0

c(Xs)ds

)
exp

(
1

2

t∫

0

A−1(Xs)b(Xs) · dXs)

)
× (3.18)

× exp

(
− 1

4

t∫

0

A−1(Xs)b(Xs) · b(Xs)ds

)
ϕ(Xt)

]
,

where Eq0 is the expectation of a diffusion process (Xt)t>0 with variable diffusion

matrix A and without any drift, a stochastic integral
t∫

0

A−1(Xτ )b(Xτ ) · dXτ is an

Itô integral. Since the functional integrals in formulae (3.17) and (3.18) coincide,
one obtains the analogue of the Girsanov–Cameron–Martin–Reimer–Maruyama
formula for the case of diffusion processes with variable diffusion matrices. Due to
Remark 3.2 the similar results are then valid for all τ ∈ [0, 1].

Lemma 3.12. Consider the general case of symbol H = h+r given by the formula
(3.3) and τ = 1. Under Assumption 3.1(i),(iii),(iv) and Assumption 3.3 for any
ϕ ∈ C∞

c (Rd) and t0 > 0 we have

lim
t↘0

∥∥∥∥
Fτ (t)ϕ− ϕ

t
+ Ĥτϕ

∥∥∥∥
1

= 0 and lim
t→t0

‖Fτ (t)ϕ− Fτ (t0)ϕ‖1 = 0.

Proof. Fix t0 > 0 and let t0 ∈ [0, t0 + 1]. By Taylor’s formula with θ in between
t and t0, by the Fubini–Tonelli theorem, by Lemma 2.3 and Lemma 3.5 with a
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probability measure µθ = (2π)−d/2F−1[e−θr(p)], for each ϕ ∈ C∞
c (Rd) we have

‖F1(t)ϕ− F1(t0)ϕ‖1 =

∥∥∥∥∥∥
t− t0
(2π)d

∫

Rd

∫

Rd

eip·(q−q1)H(q, p)e−θH(q,p)ϕ(q1)dq1dp

∥∥∥∥∥∥
1

= |t− t0|
∥∥∥
(
Ĥe−θH

)
1
ϕ
∥∥∥

1
6 |t− t0|

[∥∥∥
(
ĥe−θH

)
1
ϕ
∥∥∥

1
+

∥∥∥
(
r̂e−θH

)
1
ϕ
∥∥∥

1

]

= |t− t0|
[∥∥∥

(
ĥe−θh

)
1
◦

(
ê−θr

)
ϕ
∥∥∥

1
+

∥∥∥
(
ê−θH

)
1
◦ r̂ ϕ

∥∥∥
1

]

6 |t− t0|
[∥∥∥

(
ĥe−θh

)
1
(µθ ∗ ϕ)

∥∥∥
1
+ ‖F1(θ)‖ ‖r̂ ϕ‖1

]

6 |t− t0|
[

2∑

k=0

Ck(t0)‖(µθ ∗ ϕ)(k)‖1 + ekθ‖r̂ ϕ‖1

]

6 |t− t0|
[

2∑

k=0

Ck(t0)µθ(Rd)‖ϕ(k)‖1 + ekθ‖r̂ ϕ‖1

]

= |t− t0|K(t0, ϕ) (3.19)

with some constants Ck(t0) < ∞ depending only on t0 and K(t0, ϕ) < ∞ de-
pending only on t0 and ϕ. These constants Ck(t0) arise from the calculations with

the operator
(
ĥe−θh

)
1

obtained in the Lemma 3.8. Note, that all calculations in

Lemma 3.8 remain true for any ϕ ∈ S(Rd). Moreover, by Assumption 3.1(iv) we
have r ∈ C∞(Rd) and, as a negative definite function, r grows at infinity with all
its derivatives not faster than a polynomial (cf. Lemma 3.6.22 and Theo.3.7.13 in

[25]). Therefore, r̂mϕ,
(
r̂me−θr

)
ϕ ∈ S(Rd) for any ϕ ∈ C∞

c (Rd) ⊂ S(Rd) and any

m ∈ N ∪ {0}. In the same way by Lemma 2.3 and Lemma 3.8 with [0, 1] 3 t → 0
and θ ∈ (0, t) we obtain
∥∥∥∥
F1(t)ϕ− ϕ

t
+ Ĥ1ϕ

∥∥∥∥
1

= t
∥∥∥
(
Ĥ2e−θH

)
1
ϕ
∥∥∥

1
6

6 t
∥∥∥
(
ĥ2e−θh

)
1
◦

(
ê−θr

)
ϕ + 2

(
ĥe−θh

)
1
◦

(
r̂e−θr

)
ϕ +

(
ê−θh

)
1
◦

(
r̂2e−θr

)
ϕ
∥∥∥

1
=

= t
∥∥∥
(
ĥ2e−θh

)
1
(µθ ∗ ϕ) + 2

(
ĥe−θh

)
1
(µθ ∗ [r̂ϕ]) + F1(θ)(µθ ∗ [r̂2ϕ])

∥∥∥
1

6

6 tµθ(Rd)

[
4∑

k=0

Ck‖ϕ(k)‖1 + 2
2∑

k=0

C ′
k‖(r̂ϕ)(k)‖1 + ekθ

∥∥∥(̂r2)ϕ
∥∥∥

1

]
= tK ′(ϕ).

Theorem 3.13. Let τ = 1. Under Assumptions 3.1(i),(iii),(iv) and Assumption
3.3 the family (Fτ (t))t>0 given by the formula (3.6) is Chernoff equivalent to the
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semigroup (T τ
t )t>0, generated by the closure (Lτ , Dom(Lτ )) of a ψDO (Ĥτ , C

∞
c (Rd))

with the τ -symbol H as in (3.3). Therefore, the Feynman formula

(T τ
t )ϕ = lim

n→∞
(Fτ (t/n))nϕ

holds in L1(Rd) locally uniformly with respect to t ∈ [0,∞). The obtained Feynman
formula converts also into a Lagrangian Feynman formula

(T τ
t )ϕ(q0) = (3.20)

= lim
n→∞

∫

R2nd

e
−

n∑
k=1

A−1(qk−1)(qk−qk−1+zk−b(qk−1)t/n)·(qk−qk−1+zk−b(qk−1)t/n)

4t/n

×
n∏

k=1

(
(2πt/n)d det A(qk−1)

)−1/2
e
− t

n

n∑
k=1

c(qk−1)
ϕ(qn)dq1 µt/n(dz1) . . . dqn µt/n(dzn)

and with ϕ ∈ S(Rd) into a Hamiltonian Feynman formula

(T τ
t )ϕ(q0) = lim

n→∞
1

(2π)d

∫

R2nd

exp

(
i

n∑

k=1

pk · (qk+1 − qk)

)
(3.21)

× exp

(
− t

n

n∑

k=1

H(qk+1, pk)

)
ϕ(q1)dq1dp1 . . . dqndpn,

where qn+1 := q0 in the pre-limit expressions for each n ∈ N.

Proof. The statement of the Theorem is a straightforward consequence of Chernoff
Theorem 2.1, Lemma 3.5 and Lemma 3.8. Lagrangian Feynman formula is obtained
with the help of representation (3.12). Under Assumptions 3.1 (i), (iii), (iv) we
have Fτ (t) : S(Rd) → S(Rd) (due to Lemma 3.3 in [14]). Therefore, all expressions
in the right hand side of the Hamiltonian Feynman formula are well defined.

4 The construction of phase space Feynman path

integrals via a family of Hamiltonian Feynman

pseudomeasures for τ ∈ [0, 1].

A Feynman pseudomeasure on a (usually infinite dimensional) vector space is a
continuous linear functional on a locally convex space of some functions defined
on this vector space. The value of this functional on a function belonging to its
domain is called Feynman integral with respect to this Feynman pseudomeasure.
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If the considered vector space is itself a set of functions taking values in classical
configuration or phase space then the corresponding Feynman integral is called
configuration or phase space Feynman path integral.
There are many approaches for giving a mathematically rigorous meaning to phase
space Feynman path integrals. Some phase space Feynman path integrals are de-
fined via the Fourier transform and via Parseval’s equality (see [40], cf. [2]; see [38],
[18], [15] and references therein); some are defined via an analytic continuation of
a Gaussian measure on the set of paths in a phase space [40], some — via regular-
ization procedures, e.g., as limits of integrals with respect to Gaussian measures
with a diverging diffusion constant [17]; the integrands of some phase space Feyn-
man path integrals are realized as Hida distributions in the setting of White Noise
Analysis [5], [6]. A variety of approaches treats Feynman path integrals as limits
of integrals over some finite dimensional subspaces of paths when the dimension
tends to infinity. Such path integrals are sometimes called sequential and are most
convenient for direct calculations. The general definition of a sequential Feynman
pseudomeasure (Feynman path integral) in an abstract space (on a set of paths in
a phase space, in particular) can be found in [40]. Some concrete realizations are
e.g. presented in [41], [13], [1], [24], [29], [28], [27], [23].
Let us outline some general concepts of the construction of Feynman pseudomea-
sure, in particular phase space Feynman path integrals. One of the most con-
venient definitions of a Feynman pseudomeasure on a conceptual level is via its
Fourier transform. However, the most convenient for calculations is the sequential
approach, which treats Feynman path integrals as limits of finite dimensional inte-
grals with unboundedly growing dimension. Let X be a locally convex space and
X∗ be the set of all continuous linear functionals on X. So, let E be a real vector
space and for all x ∈ E and any linear functional g on E let φg(x) = eig(x). Let
FE be a locally convex set of some complex valued functions on E. Elements of
the set F (E)∗ are called F (E)∗-distributions on E or just distributions on E (if
we don’t specify the space F (E)∗ exactly). Let G be a vector space of some linear
functionals on E distinguishing elements of E and let φg ∈ FE for all g ∈ G. Then
G-Fourier transform of an element η ∈ F ∗

E is a function on G denoted by η̃ or F [η]
and defined by the formula

η̃(g) ≡ F [η](g) := η(φg).

If a set {φg : g ∈ G} is total in FE (i.e. its linear span is dense in FE) then any
element η is uniquely defined by its Fourier transform.

Definition 4.1. Let b be a quadratic functional on G, a ∈ E and α ∈ C. Then
Feynman α-pseudomeasure on E with correlation functional b and mean a is a
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distribution Φb,a,α on E whose Fourier transform is given by the formula

F [Φb,a,α](g) = exp

(
αb(g)

2
+ ig(a)

)
.

If α = −1 and b(x) > 0 for all x ∈ G then Feynman α-pseudomeasure is a Gaussian
G-cylindrical measure on E (which however can be not σ−additive). If α = i then
we have a “standard” Feynman pseudomeasure which is usually used for solving
Schrödinger type equations. In the sequel we will consider only these “standard”
Feynman i−pseudomeasures with a = 0.

Definition 4.2 (Hamiltonian (or phase space) Feynman pseudomeasure).
Let E = Q × P , where Q and P are locally convex spaces, Q = P ∗, P = Q∗ (as
vector spaces) with the duality 〈·, ·〉; the space G = P×Q is identified with the space
of all linear functionals on E in the following way: for any g = (pg, qg) ∈ G and x =
(q, p) ∈ E let g(x) = 〈q, pg〉 + 〈qg, p〉. Then Hamiltonian (or symplectic, or
phase space) Feynman pseudomeasure on E is a Feynman i-pseudomeasure
Φ on E whose correlation functional b is given by the formula b(pg, qg) = 2〈qg, pg〉
and mean a = 0, i.e.

F [Φ](g) = exp
(
i〈qg, pg〉)

)
.

Definition 4.3. Assume that there exists a linear injective mapping B : G → E
such that b(g) = g(B(g)) for all g ∈ G (B is called correlation operator of
Feynman pseudomeasure). Let Dom(B−1) be the domain of B−1. A function

Dom(B−1) 3 x 7→ f(x) = e
α−1B−1(x)(x)

2 is called the generalized density of Feyn-
man α−pseudomeasure (cf. [42]).

Example 4.4. (i) If E = Rd = G then the Feynman i-pseudomeasure on E with
correlation operator B can be identified with a complex-valued measure (with
unbounded variation) on a δ-ring of bounded Borel subsets of Rd whose density

with respect to the Lebesgue measure is f(x) = e−
i
2
(B−1x,x). In this case the

generalized density coincides with the density in usual sense.
(ii) If we consider the Hamiltonian Feynman pseudomeasure on E = Q × P then
take B : (p, q) ∈ G ⊂ E∗ → (q, p) ∈ E. Then we have g(B(g)) = g(B(pg, qg)) =
g(qg, pg) = 2〈qg, pg〉 = b(g). Moreover, B−1 : E → E∗ is defined by the formula
B−1(q, p) = (p, q) and hence the generalized density of the Hamiltonian Feynman
pseudomeasure is given by the formula f(q, p) = exp{i〈q, p〉}.
The concepts given above allow to introduce the following definition of a Feynman
pseudomeasure in the frame of sequential approach (in the sequel we assume any
standard regularization of oscillating integrals, e.g.,

∫
E

f(z)dz = lim
ε→0

∫
E

f(z)e−ε|z|2dz).
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Definition 4.5 (Sequential Feynman pseudomeasure). Let {En}n∈N be an
increasing sequence of finite dimensional subsets of Dom(B−1). Then the value of

a sequential Feynman α−pseudomeasure Φ
{En}
B,α (with mean a = 0) associated with

the sequence {En}n∈N on a function ψ : E → C (this value is called sequential
Feynman integral of ψ) is defined by the formula

Φ
{En}
B,α (ψ) = lim

n→∞

( ∫

En

e
α−1B−1(x)(x)

2 dx

)−1 ∫

En

ψ(x)e
α−1B−1(x)(x)

2 dx,

where one integrates with respect to the Lebesgue measure on En, if the limit in the
r.h.s. exists.

The fact that a function ψ belongs to the domain of the functional Φ{En} depends
only on restrictions of this function to the subspaces En. In the particular case of
Hamiltonian Feynman pseudomeasure Definition 4.5 can be read as follows:

Definition 4.6. Let {En = Qn × Pn}n∈N be an increasing sequence of finite di-
mensional vector subspaces of E = Q× P , where Qn and Pn are vector subspaces
of Q and P respectively. The value Φ{En}(G) of the Hamiltonian Feynman pseu-
domeasure Φ{En}, associated with the sequence {En}n∈N, on a function ψ : E → C,
i.e. a Feynman path integral of ψ, is defined by the formula

Φ{En}(ψ) = lim
n→∞

( ∫

En

ei〈p,q〉 dq dp
)−1

∫

En

ψ(q, p)ei〈p,q〉 dq dp, (4.1)

if this limit exists. In this formula (as well as before) all integrals must be considered
in a suitably regularized sense.

In the sequel we present a construction of the Hamiltonian Feynman pseudomea-
sure for a particular family of spaces Ex,τ

t with τ ∈ [0, 1], cf. [41], [7]. For any
t > 0 let PC([0, t],Rd) be the vector space of all functions on [0, t] taking val-
ues in Rd whose distributional derivatives are measures with finite support. Let
PC l([0, t],Rd) denote the space of all left continuous functions from PC([0, t],Rd).
Let PCτ ([0, t],Rd) be the collection of functions f from PC([0, t],Rd) such that
for all s ∈ (0, t)

f(s) = τf(s + 0) + (1− τ)f(s− 0). (4.2)

For each x ∈ Rd let

Qx,τ
t = {f ∈ PCτ ([0, t],Rd) : f(0) = lim

t→+0
f(t), f(t) = x},

Pt = {f ∈ PC l([0, t],Rd) : f(0) = lim
t→+0

f(t)}
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and Ex,τ
t = Qx,τ

t × Pt. The spaces Qx,τ
t and Pt are taken in duality by the form:

〈q(·), p(·)〉 7→
t∫

0

p(s)q̇(s) ds,

where q̇(s) ds denotes the measure which is the distributional derivative of q(·).
We will consider the elements of Ex,τ

t as functions taking values in E = Q× P =
Rd ×Rd.
Let t0 = 0 and for any n ∈ N and any k ∈ N, k 6 n, let tk = k

n
t. Let Fn ⊂

PC([0, t],Rd) be the space of functions, the restrictions of which to any interval
(tk−1, tk) are constant functions. Let Qτ

n = Fn ∩Qx,τ
t , Pn = Fn ∩ Pt. Let Jτ

n be the
mapping of Eτ

n = Qτ
n × Pn to (Rd ×Rd)n, defined by

Jτ
n(q, p) =

(
q( t

n
− 0), p( t

n
), . . . , q( (n−1)t

n
− 0), p( (n−1)t

n
), q(nt

n
− 0), p(nt

n
)
) ≡

≡ (
q1, p1, ....., qn, pn

)
.

The map Jτ
n is a one-to-one correspondence of Eτ

n and (Rd × Rd)n. Therefore, in
this particular case Definition 4.6 can be rewritten in the following way:

Definition 4.7. The Hamiltonian (or phase space) Feynman path integral

Φτ
x(ψ) ≡

∫

Ex,τ
t

ψ(q, p)Φτ
x(dq, dp) ≡

∫

Ex,τ
t

ψ(q(s), p(s))e
i

t∫
0

p(s)q̇(s)ds
t∏

τ=0

dq(s) dp(s)

of a function ψ : Qx,τ
t × Pt → R is defined as a limit:

Φτ
x(ψ) = lim

n→∞
1

(2π)dn

∫

(Rd×Rd)n

ψ((Jτ
n)−1(q1, p1, ....., qn, pn))×

× exp

[
i

n∑

k=1

pk · (qk+1 − qk)

]
dq1 dp1.......dqn dpn,

(4.3)

where qn+1 := x in each pre-limit expression.

Remark 4.8. The generalized density of the pseudomeasure Φτ
x can be defined

through the formula
∫

Ex,τ
t

ψ(q(s), p(s))Φτ
x(dq dp) :=

lim
n→∞

Cn

∫

Qτ
n×Pn

ψ(q(s), p(s)) exp


i

t∫

0

p(s)q̇(s) ds


 νn(dq) νn(dp),
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where (Cn)−1 =
∫

Qτ
n×Pn

exp
[
i
∫ t

0
p(s)q̇(s) ds

]
νn(dq) νn(dp) and νn is Lebesgue mea-

sure.

Remark 4.9. The construction described above is a modification and an extension
of constructions introduced in [41], [33], [13] and [7].

5 Phase space Feynman path integrals for evo-

lution semigroups generated by τ-quatization

of some Lévy-Khintchine type Hamilton func-

tions for τ ∈ [0, 1]

In this section we show that Hamiltonian Feynman formulae obtained above can
be interpreted as some phase space Feynman path integrals. Therefore, the cor-
responding phase space Feynman path integrals do exist and coincide with some
functional integrals with respect to countably additive (mainly probability) mea-
sures associated with some Feller type semigroups.

Theorem 5.1. Let τ ∈ [0, 1] and H = h, where h is given by the formula (3.1).
Let Assumption 3.1(i),(iii) and Assumption 3.3 fulfil. Let (T τ

t )t>0 be the semigroup

generated by the closure (Lτ , Dom(Lτ )) of a ψDO (Ĥτ , C
∞
c (Rd)) with the τ -symbol

H. Then the Hamiltonian Feynman formula (3.16) can be interpreted as a phase
space Feynman path integral

T τ
t ϕ(x) =

∫

Ex,τ
t

e
−

t∫
0

H(q(s),p(s))ds
ϕ(q(0))Φτ

x(dqdp). (5.1)

Proof. Indeed, using Definition 4.7 we get

(T τ
t ϕ)(x) = lim

n→∞
(2π)−dn

∫

(Rd)2n

exp

(
i

n∑

k=1

pk · (qk+1 − qk)

)
×

× exp

(
− t

n

n∑

k=1

H(τqk+1 + (1− τ)qk, pk)

)
ϕ(q1) dq1 dp1 · · · dqn dpn =

=

∫

Ex,τ
t

e
−

t∫
0

H(q(s),p(s))ds
ϕ(q(0))Φτ

x(dqdp),

where, in each pre-limit expression in the Hamilton formula, we have qn+1 := x;
moreover, q1 = q(t/n−0) → q(0) as n →∞ due to the definition of the space Qx,τ

t
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and

t

n

n∑

k=1

H(τqk+1 +(1−τ)qk, pk) =
n∑

k=1

H(q(tk), p(tk))(tk− tk−1) →
t∫

0

H(q(s), p(s))ds

since any path (q(s), p(s)) ∈ Ex,τ
t is piecewise continuous and has a finite number

of jumps, H is a continuous function.

Remark 5.2. Note, that the integrand in the Feynman path integral (5.1) is the
same for all τ ∈ [0, 1], only the space Ex,τ

t , defining the sequential pseudomeasure
Φτ

x is different; this space contains those paths q(s) which are “τ -continuous” (see
the formula (4.2) as the definition).

Remark 5.3. Under Assumptions 3.1(i),(ii), Assumption 3.3 and due to the for-

mula (3.5) (i.e. Lemma 2.1 in [7]) we see that Ĥτϕ(q) = Ĥτ
1 (q, D)ϕ(q), where

Ĥτ
1 (q, D)ϕ(q) is a pseudo-differential operator with 1-symbol

Hτ (q, p) = cτ (q) + ibτ (q) · p + p · A(q)p

and we have
bτ (q) = b(q)− 2(1− τ) div A(q),

cτ (q) = c(q) + (1− τ) div b(q)− (1− τ)2 tr(Hess A(q)).

Therefore, due to Theorem 3.9 and Theorem 5.1 there is a kind of “change of
variable formula” for H(q, p) = c(q) + ib(q) · p + p · A(q)p:

T τ
t ϕ(x) =

∫

Ex,1
t

exp


−

t∫

0

Hτ (q(s), p(s))ds


 ϕ(q(0)) Φ1

x(dq dp) =

=

∫

Ex,τ
t

exp

[
−

t∫

0

H(q(s), p(s))ds

]
ϕ(q(0))Φτ

x(dqdp).
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i.e.,

T τ
t ϕ(x) =

∫

Ex
t

exp


−

t∫

0

p(s) · A(q(s))p(s) ds




× exp


−

t∫

0

[
c(q(s)) + (1− τ) div b(q(s))− (1− τ)2 tr(Hess A(q(s)))

]
ds


×

× exp


−i

t∫

0

[
(b(q(s))− 2(1− τ) div A(q(s))) · p(s)

]
ds


 ϕ(q(0))Φ1

x(dq dp) =

=

∫

Ex,τ
t

e
−

t∫
0

p(s)·A(q(s))p(s) ds−i
t∫
0

b(q(s))·p(s) ds−
t∫
0

c(q(s))ds
ϕ(q(0))Φτ

x(dqdp).

Due to Definition 4.7 the Hamiltonian Feynman formula (3.21) can be interpreted
as a Hamiltonian Feynman path integral with respect to the Feynman pseudomea-
sure Φ1

x. Therefore the following theorem is true (cf. [7]).

Theorem 5.4. Let τ = 1. Under Assumptions 3.1(i),(iii),(iv) and Assump-
tion 3.3 the semigroup (T τ

t )t>0, generated by the closure (Lτ , Dom(Lτ )) of a ψDO

(Ĥτ , C
∞
c (Rd)) with the τ -symbol H as in (3.3) can be represented by a Hamiltonian

Feynman path integral with respect to the Feynman pseudomeasure Φ1
x:

Ttϕ(x) =

∫

Ex,1
t

e
−

t∫
0

H(q(s),p(s))ds
ϕ(q(0)) Φ1

x(dq dp). (5.2)

Remark 5.5. Note, that our definition of the space Ex,1
t differs from the definition

of the space Ex
t in the paper [7]. Hence the corresponding sequential Feynman

pseudomeasures used above and in [7] are also different. This leads to different
Feynman path integrals representing the considered evolution semigroup (cf. with
Theorem 3.5 in [7]).

Remark 5.6. Lagrangian Feynman formula (3.15) (resp. (3.20)) actually pro-
vides a tool to compute Feynman path integral (5.1) (resp. (5.2)). The limits in
both Lagrangian formulas coincide with functional integrals over some probability
measures.
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