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1 Introduction

Evaluating Feynman integrals is crucial for the investigation of physical problems that ad-

mit a field-theoretic perturbative approach: revealing weak deviations from the Standard

Model predictions in the behaviour of particle collision at high accuracy; the study of prop-

erties of newly-discovered particles; understanding formal properties of quantum theories

that are not directly deducible from the basic structure of their Lagrangians; exposing

similarities among theories which are supposed to describe interactions among particles

of different species; as well as the study of the dynamics of coalescing black-hole binary

systems whose merger gives rise to gravitational waves. These are just a few examples for

which the computation of multi-loop Feynman integrals cannot be considered as optional.

Feynman integrals, within the dimensional regularization scheme, obey contiguity re-

lations known as integration-by-parts (IBP) identities [1], which play a crucial role in the

evaluation of scattering amplitudes beyond the tree-level approximation. IBP identities

yield the identification of an elementary set of integrals, the so-called master integrals

(MIs), which can be used as a basis for the decomposition of multi-loop amplitudes. At

the same time, IBP relations can be used to derive differential equations [2–9], finite differ-

ence equations [10, 11], and dimensional recurrence relations [12, 13] obeyed by MIs. The

solutions of those equations are valuable methods for the evaluation of MIs, as alternatives

to their direct integration.
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IBP identities can be generated by considering integrals of total derivatives that van-

ish on the integration boundary. They form a system of linear relations between Feynman

integrals that differ by the powers of denominators and/or scalar products in the numera-

tor, see, e.g., [14–16]. The explicit knowledge of the integration domain is not needed for

generating IBP identities: the requirement of vanishing surface terms provides a sufficient,

qualitative information to establish IBP relations. Nevertheless, the identification of a ba-

sis of MIs, and the integral-decomposition formulas require the solution of large-size linear

systems of equations [10]. For processes involving multiple kinematic scales, this may repre-

sent an insurmountable task. In the recent years, important technical advances have been

made by refining the commonly adopted system-solving strategy for IBP identities [10],

either due to novel algorithms [17–21] or to the development of improved software [22–26],

and calculations of multi-loop multi-particle amplitudes, which were considered inaccessible

a few years ago, have become feasible [27–30].

At the same time, one may want to search for alternative methods in order to perform

the decomposition in terms of MIs, eventually looking for mathematical methods that

allow for a direct integral reduction, which bypass the need of solving a system of linear

equations.

In this work, we explore the latter idea, and we elaborate on a new method for es-

tablishing relations among Feynman integrals in arbitrary space-time dimensions, and for

projecting them onto a basis. An archetype of such a basis reduction is Gauss’s contiguous

relation, e.g.,

2F1(a, b, c+1; z) =
c 2F1(a, b; c; z)

c− a
+
a 2F1(a+1, b; c+1; z)

a− c
. (1.1)

This relation can be regarded as a basis reduction of the hypergeometric function

2F1(a, b; c+1; z) on the left-hand side in terms of two MIs on the right-hand side. Of

course, such an identity can be derived by considering linear relations between 2F1’s with

different parameters, derived either from their series representation or from their integral

representation by means of integration-by-parts. However, it is possible to adopt a modern

mathematical approach, which offers a direct solution to the decomposition problem [31].

Accordingly, consider the integral representation,

2F1(a, b, c+1; z) :=
1

B(b, c−b)

∫
C
xb(1− x)c−b(1−zx)−a ϕ . (1.2)

The integration domain C :=
−−−→
(0, 1) together with the information about the branch of the

integrand is called the twisted cycle, while the single-valued differential form ϕ := c
c−bdlog x

is called the twisted cocycle.1 The above integral is understood as a pairing of these two

objects [31]. B(a, b) is the Euler beta function. Similarly, we can consider two other

logarithmic forms,

ϕ1 := dlog
x

1−x
, ϕ2 :=

c

c−b
dlog

x

1−zx
, (1.3)

which upon integration give rise to 2F1(a, b; c; z) and 2F1(a+1, b; c+1; z) respectively. The

decomposition problem reduces to projecting ϕ onto a basis of ϕ1 and ϕ2. The solution

1Strictly speaking, cycles and cocycles are equivalence classes, and here we consider their representatives.
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can be found by computing certain topological invariants called intersection numbers of

pairs of cocycles, which are rational functions in the coefficients a, b, c. They become the

coefficients of the basis expansion on the right-hand side of the Gauss’ contiguous relation.

Inspired by this approach, we here propose to apply the computational techniques of

intersection theory to the study of Feynman integrals.

Among different representations of Feynman integrals, the one most closely resembling

Aomoto-Gel’fand hypergeometric functions is the so-called Baikov representation [32]. It

uses independent scalar products between external and internal momenta as the integra-

tion variables, instead of the components of the loop momenta. This change of variables

introduces a Jacobian equal to the Gram determinant of the scalar products formed by

both types of momenta, referred to as the Baikov polynomial B, raised to a power D−D∗
2

for an integer D∗. Within this representation, it is possible to identify a critical space-time

dimension D∗, in which the integral presents nice mathematical properties. We review the

Baikov representation in section 2 and give more details of its derivation in appendix A.

Baikov polynomial fully characterizes the space on which the integrals are defined.

Early signs of this fact were found by Lee and Pomeransky, who applied Morse theory to

relate the number of MIs to counting of the critical points of B
D−D∗

2 [33].2 IBP identities

are non-homogeneous relations which, in general, involve integrals associated to a given

graph (characterized by a given number of denominators) and integrals corresponding to

subdiagrams (with fewer denominators). The homogeneous terms of IBPs can be detected

by maximal cuts, since the simultaneous on-shell conditions annihilate the terms corre-

sponding to subdiagrams. For recent studies of maximal cuts in the Baikov representation,

see [19, 37–42]. In this work, we focus on maximal cuts in order to present our novel

algorithm for the basis reduction in the simplest possible setting.

The number of independent MIs can be derived from the properties of Baikov polyno-

mial, therefore, after determining the size of the basis, which we denote by |χ|, we construct

bases of twisted cycles Ci and cocycles ϕj , whose pairings give rise to |χ|2 integrals:∫
Ci
B(z)

D−D∗
2 ϕj , i, j = 1, 2, . . . , |χ|. (1.4)

They form a minimal, linearly-independent, basis in terms of which any other integral of

the same type can be decomposed. Here B(z) is obtained by evaluating B on the maximal

cut surface. Twisted cycles Ci are chosen as certain regions with boundaries on {B(z) = 0},
while twisted cocycles ϕj are differential forms with logarithmic singularities along all the

boundaries of the corresponding Cj . We describe them in section 3. The choice of the

independent integrals is rather general, and they might not correspond to the cuts of

conventional MIs (although they can be related to them, if needed).

In section 4 we apply the tools of intersection theory of the appropriate homology and

cohomology groups [43, 44] to the problem of basis reduction. It can be done separately in

the space of twisted cycles and cocycles. We focus on the reduction in the space of twisted

2Similar connections can be made in other representations, such as the parametric one [33] (see also [34,

35]). A correspondence between the Euler characteristic of the sum of Symanzik polynomials and the

number of MIs was also recently studied in [36].
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cocycles and show how to apply two different techniques of evaluating intersection numbers:

the special case of logarithmic forms has been treated by one of us in [45], while the case

of general one-forms was discussed by Cho and Matsumoto in [44]. To further support the

connection between Feynman calculus and intersection theory, we provide references to the

relevant literature for the interested reader.3

Maximal cuts of MIs obey homogeneous difference and differential equations [47–50].

From several studies focusing on the solution of differential equations for Feynman inte-

grals [39, 41, 42, 48–53], MIs have been identified with the independent components of the

integration domain. Owing to the complete characterization of the integrand and of the

integration domain, explicit solutions for the maximal cuts can be found in the Baikov

representation. In general, MIs obey a system of first-order differential equations, whose

corresponding matrix has entries which are rational functions of the kinematic variables

and of the dimensional regularization parameter D. The number of MIs depends on the

kinematics of process under consideration and on the number of loops, but there is a certain

freedom in choosing them. In particular, one may choose a set of MIs whose system of

differential equations is linear in D [54], and use the solutions of the homogeneous equa-

tions to write a transformation matrix, known as resolvent matrix of the homogeneous

system (around D = D0, for any chosen value of D0, which can be dictated by the physical

dimensions of the problem under consideration) [48, 49]. The resolvent matrix is employed

to change the basis of MIs, and to define a special set of basic integrals that obey canonical

systems of differential equations [8, 55], for which the differential equation matrix has a

simple D-dependent term, factored out of the kinematics. In section 5, we discuss Pfaffian

systems of differential equations satisfied by the basis integrals, and show that they can be

derived using our basis reduction algorithm, without employing the IBP identities.

Even though the techniques described here are generally applicable, throughout the

paper we consider functions admitting integral representations over one variable and leave

applications to multi-variate cases until future studies. For illustration purposes, we apply

our novel method to a two-loop non-planar triangle diagram with a massive loop, showing

the decomposition algorithm in D dimensions, as well as discussing features of the system

of differential equations for the corresponding MIs, both in D and in 4 dimensions.

2 Baikov representation

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N propaga-

tors in a generic dimension D:

Iν1ν2···νN :=

∫
RD

L∏
i=1

dD`j

πD/2

N∏
a=1

1

Dνaa
. (2.1)

We focus on Euclidean space in all-plus signature for simplicity of discussion. Baikov

considered a change of integration variables into all independent scalar products between

3Recent applications of the theory of homology and cohomology classes to the coaction of one-loop (cut)

Feynman integrals can be found in [46].
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loop and external momenta [32],

qi ∈ {`1, `2, . . . , `L, p1, p2, . . . , pE}, (2.2)

(here we assume that D ≥ E, so that external momenta do not satisfy additional rela-

tions [56, 57]). There are M := LE + 1
2L(L + 1) such kinematic invariants, `i · qj . In

order to perform the change of variables, one needs to introduce M−N extra inverse de-

nominators Da known as irreducible scalar products (ISPs) with exponents νa ≤ 0. The

original integral (2.1) is recovered when νN+1 = · · · = νM = 0. After the dust settles, one

finds [13, 58]:

Iν1ν2···νM = c

∫
Γ
Bγ
∏L
i=1

∏E+L
j=i d(`i ·qj)∏M
a=1 D

νa
a

, γ :=
D − E − L− 1

2
, (2.3)

with a constant Jacobian c, which we will drop from now on. The integrand involves a

rescaled Baikov polynomial :

B :=
det G{`1,...,`L,p1,...,pE}

det G{p1,...,pE}
, (2.4)

which is a ratio of two Gram determinants. Recall that a Gram matrix of Lorentz vectors

{qi} is defined as G{qi} := [qi · qj ]. The integration domain Γ is given by imposing L

conditions:

Γi :=

{
det G{`i,...,`L,p1,...,pE}

det G{`i+1,...,`L,p1,...,pE}
> 0

}
, (2.5)

so that Γ := Γ1 ∩ Γ2 ∩ · · · ∩ ΓL. Notice that this implies B > 0 everywhere on the

integration domain. For convenience, we review a derivation of the Baikov representation

in appendix A.

The representation (2.3) is particularly friendly towards computing cuts. By a linear

transformation we can make a further change of variables into za := Da for all M inverse

denominators. A single cut corresponds to taking a circular integration contour {|za| = ε},
which sets Da on-shell. Repeating this procedure N times we obtain a maximal cut, which

takes the general form [37]:

Mν1ν2···νM :=

∫
C
B(z)γ ϕ(z), (2.6)

where we ignored an overall constant Jacobian. The integrand depends on the ISPs

z := (zN+1, zN+2, . . . , zM ). (2.7)

The Baikov polynomial on the maximal cut B(z) is given by setting z1 = · · · = zN = 0 in

eq. (2.4). Similarly, ϕ(z) is a differential (M−N)-form obtained as a result of the residue

computation. For example, if the original integral had all propagators undoubled, we have

ϕ(z) =
∏M
a=N+1 dza/z

νa
a . Finally, the integration domain C is an intersection of Γ with the

cut surface {z1 = · · · = zN = 0}. Whenever this intersection is empty, the maximal cut

vanishes and the diagram is reducible.
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For one-loop diagrams the maximal cut fully localizes the integral and hence the size

of the basis is one, and the coefficients of the decomposition can be obtained simply by

means of residue theorem. Let us consider an interesting example of a two-loop non-planar

diagram with internal mass m and p2
1 = s, p2

2 = p2
3 = 0:

p1

p2

p3

`1

`2

(2.8)

D1 = `21,

D2 = `22 −m2,

D3 = (p1 − `1)2,

D4 = (p3 − `1 + `2)2 −m2,

D5 = (`1 − `2)2 −m2,

D6 = (p2 − `2)2 −m2.

We also choose an ISP D7 = 2(p2 +`1)2−p2
1, for later convenience. In this case, E = L = 2,

M−N = 1 and the maximal cut in Baikov representation (2.6) becomes:

M111111|−ν =

∫
C
B(z)

D−5
2 zνdz, (2.9)

where we relabelled z7 → z, ν7 → ν for clarity. The rescaled Baikov polynomial reads:

B(z) = − 1

64s2
(z2 − s2)(z2 − ρ2), (2.10)

where ρ :=
√
s(s+ 16m2). In the kinematic regime s,m2 > 0 its roots are ordered as

−ρ < −s < s < ρ. The constraints (2.5) imply that the integration region is:

C =
−−−−−→
(−ρ,−s) ∪

−−−→
(s, ρ). (2.11)

Here
−−−→
(a, b) denotes an oriented interval between a and b.

3 Minimal basis for maximal cuts

Integrals of the type (2.6) admit a beautiful interpretation in terms of Aomoto-Gel’fand

hypergeometric functions [59, 60], where they are understood as pairings of twisted cycles

C and cocycles ϕ. In order to see this, let us consider the following one-form:

ω := d logB(z)γ . (3.1)

It defines a flat connection∇ω := d+ω∧, related to the integration-by-parts (IBP) relations,∫
C
B(z)γ ∇ωξ(z) =

∫
C
d (B(z)γ ξ(z)) = 0 (3.2)

for any (M−N−1)-form ξ and (M−N)-dimensional cycle C. This means that we can define

equivalence classes 〈ϕ| of (M−N)-forms ϕ up to terms ∇ωξ that integrate to zero:

〈ϕ| : ϕ ∼ ϕ+∇ωξ. (3.3)

– 6 –
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Similarly, we have equivalence classes |C] of cycles C up to terms integrating to zero. More

precisely, if the integral (2.6) over the cycle C̃ vanishes (for example, when C̃ is a loop

contractible to a point), then C and C + C̃ belong to the same equivalence class |C].4 The

two classes 〈ϕ| and |C] encode all IBP identities and contour deformations. Their pairing,

denoted by 〈ϕ|C], is defined to be equal to the maximal cut (2.6),

Mν1ν2···νM =

∫
C
B(z)γ ϕ(z) =: 〈ϕ|C] . (3.4)

In general, Baikov polynomial on the maximal cut B(z) admits a decomposition into

irreducible components:

B(z) =
K∏
i=1

bi(z). (3.5)

From now on we will consider only the cases in which each bi(z) has degree at most M−N ,

so that the corresponding variety {bi(z) = 0} does not have self-intersections. We also

assume that the dimension D in the exponent of the Baikov polynomial is generic, and in

particular not an integer.

The logarithm of B(z)γ is called a Morse function whenever its critical points (also

called saddle points) are non-degenerate. From now on we will assume that this is the case.

It means that we can use Morse theory to analyze the properties of the integrals (2.6) and,

in particular, to read-off the size of the basis of twisted cycles and cocycles, see, e.g., [31, 61].

Then the number of independent twisted cycles and cocycles, |χ|, is given by |χ| =∑M−N
δ=0 (−1)δ−M+NCδ, where Cδ is the number of critical points with a Morse index δ.

The Morse index is the number of independent directions along which the Morse function

decreases away from the critical point [61]. Under the assumptions given in [31], all critical

points have the maximal index δ = M−N and hence:

|χ| =
{

number of solutions of ω = 0
}
. (3.6)

Here we used the fact that ω = 0 determines the critical points.5 When all irreducible

components bi(z) are linear, |χ| is also equal to the number of bounded regions in RM−N \
{B(z) = 0} [62].

Let us discuss how to construct bases of twisted cycles Ci and cocycles ϕi for i =

1, 2, . . . , |χ|. The real section of the integration domain, RM−N \ {B(z) = 0}, decomposes

into multiple disconnected regions, called chambers. Each chamber is a valid choice of a

basis element Ci. For each Ci we can construct the corresponding twisted cocycle ϕi with

4If required, a more rigorous, mathematical definition can be given by following ref. [31]: on the space

X = CM−N \ {B(z) = 0} we define twisted cohomology groups Hk(X,∇ω) := ker(∇ω : Ωk(∗D) →
Ωk+1(∗D))/∇ωΩk−1(∗D) 3 〈ϕ|, where Ωk(∗D) is the sheaf of smooth holomorphic k-forms on X with poles

along the singular divisor D of B(z). Locally finite twisted homology groups H lf
k (X,Lω) 3 |C] with coeffi-

cients in a rank-1 local system Lω, are isomorphic by Hk(X,∇ω) ' HomC(H lf
k (X,Lω),C), which induces the

pairing 〈ϕ|C] :=Mν1ν2···νM in (2.6). In this case, dimHk(X,∇ω) = dimH lf
k (X,Lω) = δk,M−N (−1)M−Nχ.

5The idea of determining the size of the basis using the Euler characteristic χ was first considered in

Feynman integral literature by Lee and Pomeransky [33], see also [36]. In the present work, however, we

do not make any claims beyond maximal cuts in generic dimension D.
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logarithmic singularities along the boundaries of Ci. For the algorithmic constructions, see,

e.g., [31, 63–66] and the more recent study [67]. It is currently known how to do it in

the cases when Ci is bounded by hyperplanes and at most one hypersurface {bi(z) = 0}
with degree up to M−N [67]. This is enough for considering many interesting examples of

maximal cuts [41].

For instance, whenever a given chamber Ci is simplex-like, i.e., bounded by exactly

M−N+1 hyperplanes {bj(z) = 0}, j = 1, 2, . . . ,M−N+1, we have:

ϕi = d log
b1
b2
∧ d log

b2
b3
∧ · · · ∧ d log

bM−N
bM−N+1

. (3.7)

In situations when {B(z) = 0} is non-normally crossing, i.e., more than M−N hypersur-

faces intersect at a single point, one needs to consider a blowup in the neighbourhood of

this point.

The choice of logarithmic basis comes with multiple advantages. For instance, its

singularity structure in the variable γ is manifest: neighbourhood of each co-dimension

k ≤M−N boundary of Cj gives contributions at order γ−k, e.g., hypersurfaces contribute

at order γ−1, while their intersections at order γ−2:

Cj

CP2\{B(z)=0}

γ−1
γ−2

{b1(z)=0}

{b2(z)=0}

{b3(z)=0}

(3.8)

Hence the leading divergence comes from the highest co-dimension boundaries (points),

around which the integral behaves as γ−(M−N). To be precise, a given co-dimension k

boundary of the form

{b1(z) = 0} ∩ {b2(z) = 0} ∩ · · · ∩ {bk(z) = 0} (3.9)

contributes to a given integral 〈ϕi|Cj ] at order γ−k if and only if it belongs to the boundary

of a given twisted cycle ∂Cj and at the same time the twisted cocycle ϕi has a non-vanishing

residue at the boundary (3.9).

At this stage let us remark that it is always possible to shift D → D + 2n for n ∈ Z
in the exponent of the Baikov polynomial [12], at a cost at redefining ϕ → B(z)−nϕ (the

requirement of single-valuedness of ϕ imposes n ∈ Z). This changes γ → γ + n and hence

the singularity structure, but does not affect the choice of the basis itself.

We can organize all possible pairings of twisted cycles and cocycles into the twisted

period matrix P with entries:

Pij := 〈ϕi|Cj ] =

∫
Cj
B(z)γ ϕi. (3.10)

Its |χ|2 components provide a minimal linearly-independent basis for any integral of the

form (2.6), as was first observed in [49], and later also [39–41] in the Baikov representation.

In other words, by choosing ϕi as basic integrands for the maximal cuts of the master

– 8 –
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integrals, the entries of the P matrix correspond to the independent solutions of the ho-

mogeneous system of differential equations the latter obey. Let us stress that elements of

the basis might not be necessarily recognized as Feynman integrals on their own (but they

may correspond to non-trivial combination of them). For example, evaluating (3.1) for the

diagram (2.8) we have:

ω = (D−5)
z
(
2z2 − s2 − ρ2

)
(z2 − s2)(z2 − ρ2)

dz. (3.11)

We find |χ| = 3 solutions of the condition ω = 0:

z∗ = 0, ±
√
s2 + ρ2

2
. (3.12)

Their positions are irrelevant for the counting, but they will be used later on for other

purposes (the size of the basis is alternatively determined to be 3 from the dimension

of the pure braid group associated to (3.10).) There is a certain freedom is choosing

the bases of twisted cycles, as it is only required that they have endpoints on the points

{−ρ,−s, s, ρ,∞}. A natural choice is as follows:

C1 =
−−−−−→
(−ρ,−s), C2 =

−−−−→
(−s, s), C3 =

−−−→
(s, ρ). (3.13)

The choice of twisted cocycles is also arbitrary, as long as they have poles only at the points

{−ρ,−s, s, ρ,∞}. Given the above basis of cycles, a natural counterpart is:

ϕ1 = d log
z+ρ

z+s
, ϕ2 = d log

z+s

z−s
, ϕ3 = d log

z−s
z−ρ

, (3.14)

which are designed to have residues ±1 on the two endpoints of the corresponding Ci.
They are special cases of (3.7). The matrix P consists of nine linearly independent Appell

functions F1 that form a basis.

Note a symmetry for the two independent kinematic invariants, s → −s, ρ → −ρ,

under which

C1 ↔ −C3, C2 → −C2, ϕ1 ↔ −ϕ3, ϕ2 → −ϕ2, (3.15)

while B(z) is invariant. Therefore the entries of the matrix P are related as Pij → P4−i,4−j
and we end up with a five-dimensional functionally-independent basis.

In the Feynman integral literature it is customary to talk about bases of MIs, which

have to consist of Feynman integrals, and hence have a fixed integration domain C and

different powers of ISPs. In this language, the diagram (2.8) in generic dimension D has 3

linearly independent MIs (〈ϕi|C] for i = 1, 2, 3), and 2 after imposing the above symmetry,

in agreement with [49, 52].

4 Basis reduction with intersection numbers

The goal of a basis reduction is expressing an arbitrary integral of the form (2.6) in terms

of the |χ|2 basis functions in P. This can be done separately in the space of cycles and

– 9 –
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cocycles. In order to do so, we introduce the notion of a metric on these spaces. Assuming

existence of dual spaces |ϕ〉 and [C|, let us consider pairings between their basis elements:

Cij := 〈ϕi|ϕj〉, Hkl := [Ck|Cl]. (4.1)

These pairings are called intersection numbers. Using simple linear algebra, we can decom-

pose an arbitrary twisted cocycle 〈ϕ| into a basis of 〈ϕi| as follows:

〈ϕ| =
|χ|∑
i,j=1

〈ϕ|ϕj〉 (C−1)ji 〈ϕi|, (4.2)

Concerning the decomposition of Feynman integrals in terms of basic integrals, (4.2) con-

stitutes the first main result of this work, hence we define to be the master decomposition

formula.

Similarly for a twisted cycle |C] in a basis of |Cl]:

|C] =

|χ|∑
k,l=1

|Cl] (H−1)lk [Ck|C]. (4.3)

Here 〈ϕ|ϕj〉 (C−1)ji and (H−1)lk [Ck|C] are coefficients of the expansions. Putting these

two decompositions together, we find that the original integral 〈ϕ|C] is expressed in terms

of basis functions in P as follows:

〈ϕ|C] =

|χ|∑
i,j,k,l=1

〈ϕ|ϕj〉 (C−1)ji Pil (H
−1)lk [Ck|C]. (4.4)

In fact, this statement is completely general and holds for any Feynman integral in arbitrary

parametrization, as long as one is able to identify |ϕ〉 and [C| and their pairings. The

advantage of the Baikov representation of maximal cuts is that such identifications can be

made, which allows for explicit computations.

For completeness, we define the dual space as equivalence classes |ϕ〉 : ϕ ∼ ϕ+∇−ωξ
with the connection ∇−ω and similarly for dual twisted cycles [C|.6 With this choice,

intersection numbers [Ci|Cj ] are trigonometric functions of the dimension D [43]. They

can be computed straightforwardly by considering all the places where Ci and Cj intersect

geometrically (additional care needs to be taken when boundaries of Ci and Cj are non-

normally crossing). In the current manuscript, we will not make use of intersection numbers

for cycles: there exist numerous ways of evaluating them, and we refer the reader to,

e.g., [31, 43, 68–82]. In the example at hand, the original Baikov integration domain C
from (2.11) already decomposes as:

|C] = |C1] + |C3]. (4.6)

6The latter is an equivalence class of cycles [C| : C ∼ C + C̃ such that∫
C
B(z)−γ ϕ(z) =

∫
C+C̃
B(z)−γ ϕ(z) (4.5)

for any ϕ(z). Notice the negative sign in the exponent of the Baikov polynomial compared to (2.6).
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and hence no detailed computation is necessary. Examples for other maximal cuts will

appear elsewhere.

Let us stress that intersection numbers entering the expression (4.2) can be computed

for any basis, which does not necessarily have to be the logarithmic one introduced in

section 3. For example, one could construct a basis of maximal cuts with different powers

of ISPs, e.g., (2.9) with ν = 0, 1, 2.

4.1 Intersection numbers of logarithmic forms

Similarly, intersection numbers 〈ϕi|ϕj〉 can be evaluated in multiple different ways, see,

e.g., [31, 44, 45, 69, 71–80, 82–84]. They are rational functions in kinematic invariants and

the dimension D. It was recently found that for logarithmic forms ϕi and ϕj there exists

a formula localizing on the critical points given by ω = 0 [45]:

〈ϕi|ϕj〉 = (−1)M−N
∫ M∏

a=N+1

dza δ(ωa) ϕ̂i ϕ̂j . (4.7)

Here ωa are components of ω =
∑M

a=N+1 ωadza, and ϕ̂ denotes a differential-stripped

cocycle ϕ =: ϕ̂
∏M
a=N+1 dzi.

Let use apply it to the two-loop example (2.8). For simplicity, we are going to choose

the same representatives (3.14) for cocycle bases of both 〈ϕi| and |ϕj〉. The above for-

mula (4.7) becomes:

〈ϕi|ϕj〉 = −
∑
z∗

1

∂ω̂/∂z
ϕ̂i ϕ̂j

∣∣∣∣
z=z∗

, (4.8)

where the sum goes over the three critical points z∗ from (3.12) and we have a Jacobian

∂ω̂/∂z coming from evaluating the delta function. Performing this computation for every

combination of 〈ϕi| and |ϕj〉 gives us the matrix C from (4.1):

C =
2

D−5

 2 −1 0

−1 2 −1

0 −1 2

 . (4.9)

It is always possible to choose the dual basis |ϕj〉 to be orthonormal, i.e., such that C = 1,

which simplifies the decomposition (4.2).7

4.2 Intersection numbers of non-logarithmic one-forms

In order to complete the decomposition according to (4.2), we ought to compute the remain-

ing intersection numbers 〈ϕ|ϕj〉. Let us consider the maximal cut (2.9) with no numerators,

ν = 0, for which we have ϕ = dz. This form has a double pole at infinity, which means that

7For instance, an orthonormal basis to (3.14) is given by:

|ϕ1〉 = γ d log(z+ρ), |ϕ2〉 = −γ d log(z−s)(z−ρ), |ϕ3〉 = −γ d log(z−ρ), (4.10)

with γ = (d− 5)/2, though we will not make use of it in the text.
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we cannot use (4.7). In this case we employ an alternative formula for general one-forms

due to Cho and Matsumoto [44] (see also [83, 85]):

〈ϕ|ϕj〉 =
∑

p∈{B(z)=0}

Resp

[
ψp ϕj

]
, (4.11)

where for each p one needs to compute ψp := ∇−1
ω ϕ around z=p, i.e., one needs to find a

unique holomorphic function ψp solving

∇ωψp = ϕ locally near p. (4.12)

For a review of the derivation of (4.11), see, e.g., appendix A of [45]. For our example, it

involves a sum over all boundary components {B(z) = 0} = {−ρ,−s, s, ρ,∞}. Since the

connection ∇ω decreases the order of the pole by one, it is enough to consider an ansatz

ψp =
∞∑

α=1+ordpϕ

ψ(α)
p (z − p)α, (4.13)

where ordpϕ denotes the order of the zero of ϕ around p, e.g., ordp dz/(z − p) = −1.

(Analogous expansion in 1/z is done when p = ∞.) Plugging it into (4.12) one can solve

for the first few coefficients ψ
(α)
p order-by-order in (z−p). Notice that ordpψp = ordpϕ+ 1.

The residues in (4.11) are non-zero only if ψp ϕj has at least a simple pole, or in other words:

ordpϕ+ ordpϕj ≤ −2. (4.14)

In our case, the basis elements ϕj have at most simple poles around each p, while ϕ = dz

has only a double pole at infinity. Using the condition (4.14) we conclude that p = ∞ is

the only contributing point in (4.11). Hence we compute:

ψ∞ =
1

2D−9
z +O(1) (4.15)

using the procedure above, but expanding around infinity. Plugging the result into the

formula for intersection numbers (4.11) we find:8

〈ϕ|ϕ1〉 =
ρ− s
2D−9

, 〈ϕ|ϕ2〉 =
2s

2D−9
, 〈ϕ|ϕ3〉 =

ρ− s
2D−9

. (4.17)

This completes a decomposition of 〈ϕ| into a basis, which after evaluating (4.2) reads:

〈ϕ| = D−5

2(2D−9)

[
ρ
(
〈ϕ1|+〈ϕ2|+〈ϕ3|

)
+ s 〈ϕ2|

]
. (4.18)

8For logarithmic forms ϕi and ϕj , the formula (4.11) reduces to

〈ϕi|ϕj〉 =
∑

p∈{B(z)=0}

Resp ϕi Resp ϕj
Resp ω

, (4.16)

which is an alternative way of obtaining the entries of C in (4.9).
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The relation in (4.18) is an IBP identity. Finally, using the cycle decomposition (4.6), we

find:

〈ϕ|C] =
D−5

2(2D−9)

[
ρ
(
P11+P21+P31

)
+ sP21 + (Pi1→Pi3)

]
. (4.19)

Recall that the terms Pi3 = 〈ϕi|C3] are related to Pi1 = 〈ϕi|C1] by the symmetry

s → −s, ρ → −ρ, therefore only three elemetns of the basis need to be computed. The

prefactor of γ = (D−5)/2 guarantees that the integral 〈ϕ|C] is finite when γ → 0.

Let us stress that the choice of logarithmic forms as a basis for the maximal cut is

not a limitation. It was inspired by the mathematical literature, but other choices are

possible, such as monomial powers, or, more generally, rational functions of the integration

variables. The computational load and the resulting formulas may depend on the choice

of the basis, but the physical results do not.

Also, we remark that the formula for the intersection numbers (4.11) is specific to one-

forms, though, in general, maximal cuts of Feynman integrals may admit m-forms represen-

tations, where the integration variables correspond to the ISPs. Intersection numbers for

multivariate logarithmic forms were presented in [83], and its extension to non-logarithmic

forms, and application to Feynman integrals will be discussed in a future publication.

5 Pfaffian systems

The derivation of Pfaffian systems of differential equations follows the same decomposi-

tion algorithm. Let us denote with d′ a differential on the appropriately chosen space of

kinematic invariants K. Acting with it on the basis elements, we have:

d′Pij = d′〈ϕi|Cj ] = 〈Φi|Cj ] , (5.1)

with

〈Φi|Cj ] := 〈 (d′ + d′ logBγ) ϕi |Cj ] . (5.2)

We want to bring it into the Pfaffian form:9

d′Pij = Ωik ∧Pkj for all j. (5.3)

Here Ω is a one-form on K. In order to find it, it is enough to project each Φi on the right-

rand side of (5.1) in the basis P, again using (4.2). Hence the entries of Ω are computed

with intersection numbers:

Ωik =

|χ|∑
l=1

〈Φi|ϕl〉 (C−1)lk. (5.4)

We expect that for the logarithmic bases described in this work the matrix Ω should be

proportional to γ. In addition, it can be shown that the leading order in γ of P coincides

with the intersection numbers, i.e.,

Pij = Cij +O(γ−(M−N)+1), (5.5)

9Recall that in the definition of Pij we stripped away Jacobians, i.e., set c c′ = 1 in (A.9). They can be

easily restored and will modify the Pfaffian system.
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if the bases of cocycles are logarithmic.

Let us derive differential equations in the example at hand. We choose K = {x ∈
C |x = ρ/s}, which gives:

Φ1 =
s

(z + sx)2

(
−1 + γ

2s2x(x− 1)

(z + s)(z − sx)

)
dz ∧ d′x,

Φ2 = γ
4s3x

(z2 − s2)(z2 − s2x2)
dz ∧ d′x, (5.6)

Φ3 =
s

(z − sx)2

(
−1 + γ

2s2x(x− 1)

(z − s)(z + sx)

)
dz ∧ d′x,

where γ = (D−5)/2. Using the definition (4.11), we evaluate:

〈Φi|ϕl〉 =: Ĉil d
′x, (5.7)

with

Ĉ =


7x2+2x−1

(x−1)x(x+1)
− 2

x− 1
− x−1

x(x+1)

− 2

x−1

4x

(x−1)(x+1)
− 2

x−1

− x−1

x(x+1)
− 2

x−1

7x2+2x−1

(x−1)x(x+1)

 . (5.8)

Notice that singularities in x can only occur when two punctures out of {−sx,−s, s, sx,∞}
collide, i.e., where x is −1, 0, 1 or ∞. The matrix C was already computed in (4.9), which

after plugging in (5.4) gives the one-form Ω:

Ω = γ
∑

p∈{−1,0,1}

Ω(p) d′log(x−p), (5.9)

with

Ω(−1) =

 1 0 −1

1 2 1

−1 0 1

, Ω(0) =

1 1 1

0 0 0

1 1 1

 , Ω(1) =

 2 0 0

−1 0 −1

0 0 2

 . (5.10)

Note the symmetry Ωij = Ω4−i,4−j , which descents from symmetries of P. This is a

Fuchsian system, which can be solved using standard techniques [8, 9, 54, 86, 87].

The linear system (5.3) can be converted into a higher-order differential equations for

each of the i’s separately. For fixed i, the solutions of such an equation can be expressed

in terms of the basis of Pij for different j’s, i.e., different solutions correspond to distinct

choices of the integration cycles.

6 Four dimensions

So far we have been working in a generic dimension D /∈ Z. In this section we illustrate

how to apply the same techniques directly in the strict D → 4 limit for the maximal cut

of the diagram (2.8). Setting D=4 we have:

B(z)−1/2 =

(
− 1

64s2

(
z2 − s2

) (
z2 − ρ2

))−1/2

, (6.1)
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which behaves as z−2 when z →∞ (as opposed to z2(D−5) in the generic case). Hence the

integral has a trivial monodromy at infinity, which changes its topological properties. We

will see that this means the size of the basis |χ| drops from 3 to 2.

In order to be able to consistently use the techniques of the previous sections and make

the connection to elliptic curves known from the literature [49, 52, 88], let us redefine

B̃(z)−1/2 :=

(
− 1

64s2

z2 − s2

z2 − ρ2

)−1/2

, ϕ̃ :=
ϕ

z2 − ρ2
. (6.2)

This leaves the combination B(z)−1/2ϕ = B̃(z)−1/2ϕ̃ invariant, but makes the integral

defined on

X := CP1 \ {−ρ,−s, s, ρ}, (6.3)

with the point at infinity included (hence we require that ϕ̃ does not have poles at z =∞).

Indeed, the double-cover of X is an elliptic curve branching at the four points {−ρ,−s, s, ρ}.
For simplicity, we continue to work directly on the base space X.

That the size of the basis is 2 can be counted by solving ω̃ := −1
2d log B̃(z) = 0, which

has two solutions, z∗ = 0,∞. Alternatively, it is easily seen that |C1] and |C2] from (3.13)

define two independent cycles on the elliptic curve, while |C3] is homologous to |C1]. Finally,

let us see the same fact from intersection numbers, by choosing the bases of twisted cocycles

〈ϕi| and |ϕj〉 as in (3.14). (This might not be the optimal choice for D=4, but we use it

for consistency.) Using the definition (4.11) with ω̃, but summing over p ∈ {−ρ,−s, s, ρ}
we find:

C̃ = − 2

3ρ3(s+ρ)


1

3ρ

s−ρ
1

3ρ−2s

s−ρ
− 6ρ

s−ρ
3ρ−2s

s−ρ
1

3ρ

s−ρ
1

 , (6.4)

where

C̃ij := 〈ϕ̃i|ϕ̃j〉 . (6.5)

The rank of this matrix is 2, which signals that there are only two linearly-independent

twisted cocycles. From here it is also seen that 〈ϕ1| and 〈ϕ3| are linearly dependent, and

hence we choose the basis to consist of 〈ϕ1|, 〈ϕ2| and similarly for the dual cocycles. This

means we can no longer exploit the symmetry properties under s→ −s, ρ→ −ρ.

As in the previous sections, we decompose 〈ϕ̃| = dz/(z2−ρ2) into the basis by com-

puting (4.2):

〈ϕ̃| =
2∑

i,j=1

〈ϕ̃|ϕ̃j〉 (C̃−1)ji〈 ϕ̃i| = ρ 〈ϕ̃1|+
s+ρ

2
〈ϕ̃2|, (6.6)

where we used:

〈ϕ̃|ϕ̃1〉 =
ρ2−2s2+3ρs

3ρ3(ρ2−s2)
, 〈ϕ̃|ϕ̃2〉 = − 2s

ρ2(ρ2−s2)
, (6.7)

and we used the corresponding 2×2 minor of C̃ from (6.4). Alternatively, we could have

computed that 〈ϕ3| = 〈ϕ1| and obtained the same result (6.6) from (4.18).
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Let us derive differential equations for this basis. The forms Φ̃i from (5.1) are related

to those in (5.6) by Φ̃i = Φi/(z
2−ρ2) and γ = −1/2. Hence we have:

〈Φ̃i|ϕ̃l〉 =: Ĉil d
′x, (6.8)

with

Ĉ =
1

s4x (x2−1)


1

3x2

2

x(1−x)

− 2

x(1+x)

4

x2−1

 , (6.9)

Plugging into the expression for Ω in (5.4) (upon replacing ϕ→ ϕ̃), we find:

Ω =


1−2x

(x−1)x
− 1

2x
2

x2−1
− 1

x+1

 d′x. (6.10)

This provides a linear system of two coupled differential equations, d′Pij = Ωik ∧Pkj . We

can solve them to obtain second-order decoupled equations for P1j and P2j separately:

x(x+1)(x−1)2 ∂2
xP1j + 2(x−1)(2x2−1) ∂xP1j + (2x2−3x−1) P1j = 0, (6.11)

x
(
x2−1

)
∂2
xP2j +

(
5x2−1

)
∂xP2j + 3xP2j = 0. (6.12)

In each case, a basis for the two solutions is provided by different choices of twisted cycles.

7 Discussion

The mathematical structure of scattering amplitudes is richer than what is currently known.

The study of geometric aspects related to the decomposition of multi-loop amplitudes in

terms of a basis of master integrals, and the recent development of ideas for the evaluation

of the latter seem to offer a new perspective on Feynman calculus. The exploitation of

existing relations between multi-loop integrals is of fundamental importance to minimize

the computational load required for the evaluation of scattering amplitudes that, according

to the number of involved particles and to their masses, depend on several kinematic scales.

Integration-by-parts identities have been playing a fundamental role since their discovery,

about forty years ago.

In this work, we introduced the tools of intersection theory, borrowed from the the-

ory of Aomoto-Gel’fand hypergeometric functions, to Feynman integrals. We identified a

correspondence between the forms associated to generalized hypergeometric functions and

Feynman integrals in Baikov representation, and demonstrated the applicability of inter-

section theory, by discussing choices of bases of twisted cycles and cocycles, basis reduction

in both spaces, as well as derivation of the differential equations. We applied it to the

special case of a 2-loop non-planar 3-point function with internal massive propagators,

both in arbitrary D dimensions and in the four dimensional case, which, as studied in the

recent literature, is known to involve elliptic integrals. In particular, we analyzed max-

imal cuts of Feynman integrals, which have the property that the twisted cocycles have
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singularities only along the vanishing of Baikov polynomials, that defines the cut surface.

For non-maximal cuts, by definition, there exist singularities of twisted cocycles that do

not coincide with the cut surfaces. In these cases, one needs to consider relative twisted

homology and cohomology groups. The definition of intersection numbers in such cases

was discussed in the mathematics literature only very recently [89]. It is expected that it

can also help with lifting the assumption of genericity of D, so that one can study integer

dimensions directly in more general cases. We leave these questions for future research.

Even in the realm of maximal cuts, the variety defined by the vanishing of the Baikov

polynomial, could become more involved at higher loops or with more kinematic scales,

which complicates the determination of relevant bases of twisted cocycles. It would be

interesting to study whether there exist consistent changes of variables that simplify the

decomposition (3.5) into linear factors, perhaps at the cost of introducing different expo-

nents, as is the case for, e.g., the Appell function F4 [31].

Our analysis can be considered as a preliminary exploration of the possibility of devel-

oping a method for the direct decomposition of Feynman amplitudes in terms of a basis of

independent integrals by means of projections, where the elements of intersection theory

allow to define a metric within the space of Feynman integrals.
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A Derivation of the Baikov representation

In this appendix we review the derivation of the Baikov representation [13, 32, 58] for a

scalar Feynman integral with L loops, E+1 external momenta, and N propagators:

Iν1ν2···νN :=

∫
RD

L∏
i=1

dD`j

πD/2

N∏
a=1

1

Dνaa
. (A.1)

Out of the independent momenta (for simplicity we assume that D ≥ E, though it is not

necessary)

qi ∈ {`1, `2, . . . , `L, p1, p2, . . . , pE}. (A.2)
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involved in the scattering process, we can construct the Gram matrix G{qi} := [qi·qj ], which

has M := LE+ 1
2L(L+ 1) independent entries depending on loop momenta, `i · qj . We use

them to express each of the N inverse propagators as:

Da =
∑
i,j

Aij
a `i ·qj +m2

a, (A.3)

where the sum goes over M kinematic invariants `i · qj and ma denotes the mass of an

internal particle. Here A defines an N×M matrix, whose rows are labelled by propagators

and columns by Lorentz products `i · qj . For later convenience, we extend A into an

M×M invertible matrix by introducing additional propagators DN+1,DN+2, . . . ,DM called

irreducible scalar products. We choose their powers to be νa ≤ 0, so that they only appear

in numerators.

Baikov representation makes manifest the propagator structure of a given Feynman

integral. In order to do so, we first change the integration variables from `µi to `i · qj . This

is done by decomposing each loop momentum `i = `
‖
i + `⊥i , into the (E+L−i)-dimensional

space spanned by {`1, `2, . . . , `i−1, p1, p2, . . . , pE} and the orthogonal complement [58]. The

integration measure becomes:∫
RD

dD`i

πD/2
=

∫
RD

dE+L−i`
‖
i d

D−E−L+i`⊥i
πD/2

=
π−E−L+i

Γ
(
D−E−L+i

2

) (det G{`i+1,...,`L,p1,...,pE}
)− 1

2

×
∫

Γi

E+L∏
j=i

d(`i ·qj)
(

det G{`i,...,`L,p1,...,pE}

det G{`i+1,...,`L,p1,...,pE}

)D−E−L−2+i
2

. (A.4)

Gram determinants arise as volumes of parallelotopes spanned by the relevant momenta

and enter as Jacobians for the change of variables. (When i = L, the Gram determinant

in the denominator is that of only external momenta.) In the second line the orthogonal

directions `⊥i were integrated out directly in spherical coordinates, which results in the

constraint on the integration domain:

Γi :=

{
(`⊥i )2 =

det G{`i,...,`L,p1,...,pE}

det G{`i+1,...,`L,p1,...,pE}
> 0

}
. (A.5)

Applying this decomposition to all L loop momenta, we obtain:

Iν1ν2···νM = c

∫
Γ
B
D−E−L−1

2

∏L
i=1

∏E+L
j=i d(`i ·qj)∏M
a=1 D

νa
a

, (A.6)

where

c =
π
L−M

2

(
det G{p1,...,pE}

)−L
2∏L

i=1 Γ
(
D−E−L+i

2

) , (A.7)

is a constant, the integration domain is Γ := Γ1 ∩ Γ2 ∩ · · · ∩ ΓL, and the rescaled Baikov

polynomial reads

B :=
det G{`1,...,`L,p1,...,pE}

det G{p1,...,pE}
, (A.8)

– 18 –
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The constraints on Γ imply that B > 0 everywhere on the integration domain.

Since the inverse propagators Da are related to `i·qj by a linear transformation (A.3),

we can make an additional change of variables to express the Feynman integrals in terms

of M variables za := Da:

Iν1ν2···νM = c c′
∫

Γ
B
D−E−L−1

2

M∏
a=1

dza
zνaa

, (A.9)

where c′ = (det A)−1 is a constant Jacobian. We set c c′ = 1 for convenience. B and Γ

are the same quantities as before, but expressed in terms of the new variables za. The

expression (A.9) is called the Baikov representation.

Maximal cut corresponds to choosing the integration contour:

	1 ∧ 	2 ∧ · · · ∧ 	N ∧C, (A.10)

where 	a := 1
2πi{|za| = ε} and C is the intersection

C := Γ ∩ {z1 = 0} ∩ {z2 = 0} ∩ · · · ∩ {zN = 0}. (A.11)

Evaluating (A.9) on this contour, we obtain the Baikov representation of maximal cuts:

Mν1ν2···νM :=

∫
C
B(z)

D−E−L−1
2 ϕ(z), (A.12)

where z = (zN+1, zN+2, . . . , zM ) denotes the collective integration variable and

B(z) = B
∣∣
z1=···=zN=0

. (A.13)

The (M−N)-form ϕ(z) is a result of the residue computation, i.e.,

ϕ(z) := B(z)−
D−E−L−1

2

∮
	1∧···∧	N
B
D−E−L−1

2

M∏
a=1

dza
zνaa

. (A.14)

For example, when ν1 = · · · = νN = 1, we simply have ϕ(z) =
∏M
a=N+1 dza/z

νa
a .
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