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1 Introduction

The analytic evaluation of Feynman integrals in dimensional regularization is still one

of the main challenges to compute higher order corrections to observables in collider

experiments. Methods for evaluating Feynman integrals involve a good understanding of
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their analytic properties. These have been important from the very beginning in order to

develop techniques to evaluate them. Long time ago, some of these properties led to the

recognition that Feynman integrals satisfy systems of differential equations analogous to

those of hypergeometric functions.1 The modern method to evaluate Feynman integrals is

indeed based on differential equations. It is the combination of Integration by Parts (IBP)

identities and differential equations [3–8]. The result is particularly simple [9] if the system

of differential equations evaluates to combinations of Multiple Polylogarithms [10–13].

In favorable cases, Feynman integrals can be evaluated in terms of classical hypergeomet-

ric functions and their generalizations such as Appell, Horn, and Lauricella hypergeometric

functions. Typically, these functions appear as infinite sums through the Mellin-Barnes

representation of Feynman integrals (see e.g., [14–16]). Once evaluated in terms of hyperge-

ometric functions, they can be utilized to recover the ǫ-expansion [17–20], although it is a

nontrivial task when hypergeometric functions of many variables appear (see e.g., [21, 22]).

More recently, the Mellin-Barnes representation has been used to find systems of differen-

tial equations without resorting to IBP identities [23], through the differential reduction

method [17, 23–30], which is based on refs. [31, 32]. Using the Mellin-Barnes representation

it has been shown that a large class of Feynman integrals can be expressed in terms of

Horn-type functions [33]. The differential reduction approach has led to the application

of techniques coming from D-module theory as has been recently shown in ref. [34]. This

point of view is close to the one we will adopt in this paper.

A-hypergeometric functions were introduced by Gel’fand-Kapranov-Zelevinsky (GKZ)

in 1990 [35] as a generalization of the well-known Appell, Lauricella, and Horn series. One

important aspect of the theory is the study of polynomials with indeterminate coefficients

associated with an integer matrix A [36]. This matrix and a vector of complex parameters

furnish a system of partial differential equations (PDEs) known as a GKZ system. Solutions

of these systems of PDEs are called A-hypergeometric functions. They can be represented

as Euler-type integrals and hence these integrals define A-hypergeometric functions [35, 37–

39]. On the other hand, series solutions can be computed by a generalization of the

Frobenius method known as the canonical series algorithm due to Saito, Sturmfels, and

Takayama [40]. GKZ systems and Feynman integrals have been object of recent interest to

mathematicians, who have studied the relation among GKZ systems, Feynman integrals, and

their regularization [41, 42]. Maximal cuts in this language have been studied in ref. [43].

In this paper, we will consider the parametric representation of Feynman integrals

employed by Lee and Pomeransky to relate critical points of the sum of the Symanzik

polynomials and the number of master integrals arising from IBPs [44]. This representation

is based on the polynomial g = U + F , where U and F are the first and second Symanzik

polynomials, respectively. We will show that the polynomial g defines a GKZ system,

which is constructed by considering its coefficients to be indeterminate. We will use this

information to obtain series expansions of the Euler integrals solutions using the Saito-

Sturmfels-Takayama canonical series algorithm. Our definition of a GKZ system based on g

1It is due to Regge the conjecture that Feynman integrals belong to a generalization hypergeometric

functions [1] and hence that Feynman integrals satisfy analogous systems of differential equations. See

ref. [2].
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allows the evaluation of integrals with arbitrary noninteger powers in the propagators using

computational algebra. The polynomial g may lead to a matrix of codimension 0. In such

cases, we introduce a deformation of g to ensure a canonical series representation. Once the

canonical series are computed and integration constants are obtained, Feynman integrals

can be recovered at the end of the computation by taking the limit of the deformation going

to zero and setting its coefficients to their kinematic values.

This paper is organized as follows: in section 2 we review the GKZ framework, present

their solutions, and introduce the canonical series algorithm. We end this section with

examples. In section 3 we introduce scalar Feynman integrals and furnish a GKZ system

based on them suited for canonical series. We give examples at the end of section 3. We

give our conclusions in section 4.

2 A-hypergeometric functions and their representations

In this section, we review basic aspects of the GKZ approach to hypergeometric functions.

The main references are the book [40] and the lectures [45]. Reviews of the main concepts

can also be found in refs. [46, 47].

This review contains four main parts. We first introduce polynomials with indeter-

minate coefficients (toric polynomials), which is one of the main ideas behind the GKZ

approach. Polynomials with indeterminate coefficients lead to generalizations of discrimi-

nants, resultants, and determinants through the study of toric varieties2 [36].

In the second part, we associate a system of partial differential equations (PDEs) to

polynomials with indeterminate coefficients. We introduce Euler integral representations of

solutions of GKZ systems. The system of PDEs may be formally defined as a holonomic ideal

in a Weyl algebra D and it is the proper language for computational algebra purposes [40].

In the third part, we introduce series representations of solutions of GKZ systems and

review the Saito-Sturmfels-Takayama algorithm to compute canonical series [40]. The fourth

part contains examples of the methods introduced. A short example using the computer

algebra system Macaulay2 can be found in appendix B.

The connection with Feynman integrals will be made in section 3. The Saito-Sturmfels-

Takayama algorithm will be our main tool to evaluate Feynman integrals in section 3.

2.1 Notation

Throughout this paper we will employ multi-index notation, i.e.,

zα :=zα1

1 · · · zαN

N , cγ := cγ11 · · · cγnn ,

where α ∈ KN , γ ∈ Kn. For polynomials b1(z), . . . , bM (z) in the variables z = (z1, . . . , zN ),

the multi-index notation for products of polynomials reads

b(z)β :=b1(z)
β1b2(z)

β2 · · · bM (z)βM ,

2An algebraic toric variety is of the form Cn
∗
, where C∗ = C\{0}.
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where β ∈ KM . Typically we will have K = C. For β = (1, . . . , 1), we simply write

b(z)(1,...,1) = b(z). In the case M = 1, we write b1(z)
β1 = b(z)β. We call polynomials

with indeterminate coefficients toric polynomials3 and emphasize their dependence on their

coefficients c by writing b(c, z). The multi-index notation for differential operators reads

∂α = ∂α1

1 , · · · ∂αn
n , where ∂i = ∂/∂ci. Euler operators are defined by

θi := ci
∂

∂ci
= ci∂i.

Integrals where toric polynomials are involved will be identified by a subscript, e.g., Ib
indicates that the integral under consideration has a toric polynomial b(c, z) on its integrand.

Finally, the Pochhammer symbol is defined by

(a)n :=
Γ(a+ n)

Γ(a)
, a ∈ C\Z≤0.

Useful identities following from this definition are summarized in appendix A.

2.2 Polynomials, varieties, and their coamoebas

Let us consider q Laurent polynomials in N variables of the form

bi(z) =

ni
∑

j=1

cijz
αij , cij ∈ C∗, i = 1, . . . , q, (2.1)

where C∗ = C\{0}, αij ∈ ZN , and ni is the length of the set of exponent vectors Ai =

{αi1, · · · , αik, · · · , αini
} associated with the polynomial bi(z). By abuse of notation, we

denote by Ai theN×ni configuration matrix of the exponent vectors of the i-th polynomial as

Ai = (αi1 · · · αik · · ·αini
), αik ∈ ZN , (2.2)

where each (column) vector αik is associated with a monomial term cikz
αik in bi(z). Therefore

|Ai| = ni is the total number of monomials (columns in Ai).
4

Let us give an example. Suppose we have a single polynomial in N variables with n

monomial terms bex(z) =
∑n

j=1 cjz
αj , where we have labeled the coefficients simply by cj ,

j = 1, . . . , n. The N × n configuration matrix of bex(z) reads

Aex =

c1 c2 . . . cn−1 cn












α1,1 α1,2 . . . α1,n−1 α1,n z1
...

... · · ·
...

...
...

αN,1 αN,2 . . . αN,n−1 αN,n zN

. (2.3)

3The reason of this nomenclature is that polynomials with indeterminate coefficients will be associated

with an integer matrix, which can be interpreted as representing a toric variety.
4Here we are adopting a rather unusual route by defining first Laurent polynomials and then the matrices

Ai. The reason behind this is that in Feynman integrals we first consider polynomials with determinate

coefficients and then consider the indeterminate case. In the mathematics literature, typically one first

considers a configuration matrix and associates a polynomial to it.
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The monomial term related with the first column reads

c1z
α1 = c1z

α1,1

1 · · · z
αN,1

N .

With the above identifications of the columns and rows, the arrangement of the rows and

columns (terms) is irrelevant as they define the same polynomial.

Let us now consider the product

b(z) := b1(z) · · · bq(z), (2.4)

where each polynomial and its configuration Ai are taken independently, in other words

we do not expand b(z). Expanding the polynomials would lead to a single polynomial

and hence it is a special case of the above. Let n := n1 + · · ·+ nq be the total number of

monomials and let us define the (N + q)× n matrix

A :=

















1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

A1 A2 . . . Aq

















(2.5)

associated with b(z). Here 0 = (0, . . . , 0) and 1 = (1, . . . , 1) are row vectors of length |Ai|.

We define the codimension of A as

co(A) := n−N − q. (2.6)

The matrix A is the main object of study of the GKZ approach to hypergeometric functions.

This definition allows us to consider integrals and PDEs later. This matrix is interpreted as

representing a toric variety.5

For later purpose we introduce the Newton polytopes of bi(z) following ref. [38]. For

each bi(z), the Newton polytope is the convex hull ∆bi = conv(αi1, . . . , αini
) in RN . Like any

other polytope, we can represent ∆bi as the intersection of a finite number of halfspaces:6

∆bi =

Mi
⋂

j=1

{σ ∈ RN : µi
j · σ ≥ νij}, (2.7)

where µi
j ∈ ZN are primitive integer vectors in the inward normal direction of the facets

of ∆bi , and the νij ∈ Z are integers (see figure 1). Here the product X · Y stands for the

standard scalar product in RN . The polytope of b(z) is the Minkowski sum7

∆b = ∆b1b2···bq = ∆b1 + · · ·+∆bq . (2.8)

5See ref. [48] for an introduction to toric ideals.
6Any polytope has a vertex representation and a half space representation. Going from one representation

to another involves conversion algorithms that are beyond the scope of the present work. The interested

reader can consult e.g., ref. [49].
7For two polytopes P and Q in RN , their Minkowski sum P +Q is the set of all vectors p+ q, such that

p ∈ P , q ∈ Q [49].
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(1, 1)
σ2

σ1

Figure 1. Polytope of b(z) = 1 + z1 + z2 + cz1z2. Written as intersection of half planes, we have

∆b = {σ1 ≥ 0} ∩ {σ2 ≥ 0} ∩ {−σ1 ≥ −1} ∩ {−σ2 ≥ −1}.

Let us now review the concept of a coamoeba of a variety. Consider the ideal I generated

by some polynomials f1, . . . , fj ⊂ C[z1, . . . , zN ]. The zero set of the ideal I = 〈f1, . . . , fj〉

defines the algebraic variety

V(I) := {z ∈ CN : fi(z) = 0, for all fi ∈ I}. (2.9)

Let us consider the case of a single polynomial f . The amoeba Af of the algebraic variety

V(f) is the image of V(f) under the log mapping

Af := Log(V(f)), (2.10)

where Log(z) = (log |z1|, . . . , log |zN |). Amoebas were introduced by GKZ in ref. [36].

Similarly, the coamoeba of V(f) is the image of V(f) under the argument mapping

A′
f := Arg(V(f)), (2.11)

where Arg(z) = (arg(z1), . . . , arg(zN )). Here arg(z) is defined as usual. For example, the

real positive line is given by R+ = Arg−1(0).

Unlike the log mapping, the argument mapping is multivalued and we can think of it

as a multiple periodic subset of RN or equivalently it can be viewed as the N -dimensional

algebraic torus TN = (R/2πZ)N [38]. Coamoebas were introduced by Passare in 2004.8

Our motivation to introduce coamoebas is that they define noncompact integration cycles

for Euler-Mellin integral representations of A-hypergeometric functions. These cycles are

particularly useful in generic cases where polynomials may vanish on the integration region.

In many cases, coamoebas are difficult to study analytically and one has to consider a

rough version, which is called the lopsided coamoeba [52–55]. The relation between A-

hypergeometric functions and coamoebas has been studied in refs. [37, 38, 55, 56]. See

refs. [46, 52] for an introduction to coamoebas.

8Coamoebas have appeared later in the physics literature under the name of algae in the context of dimer

models, see e.g., [50, 51].

– 6 –



J
H
E
P
1
2
(
2
0
1
9
)
1
2
3

2.3 GKZ systems and A-hypergeometric functions

We denote by HA(κ) the GKZ system associated with a matrix A and a vector of parameters

κ. It is defined by the following data:

1. A (N + q)× n matrix A such that the vector (1, . . . , 1) lies in its row span. Hence,

there is a vector ξ ∈ ZN+q, such that ξA = (1, · · · , 1). By definition this matrix is

obtained from

b(z) = b1(z) · · · bq(z). (2.12)

2. A system of partial differential equations (PDEs) associated with A. Let u, v ∈ Nn

and consider
(

∂u − ∂v
)

F (c) = 0, where Au = Av, (2.13)




n
∑

j=1

aijθj − κi



F (c) = 0, i = 1, . . . , N + q, (2.14)

where aij denotes the components of A. Recall that θj = cj∂/∂cj and ∂u = ∂u1

1 · · · ∂un
n .

3. A vector of parameters κ = (κ1, . . . , κN+q), κi ∈ K.

A holomorphic function F (c) or formal series is called A-hypergeometric if it satisfies the

above system of PDEs.

GKZ systems can be rigorously defined in the language of holonomic ideals in the

ring of differential operators with polynomial coefficients — the so called Weyl algebra

D = K 〈c1, . . . , cn, ∂1, . . . , ∂n〉 modulo commutation rules. In this sense, the toric ideal

associated with A is defined by

IA := 〈∂u − ∂v : Au = Av, u, v ∈ Nn〉 ⊂ K[∂1, . . . , ∂n], (2.15)

where K[∂1, . . . , ∂n] is a commutative polynomial ring. In addition, we construct the ideal

generated by the column vectors κT and θ = (θ1, . . . , θn)
T . This ideal is given by

〈Aθ − κT 〉 ⊂ K[θ1, . . . , θn], (2.16)

where each generator of the ideal has the form
∑n

j=1 aijθj − κi. The GKZ system HA(κ)

denotes the left ideal on the Weyl algebra D generated by IA and 〈Aθ − κT 〉. In this

language a holomorphic function F (c) or formal series is called A-hypergeometric of degree

κ if HA(κ) • F (c) = 0, where • denotes the action of the Weyl algebra on polynomials [40].

The language of holonomic ideals and D-modules is the appropriate one to treat the problem

using computational algebra.

Let us denote by vol(A) the normalized volume — w.r.t. the volume of the standard

simplex which is equal to 1 — of the convex hull of A.9 Then, for generic parameters10 κ,

9For the case q = 1, this normalization implies that vol(A) = N !vol(∆b) with ∆b defined in section 2.2.
10Here, generic parameters κ ∈ KN+q are to be understood as ranging over nonempty open algebraic

(Zariski) subsets of KN+q.
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the rank of the system satisfies the inequality (Theorem 3.5.1 in [40])

rank(HA(κ)) ≥ vol(A), (2.17)

which corresponds to the dimension of the solution space. This number can also be computed

from the degree of the toric ideal IA.

For generic parameters rank(HA(κ)) = vol(A). In cases where the parameters

have certain special values (nongeneric) the rank of the system can jump and we have

rank(HA(κ)) > vol(A) (example 4.2.7 in ref. [40]).

2.3.1 Euler-type integral solutions

Solutions of GKZ systems have representations as Euler-type integrals. Accordingly, we

call them A-hypergeometric functions. They can be constructed by taking the vector of

parameters

κ = (−β,−α), β ∈ Cq, α ∈ CN , (2.18)

and then write the integral associated with A as follows:

Ib(κ) =

∫

Ω

zα

b(c, z)β
dηN , dηN =

dz1
z1

∧
dz2
z2

∧ · · · ∧
dzN
zN

, (2.19)

where the integration cycle is such that Ω ⊂ (C∗)
N\V(b). It is usually assumed that the

cycles are compact [35].

In ref. [38], Berkesh, Forsg̊ard, and Passare (BFP) constructed explicit noncompact

cycles for these type integrals. In order to reach the above type of integral, BFP proceed

in three steps. First, we consider that b(z) does not vanish in the positive orthant and

consider the Euler-Mellin integral

I(κ) =

∫

RN
+

zα

b(z)β
dηN =

∫

RN

e(α,x)

b(ex)β
dx, dx = dx1 ∧ · · · ∧ dxN , (2.20)

where in this case polynomial coefficients are fixed. BFP showed that if the polynomials

b(z) are nonvanishing,11 then eq. (2.20) converges and defines and analytic funcion with

parameters κ = (−β,−α) on the tube domain

{(α, β) ∈ CN+q|τ := Re β ∈ R
q
+, σ := Re α ∈ int(τ∆b)}, (2.21)

where int(τ∆b) is the interior of of the weighted Minkowski sum of the Newton polytopes of

bj weighted by τ , i.e., τ∆b =
∑q

j=1 τj∆bj . The second step is to consider the less favorable

case where the polynomials b(z) vanish on the positive orthant. Here, we can take a

connected component Θ of RN\A
′
b, where A

′
b denotes the closure of the coamoeba of b and

consider the integral

I(κ) =

∫

Arg−1θ

zα

b(z)β
dηN =

∫

RN

eα·(x+iθ)

b(ex+iθ)β
dx, (2.22)

11Technically, these polynomials should be completely nonvanishing in the sense of BFP i.e., not vanishing

on the faces of the polytope of b(z). See definition 2.1 of ref. [38]. See also [46].
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(−π,−π)

(π, π)θ2

θ1

Figure 2. Coamoeba (shaded) of b = 1 + z1z2 + z1z
2

2
+ z2

1
z2
2
+ c4z

2

1
z2 drawn in the fundamental

domain [−π, π] × [−π, π] of T2 in R2. This case corresponds to c = (1, 1, 1, 1, c4), with c4 near 1.

Here, we have three connected components, one of which contains (0, 0) (center of the figure).

where θ ∈ Θ is a representative of the connected component of complement of coamoeba of

b(z). This is essentially a change of variables and a slight perturbation of θ does not impact

the result of the integral. We write an analogue of Theorem 2.4 in ref. [38], where the proof

can be found.

Theorem (Berkesh, Forsg̊ard, and Passare). For nonvanishing polynomials,

b1, . . . , bq in Arg−1θ the integral (2.22) admits a meromorphic continuation of the form

I(κ) = ΦΘ
b (α, β)

M
∏

k=1

Γ(µk · α− νk · β), (2.23)

where ΦΘ
b (α, β) is an entire function and Θ is a connected component. µk, νk can be

recovered from the Newton polytope ∆b1···bq (see eq. (2.7)).

The third step is the transition to A-hypergeometric functions by promoting the

coefficients of b(z) in eq. (2.22) to indeterminate, therefore we consider them as variables.

The integral12

Ib(κ) =

∫

Arg−1θ

zα

b(c, z)β
dηN (2.24)

is a representation of an A-hypergeometric function (Theorem 4.2 in [38]). For generic

parameters κ, eq. (2.24) provides a basis of solutions of HA(κ), where each integral is

evaluated on a representative of Θ for each connected component of RN\A
′
b (see figure 213).

2.4 A-hypergeometric canonical series

Saito, Sturmfels, and Takayama (SST) generalized the Frobenius method using Gröbner

deformations in order to deal with regular holonomic systems (chapters 2 and 3 of [40]).

12Here c ∈ Cn\ΣA, where ΣA is the singular locus of all A-hypergeometric functions.
13We thank Jens Forsg̊ard for providing his Mathematica package to draw coamoebas and lopsided

coamoebas.
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Roughly speaking, it consists on taking certain initial ideals of IA (eq. (2.15)) with respect

to a weight w ∈ Rn and generate the series solutions from it. The role of the indicial

equation in the Frobenius method is played by an indicial ideal indw(IA) with respect to

w, together with the ideal 〈Aθ − κT 〉. As in the Frobenius method, the problem consist of

finding the roots γ of those ideals and generate the coefficients of the series. Series thus

obtained belong to the Nilsson ring, i.e, series of the form

f =
∑

α,β

kαβ cα log(c)β . (2.25)

In this paper, we will be chiefly interested in the case where the resulting series are

logarithm-free, i.e., where β = 0 in the above equation. Let us turn our attention to these

cases. Let

L := {u ∈ Zn : Au = 0} (2.26)

be a lattice of rank m and let κT = AγT .14 For u ∈ L we can write u = u+ − u−, where

u± ∈ Nn have disjoint support. Now, for γ ∈ Cn we define the following quantities expressed

as falling factorials

[γ]u−
:=

∏

i:ui<0

−ui
∏

j=1

(γi − j + 1) =
∏

i:ui<0

(−1)−ui (γi)−ui
, (2.27)

[γ + u]u+
:=

∏

i:ui>0

ui
∏

j=1

(γi + ui − j + 1) =
∏

i:ui>0

ui
∏

j=1

(γi + j) =
∏

i:ui>0

(γi + 1)ui
, (2.28)

where (a)x are Pochhammer symbols. Then for γ ∈ Cn, such that no element in γ is a

nonnegative integer, the series

φγ :=
∑

u∈L

[γ]u−

[γ + u]u+

c(γ+u) (2.29)

is a solution of HA(κ) (see proposition 3.4.1 and Theorem 3.4.2 in ref. [40]). When the

vectors γ contain negative integers, we define the negative support of γ as

supp(γ) = {i ∈ {1, . . . , n} : γi ∈ Z<0}. (2.30)

In those cases, we consider the lattice

Nγ := {u ∈ L|supp(γ + u) = supp(γ)} (2.31)

and perform the sum over Nγ in eq. (2.29). In this paper, we will assume that the vectors

κ are generic and thus none of the roots γ are negative integers.15 This implies that

supp(γ) = ∅ and therefore the sum runs over u ∈ L.

The roots γ can be obtained by finding the roots of an ideal known as fake indicial

ideal. Accordingly, the roots are called fake exponents and we give the algorithm to compute

14Notice that we will not be interested in general vectors γ ∈ Cn but only those which are the roots of an

ideal of HA(κ) with respect to some weight vector w. See Algorithm below.
15Corollary 3.4.3 in ref. [40].
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them below. Series thus obtained are called canonical series. The series obtained from

this algorithm have a common domain of convergence Uw ∈ Cn, which is characterized by

a weight vector w. For generic roots γ, canonical series provide a basis of holomorphic

solutions of HA(κ) in Uw (for a description of this domain see Theorem 2.5.16 in ref. [40]

and Theorem 3.19 in ref. [45]).

The relation with Euler integrals goes as follows. Suppose we find r different roots.

The general solution of the integral (2.19) is given by a linear combination of its canonical

series [40], i.e.,

Ib(κ) = K1φ1 + · · ·+Krφr, (2.32)

where the canonical series φr can be computed independently of the cycle Ω. The integration

cycle plays a role in the computation of the integration constants Ki. We discuss how

to obtain integrations constants for the particular case of Feynman integrals in the next

section.

We proceed with the canonical series algorithm to compute fake exponents γ. A

comprehensive review of this algorithm can be found in ref. [45]. We start with some

definitions.

Definitions.

Toric ideal. Let D be a Weyl algebra over K, which is a free (noncommutative)

associative K-algebra generated by K 〈c1, . . . , cn, ∂1, . . . , ∂n〉 modulo the commutation rules

cicj = cjci, ∂i∂j = ∂j∂i, ∂icj = δij . (2.33)

Let A be as in eq. (2.5), then

IA := 〈∂u − ∂v : Au = Av, u, v ∈ Nn〉 (2.34)

generates the toric ideal associated with A. Toric ideals can be computed using reduced

Gröbner bases [57].

Initial ideal. Let w ∈ Rn be a weight vector and let IA be a toric ideal. For w generic,

the ideal inw(IA) is a monomial ideal generated by the leading terms of IA with respect to

the partial ordering �w.

Standard pairs. Let R = K[∂1, . . . , ∂n] and let I be a monomial ideal in R. Furthermore,

let ∂α be a monomial and F ⊆ {1, . . . , n}, where α ∈ Nn. A standard pair of a monomial

ideal I is a pair (∂α, F ) satisfying three conditions:

1. αi = 0 for all i ∈ F ,

2. for all choices of integers βj ≥ 0, the monomial ∂α
∏

j∈F ∂
βj

j /∈ I,

3. for all l /∈ F , there exist βj ≥ 0 such that ∂α∂βl

l

∏

j∈F ∂
βj

j ∈ I.

Let us denoted by S(I) the set of all standard pairs of I. The decomposition of I into

irreducible monomial ideals can be obtained from the identity.

I =
⋂

(∂α,F )∈S(I)

〈∂αi+1
i : i ∈ F 〉 . (2.35)
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2.4.1 Algorithm (Saito-Sturmfels-Takayama)

In this algorithm we will set K = C.

Input: matrix A, weight vector w, and complex parameters κ.

Output: roots of the fake indicial ideal finw(HA(κ)).

1. Compute the toric ideal associated with A

IA = 〈∂u − ∂v : Au = Av, u, v ∈ Nn〉 . (2.36)

Notice that this is an ideal in the commutative polynomial ring C[∂1, . . . , ∂n]. This

ideal is the input to compute the combinatorial object of standard pairs S and the

initial ideal with respect to w.

2. Let w ∈ Rn be a generic weight vector. Compute the initial ideal inw(IA) with respect

to w and obtain its standard pairs S(inw(IA)). Standard pairs are combinatorial

objects which tells us the types of solutions.

3. Use the standard pairs to construct the indicial ideal

indw(IA) =
⋂

(∂a,F )∈S(inw(IA))

〈(θj − aj), j /∈ F 〉 ⊂ C[θ1, θ2, . . . , θn], (2.37)

where θi = ci∂i.

4. Write the ideal 〈Aθ − κT 〉 ⊂ C[θ1, θ2, . . . , θn].

5. The fake indicial ideal with respect to w is given by

finw(HA(κ)) :=indw(IA) + 〈Aθ − κT 〉 . (2.38)

6. Compute the roots of finw(HA(κ)). These are called fake exponents and we denote

them by γ.

The canonical series are then given by eq. (2.29). In order to write solutions, we

compute the kernel of A to obtain the generating lattice

L := kerZ A. (2.39)

Finally, we set [γ]u−
= 0 whenever w.u < 0 (see Lemma 3.17 in ref. [45]). Clearly, this

property allows us to choose certain weights w that simplify the sums.

We can use Macaulay2 to perform the above operations. An example is provided in

appendix B.

2.5 Examples

In order to illustrate the methods, we will take two representations of the Gauss hypergeo-

metric function.
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2.5.1 Double integral Gauss hypergeometric function

The first part of this example follows [37], where the reader can find details. Suppose we

are interested in the following integral

I(α) =

∫

R2
+

zα1

1 zα2

2

(1 + z1 + z2 + cz1z2)β
dz1dz2
z1z2

. (2.40)

From the point of view we are adopting, we should think on the more general situation

where the polynomial in the denominator has indeterminate coefficients, i.e.,

b(c, z) = c1 + c2z1 + c3z2 + c4z1z2. (2.41)

Its associated configuration matrix reads

A =







1 1 1 1

0 1 0 1

0 0 1 1






. (2.42)

Then we consider the integral

Ib(−β,−α) =

∫

Ω

zα1

1 zα2

2

(c1 + c2z1 + c3z2 + c4z1z2)β
dz1dz2
z1z2

, (2.43)

where Ω is a suitable cycle of integration. Following [37] the Newton polytope of b(c, z) can

be represented by the inequalities (see eq. (2.7))

∆b = {σ1 ≥ 0} ∩ {σ2 ≥ 0} ∩ {−σ1 ≥ −1} ∩ {−σ2 ≥ −1}, (2.44)

and hence, we can read off the vectors µi and numbers νi

µ1 = (1, 0), µ2 = (0, 1), µ3 = (−1, 0), µ4 = (0,−1),

ν1 = 0, ν2 = 0, ν3 = −1, ν4 = −1. (2.45)

Integration cycles can be obtained taking θ = (arg(c1/c2), arg(c1/c3)). The BFP Theorem

states that

Ib(−β,−α) = ΦΘ
b (α, β, c)Γ(α1)Γ(α2)Γ(β − α1)Γ(β − α2), (2.46)

where Θ ∈ T2\A′
b. Taking the representative θ ∈ Θ, the entire function reads

ΦΘ
b (α, β, c) =

cα1+α2−β
1 c−α2

2 c−α3

3

Γ(β)2
2F1(α1, α2, β; 1−

c1c4
c2c3

). (2.47)

Taking the point c′ = (1, 1, 1, c), we have the coamoeba of b(z) shown in figure 3, where we

see that (0, 0) /∈ A′
b. There is one connected component of R2\A′

b at this point, therefore

we have a single solution of HA(−β,−α). Notice that at c′, we have Ω = Arg−1θ =

Arg−1(arg(c1/c2), arg(c1/c3)) = Arg−1(0, 0) = (0,∞)2. Hence, at c′ we have

I(α) =
Γ(α1)Γ(α2)Γ(β − α1)Γ(β − α2)

Γ(β)2
2F1(α1, α2, β; 1− c). (2.48)
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(−π,−π)

(π, π)θ2

θ1

Figure 3. A connected component of the coamoeba(shaded) of b(z) = 1 + z1 + z2 + cz1z2 drawn in

the fundamental domain [−π, π]× [−π, π] of T2 in R2. The coefficient c is near 1.

It is instructive to recover this result from the canonical series algorithm. Let w =

(0, 1, 1, 1),16 and κ = (−β,−α1,−α2). The toric ideal associated with A reads

IA = 〈∂2∂3 − ∂1∂4〉 . (2.49)

We have inw(IA) = 〈∂2∂3〉, which we use to obtain its standard pairs

S(inw(IA)) = {(1, {1, 3, 4}), (1, {1, 2, 4})}, (2.50)

therefore

indw(IA) = 〈θ2〉 ∩ 〈θ3〉 . (2.51)

Thus, we obtain

finw(HA(κ)) = 〈θ2θ3, θ1 + θ2 + θ3 + θ4 + β, θ2 + θ4 + α1, θ3 + θ4 + α2〉 . (2.52)

Computing its roots leads to

{γi} = {(α1 − β, α2 − α1, 0,−α2), (α2 − β, 0, α1 − α2,−α1)}. (2.53)

In addition, computing ker(A) we have L = Z(1,−1,−1, 1). Let u = n(1,−1,−1, 1), then

u.w = −n, which means that [γ]u−
= 0 for n > 1. In order to start the sum from n = 0, we

set u = n(−1, 1, 1,−1) such that [γ]u−
= 0 for n < 0. We then write

u = u+ − u− = (0, n, n, 0)− (n, 0, 0, n). (2.54)

Let us work out the case of γ1. Eq. (2.29) gives

φ1 =
∞
∑

n=0

[γ1]u−

[γ1 + u]u+

(cu+γ1) = cγ1
∞
∑

n=0

[(α1 − β, α2 − α1, 0,−α2)]u−

[(α1 − β, α2 − α1, 0,−α2) + n(−1, 1, 1,−1)]u+

(cu),

(2.55)

16Choices of w are tied with the property that for w · u < 0 we have [γ]u
−

= 0. See Algorithm in

section 2.4.1.
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hence

φ1 =cγ1
∞
∑

n=0

(β − α1)n(α2)n
(α2 − α1 + 1)n (1)n

(

c2c3
c1c4

)n

= cγ12F1(β − α1, α2;α2 − α1 + 1; (c2c3)/(c1c4)),

(2.56)

where we have used the series representation of the Gauss hypergeometric function (A.3).

Similarly, for γ2 we have

φ2 =cγ2
∞
∑

n=0

(β − α2)n(α1)n
(α1 − α2 + 1)n (1)n

(

c2c3
c1c4

)n

= cγ22F1(β − α2, α1;α1 − α2 + 1; (c2c3)/(c1c4)).

(2.57)

Therefore, the solution as linear combination of canonical series reads

Ib(−β,−α) = K1c
γ1

2F1(β − α1, α2;α2 − α1 + 1; (c2c3)/(c1c4)) (2.58)

+K2c
γ2

2F1(β − α2, α1;α1 − α2 + 1; (c2c3)/(c1c4)).

We proceed to compute the integration constants. We take the noncompact cycle Ω = R2
+.

From the roots, we observe that if c3 = 0, then φ2 vanishes and if c2 = 0, φ1 vanishes.

Hence we make
∫

R2
+

zα1

1 zα2

2

(c1 + c2z1 + c4z1z2)

dz1dz2
z1z2

= (K1φ1 +K2φ2) |c3→0, (2.59)

which leads to

K1 =
Γ(α2)Γ(α1 − α2)Γ(β − α1)

Γ(β)
. (2.60)

Similarly, we obtain

K2 =
Γ(α1)Γ(α2 − α1)Γ(β − α2)

Γ(β)
. (2.61)

Let us now recover the original integrals by setting c1 = c2 = c3 = 1, c4 = c in eq. (2.58).

We have

I(α) = c−α2
Γ(α2)Γ(α1 − α2)Γ(β − α1)

Γ(β)
2F1(β − α1, α2;α2 − α1 + 1; 1/c) (2.62)

+ c−α1
Γ(α1)Γ(α2 − α1)Γ(β − α2)

Γ(β)
2F1(β − α2, α1;α1 − α2 + 1; 1/c),

which equals eq. (2.46) after using the identity (A.9) with z = 1− c.

2.5.2 Single integral Gauss hypergeometric function

Let us now study the univariate integral of the Gauss hypergeometric function. We have

I(−β1,−β2,−α) =

∫

R+

zα

(1 + z)β1(1 + cz)β2

dz

z
. (2.63)
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In order to evaluate the integral we consider the (toric) polynomial

b(z)β = (c1 + c2z)
β1(c3 + c4z)

β2 ⇐⇒ A =







1 1 0 0

0 0 1 1

0 1 0 1






(2.64)

and its associated GKZ system. The integral under consideration reads

Ib(κ) =

∫

Ω

zα

(c1 + c2z)β1(c3 + c4z)β2

dz

z
, (2.65)

where κ = (−β1,−β2,−α). We have L = Z(1,−1,−1, 1). Taking the weight vector

w = (0, 1, 1, 1), we obtain

finw(HA(κ)) = 〈θ2θ3, β1 + θ1 + θ2, β2 + θ3 + θ4, α+ θ2 + θ4〉 , (2.66)

{γi} = {(−β1, 0, α− β2,−α), (α− β1 − β2, β2 − α, 0,−β2)}. (2.67)

Hence, we have the two series solutions

φ1 = cγ12F1(β1, α;α− β2 + 1;
c2c3
c1c4

), (2.68)

φ2 = cγ22F1(β1 + β2 − α, β2;β2 − α+ 1;
c2c3
c1c4

). (2.69)

Specializing to our case, we have c1 = c2 = c3 = 1 and c4 = c, therefore the solution of the

integral is given by

I(−β1,−β2,−α) = K1 c−α
2F1(β1, α;α− β2 + 1; 1/c) (2.70)

+K2 c−β2
2F1(β1 + β2 − α, β2;β2 − α+ 1; 1/c),

where the constants can be obtained by setting c2 and c3 to zero in eq. (2.65) choosing

Ω = R+. The final result reads

I(−β1,−β2,−α) =
Γ(α)Γ(β2 − α)

Γ(β2)
c−α

2F1(β1, α;α− β2 + 1; 1/c) (2.71)

+ c−β2
Γ(α− β2)Γ(β1 + β2 − α)

Γ(β1)
2F1(β1 + β2 − α, β2;β2 − α+ 1; 1/c),

which evaluates to (2.63) after using eq. (A.9) with z = 1− c.

3 Feynman integrals as A-hypergeometric functions

In this section we will interpret Feynman integrals as particular points of A-hypergeometric

functions. First, we will introduce the parametric representation based on g = U + F used

in ref. [44] by Lee and Pomeransky. Later, we will give our proposal for defining GKZ

systems based on g. Examples will be presented at the end of this section.
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3.1 Lee-Pomeransky representation of Feynman integrals

Let us consider a typical Feynman integral in Euclidean space in dimensional regularization.

A L-loop integral with N propagators and E independent external momenta may be written

as follows

IF (α) =

∫

RL

(

L
∏

i=1

ddki

πd/2

)

1

Dα1

1 · · ·DαN

N

, (3.1)

where the inverse propagators are of the form

Di = (Mi)
rskr · ks + 2(Qi)

rskr · ps + Ji. (3.2)

The matrices, Mi, Qi, and Ji have dimensions L × L, L × E, and 1 × 1, respectively.

Integration over loop momenta through Feynman parameters and a Mellin transform leads

to the Lee-Pomeransky parametric representation [44]

IF (α) = ξΓα

∫

RN
+

(

N
∏

i=1

dzi
zi

zαi

i

)

1

g(z)d/2
= ξΓα

∫

RN
+

zα

g(z)d/2
dηN , (3.3)

where we have used the multi-index notation in the second equality and R+ = (0,∞). The

overall factor and the polynomial g(z) are defined as follows:

ξΓα :=
Γ(d/2)

Γ((L+ 1)d/2−
∑N

i=1 αi)
∏N

i=1 Γ(αi)
, (3.4)

g(z) := U + F , (3.5)

where U and F are the Symanzik polynomials. In order to compute them, we construct the

matrices

M rs =
N
∑

i=1

ziM
rs
i , Qr =

N
∑

i=1

ziQ
rs
i ps, J =

N
∑

i=1

ziJi. (3.6)

We then have

U = det(M), F = det(M)
(

J −
(

M−1
)ij

Qi ·Qj
)

, (3.7)

where F is appropriately scaled in order to make it dimensionless. The polynomial U is a

homogeneous polynomial of degree L and the polynomial F is homogeneous of degree L+1.

Hence g(z) is an inhomogeneous polynomial of degree L+ 1. In Euclidean kinematics, the

Symanzik polynomials U , F are positive semi-definite functions of the Feynman parameters.

These polynomials can also be obtained from the topology of the graphs and their properties

are summarized in refs. [58–60].
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3.2 Feynman integrals and canonical series

A suitable definition for computational algebra purposes would be to consider Feynman

integrals as a linear combinations of their canonical series, whenever we can compute them.

As they stand, Feynman integrals will not satisfy the system of PDEs associated with a

GKZ system (eqs. (2.13)–(2.14)) because the polynomial g(z) has fixed coefficients.

Accordingly, the first step in our construction will be to take g(z) and consider its

associated toric polynomial g(c, z). We will demand that this polynomial furnish GKZ

system in the sense of eq. (2.29). In particular, this means that g(c, z) must lead to matrices

of co(A) > 0 in order to compute a generating lattice and follow the canonical series

algorithm. Since we have a single polynomial, the codimension of the matrix A associated

with g(c, z) is given by co(A) = n−N − 1, where n is the number of monomial terms in

g(c, z) with common exponent vectors. Therefore, we will have co(A) = 0 when the number

of terms in g(c, z) equals the number of rows in A, or equivalently when n = N + 1. A

typical example of this situation is the polynomial of the L-loop massless cantaloupe graph

(figure 6). For instance, let us consider the case L = 1, i.e., the massless bubble graph

(figure 4). The g(z) polynomial of this graph is given by g(z) = z1 + z2 + sz1z2, therefore

gbubble(c, z) = c2z1 + c3z2 + c4z1z2 ⇐⇒ A
bubble =







1 1 1

1 0 1

0 1 1






. (3.8)

The codimension of Abubble is zero and hence ker A = ∅. Therefore, we cannot use this

matrix to represent a solution of a GKZ system as canonical series in the sense of eq. (2.29).

However, in this simple example we know that the result of the massless bubble integral

can be recovered from the one-mass bubble integral by taking the limit of the mass going to

zero. Furthermore, as we will see in the examples, the matrix associated with the one-mass

bubble integral is given by

A
one-mass =







1 1 1 1

1 0 1 0

0 1 1 2






, (3.9)

which has co(Aone-mass) = 1. Since the one-mass bubble evaluates to a Gauss hypergeometric

function, we may consider the massless bubble as a special case of a 2F1(a, b, c; p
2/m2)

function, for some a, b, c depending on the powers of the propagators and the dimension.

An equivalent alternative provided by GKZ systems is to deform the polynomial by adding

an arbitrary constant r(z) = c1 to gbubble(c, z) and consider instead

gr(c, z) = c1 + c2z1 + c4z2 + c4z1z2 ⇐⇒ A
r =







1 1 1 1

0 1 0 1

0 0 1 1






, (3.10)

where the constant c1 can be set to zero at the end of the computation. This matrix

corresponds to the GKZ system of a Gauss hypergeometric function. We will work out

explicitly this example in section 3.3.1. There, we will take the limit c1 → 0 of a Gauss
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hypergeometric function as we would do for the mass in the case of a one-mass bubble.

The choice of a deformation can be made systematically as we will see for the L-loop

cantaloupe graph.

Therefore, in cases where g(c, z) leads to a configuration matrix of co(A) = 0, we will

consider a deformation of g(c, z) demanding that it defines a solution of a GKZ system

in the sense of eq. (2.29), thus allowing us to construct canonical series solutions. Recall

that deg (U) = L and deg (F) = L+ 1. We may choose any polynomial r(z) of deg(r) < L

and define

gr(c, z) := r(c, z) + U(c) + F(c), (3.11)

with the requirement that the associated matrix has co(A) > 0. Here r(c, z) denotes the toric

polynomial associated with r(z). Similarly, U(c) and F(c) denote the Symanzik polynomials

where the coefficients now are considered as variables. We have checked for the integral of

a massless L-loop cantaloupe graph, up to 5-loop, that this definition leads to well behaved

GKZ systems and that we can recover the original integral using canonical series.

The second step in our construction will be to consider Euler-type solutions and series

solutions of the GKZ systems furnished with gr(c, z). Let us first define the class of Euler

integrals associated with the Feynman integral (3.3). We will drop the overall factor ξΓα ,

which is a nonzero constant independent of the kinematics and instead consider

IF (α)/ξΓα 7−→ Igr(−d/2,−α) :=

∫

Ω

zα

gr(c, z)d/2
dηN , (3.12)

which is a toric generalization of eq. (3.3), i.e., where the deformation has been introduced

and the coefficients of gr(z) are considered as variables. Notice that at this point, the

noncompact cycle Ω will not be in general RN
+ and it will be determined by the coamoeba

of gr(c, z) (section 2.3.1).

Let us first show that the class of integrals obtained from gr(c, z) is A-hypergeometric.17

We have the following theorem, which is a specialization of theorem 2.7 in ref. [35] for the

case of a single polynomial gr(c, z). That this theorem still holds for noncompact cycles is

discussed in refs. [38, 39].

Theorem. Let gr(c, z) be the deformed polynomial in N variables obtained from g(c, z) =

U(c) + F(c), where F(c) and U(c) are obtained by considering the coefficients appearing in

the Symanzik polynomials as variables. gr(c, z) is obtained by introducing a deformation

r(c, z) demanding that its matrix satisfies co(A) > 0. Let A = (a1 a2 · · · an) be the

configuration matrix associated with gr(c, z) and consider the polynomial with indeterminate

generic coefficients

gr(c, z) =
n
∑

i=1

ciz
ai , ci ∈ C∗. (3.13)

17A related construction — which does not introduce deformations — has been considered in ref. [41] for

the special case where the powers of the propagators are given by α = (1, . . . , 1). Here we consider generic

powers in the propagators as dictated by canonical series solutions.
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Let A be its associated (N + 1)× n matrix

A =

(

1 1 . . . 1

a1 a2 . . . an

)

. (3.14)

The Euler-Mellin integral

Igr(κ) =

∫

Ω

zα

gr(c, z)d/2
dηN (3.15)

is a solution of the A-hypergeometric system HA(κ) of degree κ = (−d/2,−α). Noncompact

cycles Ω can be obtained by taking the coamoeba of gr(c, z) and choosing representatives θ

of connected components Θ ∈ RN\A′
gr (see section (2.3.1)).

Proof. The proof goes along the lines of ref. [39] specializing to the nonhomogeneous case

and the case of a single polynomial. Let us consider first eq. (2.13). We have

(∂1)
u1(∂2)

u2 · · ·(∂n)
unIgr(κ) = (−d/2)(∂1)

u1(∂2)
u2 · · · (∂n)

un−1

∫

Ω
dηNzαgr(c, z)

−d/2−1zai

= (−d/2)(|un|)(∂1)
u1(∂2)

u2 · · · (∂n−1)
un−1

∫

Ω
dηNzαgr(c, z)

−d/2−|un|z|un|an

= (−d/2)(|u1|+···+|un|)

∫

Ω
dηNzαgr(c, z)

−d/2−|u1|−···−|un|z|u1|a1+···+|un|an ,

where (ρ)(x) denotes the falling factorial. Similarly

(∂1)
v1(∂2)

v2 · · · (∂n)
vnIgr(κ)

= (−d/2)(|v1|+···+|vn|)

∫

Ω
dηNzαgr(c, z)

−d/2−|v1|−···−|vn|z|v1|a1+···+|vn|an ,

and from Au = Av, the result (∂u − ∂v)Igr(κ) = 0 follows.

Let us now focus on the second set of differential equations (2.14). Consider the first

row of A in eq. (3.14). We have

(c1∂1 + c2∂2 + · · ·+ cn∂n)Igr(κ) =

∫

Ω
dηNzα(−d/2)gr(c, z)

−d/2−1(c1z
a1 + · · ·+ cnz

an)

=(−d/2)Igr(κ).

Similarly, for i > 1

n
∑

j=1

aijcj∂jIgr(κ) =

n
∑

j=1

aij

∫

Ω
dηNzα(−d/2)gr(c, z)

−d/2−1(cjz
aj )

=

∫

Ω
dηNzα(−d/2)gr(c, z)

−d/2−1

(

zi
∂

∂zi
gr(c, z)

)

=

∫

Ω
dηNzα

(

zi
∂

zi
gr(c, z)

−d/2

)

=− αiIgr(κ),

where we have used integration by parts in the last equality. This completes the proof.
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In this way, we have generated a class of integrals related with the Lee-Pomeransky

representation of Feynman integrals. Feynman integrals will correspond to special cases

(points) of A-hypergeometric functions whenever the cycle Ω can be taken as RN
+ and the

coefficients c can be taken as functions of the kinematic invariants. The behavior of the

integral as the coefficients c vary can be studied through eq. (2.22). This representation

is also useful as it provides noncompact cycles at the cost of imposing conditions on κ.

However, this can be sorted out by analytic continuation and it can be shown that, as a

function of the variables c, eq. (2.22) is A-hypergeometric everywhere. Here c is taken in

Cn\ΣA, where ΣA denotes the singular locus of all A-hypergeometric functions (Theorem 4.2

in [38]). The main difficulty in this approach is to choose a representative of some connected

component Θ in RN\A′
gr . In other words, we have to select a point such that the cycle is

nonvanishing on the set Arg−1(θ), where θ ∈ Θ. The integration region of the Feynman

integral, namely RN
+ , suggest taking any θ = (arg(f1(c)), . . . , arg(fN (c))), fi(c) > 0 provided

θ /∈ A′
gr (see e.g. figure 3). This gives one connected component of vol(A) many ones and a

possible integration cycle.18

On the other hand, logarithm-free canonical series allows us to study the behavior of

the solution space under variations of the parameters κ at nonsingular points [57, 61]. More

important, once we have identified the above integrals as solutions of a GKZ system, we

can use the statement in eq. (2.32) relating Euler-type integrals and canonical series. For

our case, this statement reads
∫

Ω

zα

gr(c, z)d/2
dηN = K1φ1 + · · ·+KMφM , (3.16)

where φ1, . . . , φM are the canonical series associated with A. Fake exponents γ for each

φ1, . . . , φM can be obtained from the SST algorithm in section 2.4.1. This equality is

fundamental for our purposes as it allows both to take the limit of the deformation to zero

and computing the integrations constants. Let us discuss these limits.

The form of the series solution for some fake exponent γ reads

φγ = cγ
∑

u∈L

[γ]u−

[γ + u]u+

cu. (3.17)

These are characterized by a weight vector w ∈ Rn, which selects a common domain of

convergence Uw (see Theorem 2.5.16 in [40]). In addition, we have the restriction [γ]u−
= 0

for u.w < 0. Taking the limit of the deformation to zero amounts to take some of the

coefficients in c = (c1, . . . , cn) to zero in eq. (3.17) and similarly for the remaining canonical

series. On the l.h.s. of eq. (3.16), taking this limit amounts to recover the undeformed

integral we started with. Let us clarify this point. The integral in the l.h.s. of (3.16) is

a well defined A-hypergeometric function provided c are generic and the cycle is taken in

some θ /∈ A′
gr . The r.h.s. of (3.16) is an asymptotic expansion of such integral. Therefore,

the limits on the l.h.s. correspond to special values of the A-hypergeometric functions in

the r.h.s. . A judicious choice of the deformation ensures that this limit can be taken

systematically as we will see in the examples.

18For all real positive coefficients in g(z), i.e., the nontoric polynomial, we can ensure that 0 is in TN [38].
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In general, this limit will not be smooth as it will require the evaluation of A-

hypergeometric functions on their singular points19 and therefore we may require analytic

continuation of the corresponding A-hypergeometric function. This can be seen as follows.

A generic canonical series solutions can be understood as a function in co(A) variables.

Setting one of these variables to zero may require a transformation of a variable to, say, its

inverse and hence we require analytic continuation. A judicious choice of the weight vector

w can simplify taking this limit, since it provides the condition [γ]u−
= 0 for u.w < 0, thus

determining the arrangement of the powers of cu in eq. (3.17). As we will see for the L-loop

cantaloupe graph, we can systematically choose a deformation and a weight vector to take

this limit. However, we will leave as a conjecture that this this limit can always be taken.

For integration constants, we will use the information available on the fake exponents

following ref. [40]. The initial series in eq. (3.17) are given by cγ . Therefore, the positions of

the 0’s on each γ will tell us which elements in c we have to set to zero in order to compute

the integration constants.

Let us give some final comments. Notice that in order to recover the original Feynman

integral — in agreement with our definition of the polynomials associated with the GKZ

system and of the integral (3.15) — we must set coefficients c to their kinematic values

at the end of the computation. The integral (3.15) can be understood as a holomorphic

function on Uw. This observation gives us a nice way of deducing the long known fact that

convergent Feynman integrals are functions of a Nilsson class [2], which is clear from their

canonical series.

We end with our prescription to compute integration constants.

Integration constants. Suppose that we obtain M fake exponents from the SST algo-

rithm. Let us isolate an exponent, say, γ = (γ1, . . . , γn) and suppose it contains k < n zeros

in positions σ1, . . . , σk. Take the coefficients associated with those positions to zero and

consider

Igr(κ)
∣

∣

∣cσ1→0

...
cσk→0

= (K1φ1 + · · ·+KMφM )
∣

∣

∣cσ1→0

...
cσk→0

, (3.18)

where we take Ω = RN
+ as the cycle in the l.h.s. . This procedure will compute a single

coefficient. We repeat the process until we have computed all of them.

3.3 Examples of co(A) = 0

The purpose of co(A) = 0 examples is to show how to deal with the appearance of a

deformation.

Structure of the examples. In the following examples we will omit the overall gamma

factors ξΓα and hence consider

I(α) := IF (α)/ξΓα

19See ref. [37] and the example in section 3.3.1.
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Figure 4. Bubble graph: s = −p2.

along with its toric version Igr(κ). The vector κ has the form

κ = (−d/2,−α1, . . . ,−αN ),

where N is the number of propagators. We assume that the powers of the propagators have

generic noninteger complex values. This simplifies the discussion since the sum runs over

L = kerZ A. The kernel of A leads to a rank co(A) lattice. For a single generator, we write

L := Z(a1, . . . , an), u = n(a1, . . . , an), ai ∈ Z.

We set

β = d/2.

In order to indicate the i-th component of a root vector γr we write γir.

3.3.1 Massless bubble

The simplest example is the massless bubble (figure 4) with inverse propagators

D1 = (k)2, D2 = (k − p)2, (3.19)

where s = −p2. We have

g(z) = z1 + z2 + sz1z2. (3.20)

This polynomial leads to a matrix of codimension co(A) = 0, hence we introduce a

deformation r(z) = c1 and consider instead

gr(c, z) = c1 + c2z1 + c3z2 + c4z1z2 ⇐⇒ A =







1 1 1 1

0 1 0 1

0 0 1 1






. (3.21)

Thus, we have

Igr(κ) =

∫

Arg−1θ

zα1

1 zα2

2

(c1 + c2z1 + c3z2 + c4z1z2)β
dz1
z1

dz2
z2

, (3.22)

for θ = (arg(c1/c3), arg(c1/c2)). We have studied this integral in section 2.5, where we

established that

Igr(κ) =
Γ(α1)Γ(α2)Γ(β − α1)Γ(β − α2)

Γ(β)2
cα1+α2−β
1 c−α1

2 c−α2

3 2F1

(

α1, α2;β; 1−
c1c4
c2c3

)

.

(3.23)
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Figure 5. Triangle graph: s = −(p1 + p2)
2.

In order to recover our Feynman integral we have to take the limit c1 → 0. The limit has to

be taken carefully as c1 appears both as a factor and in the argument of the hypergeometric

function. Using the identity (A.7) we have

2F1(α1, α2;β; 1−
c1c4
c2c3

) =

(

c1c4
c2c3

)(β−α1−α2)

2F1

(

β − α1, β − α2;β; 1−
c1c4
c2c3

)

. (3.24)

Therefore

Igr(κ) =
Γ(α1)Γ(α2)Γ(β − α1)Γ(β − α2)

Γ(β)2

× cα2−β
2 cα1−β

3 cβ−α1−α2

4 2F1

(

β − α1, β − α2;β; 1−
c1c4
c2c3

)

. (3.25)

Finally, taking the limit c1 = 0, setting c2 = c3 = 1, and c4 = s we recover the desired result

I(α) =
Γ(β − α1)Γ(β − α2)Γ(α1 + α2 − β)

Γ(β)
s(β−α1−α2), (3.26)

where we have used identity (A.6). Notice that in order to take this limit, we have evaluated

eq. (3.23) on one of the singular points of the Gauss hypergeometric function, thus requiring

an Euler transformation.

3.3.2 The single-scale massless triangle graph

Let us now turn our attention to those limits through canonical series. Let us consider the

triangle graph in figure 5. The inverse propagators read

D1 = (k1 − p1)
2, D2 = (k1 + p2), D3 = k21, (3.27)

where −p21 = −p22 = 0. Computing the relevant polynomial and taking the deformation

r(z) = c1 leads to

gr(c, z) = c1 + c2z1 + c3z2 + c4z3 + c5z1z2 ⇐⇒ A =











1 1 1 1 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 0











, (3.28)
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where, at the end of the computation, we will make the identifications c2 = c3 = c4 = 1 and

c5 = s = −(p1 + p2)
2. The integral reads

Igr(κ) =

∫

Ω
dη3

zα1

1 zα2

2 zα3

3

(c1 + c2z1 + c3z2 + c4z3 + c5z1z2)β
. (3.29)

Computing ker(A), we have

L = Z(1,−1,−1, 0, 1) ⇒ u = n(1,−1,−1, 0, 1). (3.30)

Choosing w = (1, 0, 0, 0, 0), we have u.w = n, hence [γi]u−
= 0 for n < 0. Setting

A = α1 + α2 + α3, the fake indicial ideal and its roots read

finw(HA(κ))= 〈θ1θ5, β +θ1+ θ2 + θ3 + θ4 + θ5, α1+θ2 + θ5, α2 + θ3 + θ5, α3 + θ4〉 , (3.31)

{γi}={(0, α2 + α3 − β, α1 + α3 − β,−α3,−α+ β), (A− β,−α1,−α2,−α3, 0)}.

(3.32)

Inserting the roots in eq. (2.29) gives

φi = cγi
∑

n≥0

[γi](0,n,n,0,0)

[γi + (n,−n,−n, 0, n)](n,0,0,0,n)

(

c1c5
c2c3

)n

, (3.33)

which leads to the series

φ1 = cγ1
∑

n≥0

(β − α2 − α3)n (β − α1 − α3)n
(1)n (β −A+ 1)n

(

c1c5
c2c3

)n

, (3.34)

φ2 = cγ2
∑

n≥0

(α1)n (α2)n
(−β +A+ 1)n (1)n

(

c1c5
c2c3

)n

. (3.35)

Integration constants can be easily computed by setting c1 = 0 and c5 = 0 in eq. (3.29)

with Ω = R3
+. We write them collectively as

Kr =
1

Γ(β)

∏

i 6=0

Γ(−γir). (3.36)

Taking the limit c1 → 0 and setting c2 = c3 = c4 = 1, c5 = s, we obtain

I(α) =
Γ(β − α2 − α3)Γ(β − α1 − α3)Γ(α3)Γ(β −A)

Γ(β)
sβ−A. (3.37)

Let us remark that in this example we have set c1 to zero in order to compute one of the

integration constants — as can be seen from the roots — therefore reaching a tautology. We

can fix this by choosing an appropriate weight vector such that none of the roots contain

zero in position 1. This leads to a more complicated version of the canonical series which

will require analytic continuation in order to take the limit c1 → 0. Since we want to

interpret Feynman integrals with codimension zero matrix as a certain limiting cases of

A-hypergeometric functions, we do not worry about this situation. In fact, as we will see in

the next example, we can take advantage of this by choosing a weight vector such that all

massless cantaloupe graphs are defined by the coefficients of a linear combination of two

Gauss hypergeometric functions.
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Figure 6. Massless cantaloupe graph.

3.3.3 The massless L-loop cantaloupe graph

Let us consider the case of the L-loop cantaloupe graph (a.k.a. banana graph) shown in

figure 6. We parametrize the inverse propagators as follows

D1 = (k1 − p)2, D2 = (k2 − k1)
2, . . . , DL = (kL − kL−1)

2, DL+1 = (kL)
2. (3.38)

The polynomial g(z) of this graph can be written in general as

g(z1, . . . , zL+1) =
L+1
∑

i=1

L
∏

j 6=i

zj + s
L+1
∏

i=1

zi, (3.39)

where s = −p2. The integral to be computed reads

I(α) =

∫

R
L+1
+

dηL+1

zα1

1 · · · z
αL+1

L+1

g(z)β
. (3.40)

It is easy to check that the g(z) polynomials of this graph lead to codimension zero matrices

and hence they fall under the class of problems where we must introduce a deformation

to define a GKZ system in the sense of eq. (2.29). In order to perform such deformation

systematically, let us introduce some notation. Let 1i denote a sequence of 1’s of length i

and similarly for 0j . We have the relation i+ j = L+ 1. Furthermore, let

v := (1L−1, 02). (3.41)

At each loop, we set a deformation monomial

r(z) = c1z
v, (3.42)

hence we have

gr(c, z) = c1z
v +

L+1
∑

i=1

cL+3−i

L
∏

j 6=i

zj + cL+3

L+1
∏

i=1

zi, (3.43)
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where cL+3 = s. Let us give an example. For L = 3, v = (1, 1, 0, 0) and r(z) = c1z1z2, then

we have the deformed toric polynomial

gr(c, z) = c1z1z2 + c2z1z2z3 + c3z1z2z4 + c4z1z3z4 + c5z2z3z4 + c6z1z2z3z4. (3.44)

After introducing the deformation, the (L+ 2)× (L+ 3) matrix associated with the L-loop

cantaloupe graph can be written in the general form

A =



































1 1 . . . 1 1

1L+1 0 11

1L 0 12

...

13 0 1L−1

0 1 0 1L

0 0 1 1L



































. (3.45)

Notice that each row contains L+ 3 elements. There are L rows with have a single zero

and 2 rows with two zeros. The integral under consideration is given by

Igr(κ) =

∫

Ω
dηL+1

zα1

1 · · · z
αL+1

L+1

gr(c, z)β
, (3.46)

where κ = (−β,−α1, . . . ,−αL+1). Computing the kernel of the above matrix leads to

L = Z(1,−1,−1, 0L−1, 1), (3.47)

where by definition 00 := ∅. We choose w = (1, 0L+2), thus obtaining

finw(HA(κ)) = 〈θ1θL+3〉+ 〈Aθ − κT 〉 . (3.48)

The roots can be written as

{γi}=

{(

0, αL+1 − β, . . . , α1 − β, Lβ −
L+1
∑

i=1

αi

)

, (3.49)

(

L
∑

i=1

αi−Lβ, (L−1)β −
L
∑

i=1

αi, (L−1)β −
L+1
∑

i 6=L

αi, −β + αL−1, . . . , −β + α1, 0

)}

,

which lead to the canonical series

φ1 = cγ1 2F1

(

β − αL+1, β − αL, Lβ −
L+1
∑

i=1

αi + 1;x

)

, (3.50)

φ2 = cγ2 2F1

(

− (L− 1)β +

L
∑

i=1

αi, −(L− 1)β +

L+1
∑

i 6=L

αi;

L
∑

i=1

αi − Lβ + 1;x

)

, (3.51)
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Figure 7. Single mass bubble graph.

where

x =
c1cL+3

c2c3
(3.52)

The relevant integration constant reads

K1 =
Γ(−Lβ +

∑L+1
i=1 αi)

Γ(β)

L+1
∏

i=1

Γ(β − αi), (3.53)

which after a change of variables corresponds to the formula of the Mellin transform of a

linear function. Setting c1 = 0, c2 = · · · = cL+2 = 1, and cL+3 = s we arrive at

I(α) = s(Lβ−
∑L

i=1
αi) Γ(−Lβ +

∑L+1
i=1 αi)

Γ(β)

L+1
∏

i=1

Γ(β − αi) (3.54)

The formulas for the fake indicial ideal and its roots have been checked up to 5-loop. In this

example, we have seen that deforming g(z) leads to a GKZ system of co(A) = 1 and taking

the limit of the deformation to zero at the end of the computation allows us to interpret

Feynman integrals as the limit of a linear combination of their canonical series.

3.4 Examples of co(A) = 1

3.4.1 One-mass bubble

Let us work now with the bubble integral with one massive internal line (figure 7). The

inverse propagators of this integral read

D1 = (k2), D2 = (k − p)2 +m2. (3.55)

Omitting the overall Γ factors we have the Lee-Pomeransky representation

I(α) =

∫

R2
+

zα1

1 zα2

2

(z1 + z2 + (m2 + s)z1z2 +m2z22)
β

dz1
z1

dz2
z2

, (3.56)

where s = −p2. Therefore, the corresponding toric polynomial and the associated matrix A

read

g(c, z) = c1z1 + c2z2 + c3z1z2 + c4z
2
2 ⇐⇒ A =







1 1 1 1

1 0 1 0

0 1 1 2






. (3.57)
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Now, let us consider the related problem from the GKZ point of view. We are interested in

the more general situation

Ig(κ) =

∫

Ω

zα1

1 zα2

2

(c1z1 + c2z2 + c3z1z2 + c4z22)
β

dz1
z1

dz2
z2

. (3.58)

Taking w = (0, 1, 1, 1), we obtain the following fake indicial ideal

finw(HA(κ)) = 〈θ2θ3, β + θ1 + θ2 + θ3 + θ4, α1 + θ1 + θ3, α2 + θ2 + θ3 + 2θ4〉 . (3.59)

Then, the roots of this ideal read

{γi}={(−α1, 2α1 + α2 − 2β, 0,−α1− α2 + β), (α1 + α2 − 2β, 0,−2α1 − α2 + 2β, α1−β)}.

(3.60)

In addition, we have L = Z(−1, 1, 1,−1), and hence u = n(−1, 1, 1,−1). We also have

u.w = n, which implies [γi]u−
= 0 for n < 0. The canonical series simplify to the functions

φ1 = cγ12F1

(

α1, α1 + α2 − β; 2α1 + α2 − 2β + 1;
c2c3
c1c4

)

, (3.61)

φ2 = cγ22F1

(

2β − α1 − α2, β − α1; 2β − 2α1 − α2 + 1;
c2c3
c1c4

)

. (3.62)

The result of the integral is a linear combination of φ1,2. Constants of integration can be

obtained by integrating (3.58) taking c3 = 0 and Ω = R2
+, and similarly for c2. This leads

to the multiplying factors

K1 =
Γ(α1)Γ(α2 + α1 − β)Γ(2β − 2α1 − α2)

Γ(β)
, (3.63)

K2 =
Γ(β − α1)Γ(2α1 + α2 − 2β)Γ(2β − α1 − α2)

Γ(β)
. (3.64)

Setting c3 = (s+m2) and c4 = m2, the resulting integral reads

I(α) = (m2)β−α1−α2

(

K1 2F1

(

α1, α1 + α2 − β; 2α1 + α2 − 2β + 1; 1 + s/m2
)

(3.65)

+ (1+s/m2)2β−2α1−α2K2 2F1

(

2β − α1−α2, β − α1; 2β − 2α1−α2+1; 1+s/m2
)

)

.

The form of the result as a sum of two hypergeometric functions is reminiscent of the

negative dimension approach [62]. Using the eq. (A.8), we obtain

I(α) = (m2)β−α1−α2
Γ (α1) Γ (β − α1) Γ (2β − α1 − α2) Γ (−β + α1 + α2)

Γ(β)2
(3.66)

× 2F1

(

α1,−β + α1 + α2;β;−s/m2
)

.

3.4.2 One-mass sunset

We now consider the single mass sunset graph with the constraint s = −p2 = m2 (figure 8).

The inverse propagators read

D1 = (k1 − p1)
2, D2 = (k2 − k1)

2 +m2, D3 = k22, (3.67)
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which lead to the integral

I(α) =

∫

R3
+

dη3
zα1

1 zα2

2 zα3

3

(z1z2 + z1z3 + z2z3 +m2z1z22 +m2z22z3)
β
. (3.68)

We consider the following toric polynomial

g(c, z) = c1z1z2 + c2z1z3 + c3z2z3 + c4z1z
2
2 + c5z

2
2z3 ⇐⇒ A =











1 1 1 1 1

1 1 0 1 0

1 0 1 2 2

0 1 1 0 1











, (3.69)

such that the integral under consideration becomes

Ig(κ) =

∫

Ω

dη3
zα1

1 zα2

2 zα3

3

(c1z1z2 + c2z1z3 + c3z2z3 + c4z1z22 + c5z22z3)
β
. (3.70)

Choosing the weight vector w = (0, 1, 1, 1, 1), we find

finw(HA(κ))= 〈θ3θ4〉+ 〈Aθ − κT 〉 , (3.71)

{γi}={(α3 − β,−α1 − α3+β, 2α1+α2+α3 − 3β, 0,−α1 − α2 − α3 + 2β), (3.72)

(2α1 + α2 + 2α3 − 4β,−α1−α3 + β, 0,−2α1 − α2 − α3 + 3β, α1 − β)}.

From L = Z(1, 0,−1,−1, 1), we have u = n(1, 0,−1,−1, 1), hence u.w = −n. In order to

start the sum from n = 0, we set u → −u and thus u = n(0, 0, 1, 1, 0)− n(1, 0, 0, 0, 1). We

obtain

φ1 =cγ1
∑

n≥0

(β − α3)n (α1 + α2 + α3 − 2β)n
(2α1 + α2 + α3 − 3β + 1)n (1)n

(

c3c4
c1c5

)n

, (3.73)

φ2 =cγ2
∑

n≥0

(−2α1 − α2 − 2α3 + 4β)n (β − α1)n
(1)n (−2α1 − α2 − α3 + 3β + 1)n

(

c3c4
c1c5

)n

. (3.74)

The integration constants can be written collectively as

Kr =
1

Γ(β)

∏

i 6=0

Γ(−γir). (3.75)

– 30 –



J
H
E
P
1
2
(
2
0
1
9
)
1
2
3

1 2

3

44

p2

Figure 9. Party hat.

Finally, setting c1 = c2 = c3 = 1 and c4 = c5 = m2, we arrive at the result

I(α) = (m2)−α1−α2−α3+2β
(

K1 2F1(β − α3, α− 2β;α+ α1 − 3β + 1; 1) (3.76)

+K2 2F1(−2α+ α2 + 4β, β − α1;−α− α1 + 3β + 1; 1)
)

.

In order to write this result in simpler form let

A = β − α3, B = −2β + α1 + α2 + α3, C = 2β − α1 − α3,

hence we can write eq. (3.76) as

I(α) = (m2)−B Γ(A)Γ(B)Γ (β − C) Γ(C −A)Γ(C −B)

Γ (C) Γ (β)
, (3.77)

where we have used identity (A.8).

3.4.3 Single scale party hat

The next example is the party hat graph shown in figure 9. We have the inverse propagators

D1 = k22, D2 = (k2 − p3)
2, D3 = (k2 − k1)

2, D4 = (k1 − p1)
2. (3.78)

We will consider the case −p21 = −p23 = 0 and s = p22. The relevant integral in the

Lee-Pomeransky representation reads

I(α) =

∫

R4
+

dη4
zα1

1 zα2

2 zα3

3 zα4

4

(z1z3 + z1z4 + z2z3 + z2z4 + z4z3 + sz2z4z3)β
. (3.79)

Therefore, the toric polynomial has the form

g(c, z) = c1z1z3 + c2z1z4 + c3z2z3 + c4z2z4 + c5z3z4 + c6z2z3z4, (3.80)

where c6 = s. We associate the following matrix to g(c, z)

A =















1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 1

1 0 1 0 1 1

0 1 0 1 1 1















. (3.81)
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Taking w = (0, 1, 1, 1, 1, 1) leads to the fake indicial ideal (see example appendix B)

finw(HA(κ)) = 〈θ2θ3, β + θ1 + θ2 + θ3 + θ4 + θ5 + θ6, α1 + θ1 + θ2, α2 + θ3 + θ4 + θ6,

α3 + θ1 + θ3 + θ5 + θ6, α4 + θ2 + θ4 + θ5 + θ6〉, (3.82)

with roots

γi = {(−α1, 0, α1 + α4 − β, α3 − β, α1 + α2 − β,−α1 − α2 − α3 − α4 + 2β), (3.83)

(α4 − β,−α1−α4 + β, 0, α1 + α3 + α4 − 2β, α1 + α2 − β,−α1 − α2 − α3 − α4 + 2β)}.

Computing ker(A) leads to

L = Z(1,−1,−1, 1, 0, 0) ⇒ u = n(1, 0, 0, 1, 0, 0)− n(0, 1, 1, 0, 0, 0). (3.84)

Since u.w = −n, [γ]u−
= 0 for n > 0. Then, the canonical series (2.29) leads to

φ1 = cγ12F1(α1, β − α3;α1 + α4 − β + 1; (c1c4)/(c2c5)), (3.85)

φ2 = cγ22F1(β − α4,−α1 − α3 − α4 + 2β;−α1 − α4 + β + 1; (c2c4)/(c1c5)). (3.86)

Integration constants read

Kr =
1

Γ(β)

∏

i 6=0

Γ(−γir). (3.87)

Setting c1 = c2 = c3 = c4 = c5 = 1, c6 = s, and defining

A = β − α4, B = 2β − α1 − α3 − α4, C = 2β − α3 − α4, (3.88)

we arrive at

I(α) = sB−α2
Γ(A)Γ(B)Γ(C −A)Γ (α2 −B) Γ(C −B)Γ (B − C + β − α2)

Γ(C)Γ(β)
, (3.89)

where we have used identity (A.8).

3.4.4 On-shell massless box

Let us now consider the massless box integral shown in figure 10. The inverse propagators

are given by

D1 = (k − p1)
2, D2 = (k + p2 + p3)

2, D3 = (k + p2)
2 D4 = k21, (3.90)

where −p2i = 0, i = 1, . . . , 4. We obtain

g(z) = z1 + z2 + z3 + z4 + sz1z3 + tz2z4, (3.91)

where s = −(p1 + p2)
2 and t = −(p2 + p3)

2 are the usual Mandelstam invariants. From this

polynomial we obtain the matrix

A =















1 1 1 1 1 1

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 0 1















. (3.92)
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Figure 10. On shell massless box.

Let us consider the more general problem

Ig(κ) =

∫

Ω

zα1

1 zα2

2 zα3

3 zα4

4

(c1z1 + c2z2 + c3z3 + c4z4 + c5z3z1 + c6z2z4)β
dη4. (3.93)

Choosing w = (0, 1, 0, 0, 0, 0), the fake indicial ideal reads

finw(HA(κ)) = 〈θ2θ4θ5〉+ 〈Aθ − κT 〉 , (3.94)

which lead to the roots

{γi} = {(−α1, α1 + α3 + α4 − β,−α3, α1 + α2 + α3 − β, 0,−α1 − α2 − α3 − α4 + β),

(α2 + α3 − β, α4 − α2, α1 + α2 − β, 0,−α1 − α2 − α3 + β,−α4),

(α3 + α4 − β, 0, α1 + α4 − β, α2 − α4,−α1 − α3 − α4 + β,−α2)} (3.95)

Computing kerA leads to u = n(−1, 1,−1, 1, 1,−1), hence u.w = n. Therefore [γ]u−
= 0

for n < 0. We also have

u− = (n, 0, n, 0, 0, n), u+ = (0, n, 0, n, n, 0). (3.96)

We can now write the canonical series (2.29) as

φ1 =cγ1
∑

n≥0

(α1)n (α3)n (−β + α1 + α2 + α3 + α4)n
(1)n (−β + α1 + α2 + α3 + 1)n (−β + α1 + α3 + α4 + 1)n

(

c2c4c5
c1c3c6

)n

, (3.97)

φ2 =cγ2
∑

n≥0

(α4)n (β − α1 − α2)n (β − α2 − α3)n
(1)n (−α2 + α4 + 1)n (β − α1 − α2 − α3 + 1)n

(

c2c4c5
c1c3c6

)n

, (3.98)

φ3 =cγ3
∑

n≥0

(α2)n (β − α1 − α4)n (β − α3 − α4)n
(1)n (α2 − α4 + 1)n (β − α1 − α3 − α4 + 1)n

(

c2c4c5
c1c3c6

)n

. (3.99)

The constants of integration read

Kr =
1

Γ(β)

∏

i 6=0

Γ(−γir). (3.100)

In this case the canonical series evaluate to hypergeometric functions 3F2(a, b; c; d, e;x) (see

definition in eq. (A.4)). Let A = α1 + α2 + α3 + α4 and x = (c2c4c5)/(c1c3c6). We can
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2.

write the result in the condensed form

Ib(κ, c) = K1c
γ1

3F2 (α1, α3,−β +A;−β +A− α4 + 1,−β +A− α2 + 1;x) (3.101)

+K2c
γ2

3F2 (β − α1 − α2, β − α2 − α3, α4;β −A+ α4 + 1,−α2 + α4 + 1;x)

+K3c
γ3

3F2 (α2, β − α1 − α4, β − α3 − α4;α2 − α4 + 1, β −A+ α2 + 1;x)

Setting the constant to the values of the original polynomial, i.e., c1 = · · · = c4 = 1, c5 = s

and c6 = t, we obtain

I(α) = K1t
β−A

3F2 (α1, α3,−β +A;−β +A− α4 + 1,−β +A− α2 + 1; s/t) (3.102)

+K2t
−α4sα4−A+β

3F2 (β−α1−α2, β−α2−α3, α4;β−A+α4+1,−α2 + α4+1; s/t)

+K3t
−α2sα2−A+β

3F2 (α2, β − α1 − α4, β−α3 − α4;α2 − α4+1, β−A+α2+1; s/t) .

Hence, we have recovered the result obtained by the differential reduction method using

Gröbner bases given in ref. [63] based on [64, 65]. Interestingly, the computation of

integrations constants in ref. [63] follows a similar prescription as ours. However, in our

case, because of our choice of w, we only set c5 = 0 to compute K1 but we do not use

c6 = 0 as in [63]. This results also matches nicely the results obtained in ref. [66] using the

negative dimension approach.

3.5 A co(A) = 2 example

Finally, let us consider the triangle integral shown in figure 11 where all external momenta

are nonvanishing. The inverse propagators read

D1 = (k1 − p1)
2, D2 = (k1 + p2), D3 = k21, (3.103)

where we have −p21 = s1, −p22 = s2, and −(p1 + p2)
2 = s3. Using momentum conservation,

we have

g(z) = z1 + z2 + z3 + s3z1z2 + s1z1z3 + s2z2z3. (3.104)

The associated matrix reads

A =











1 1 1 1 1 1

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1











. (3.105)

– 34 –



J
H
E
P
1
2
(
2
0
1
9
)
1
2
3

This matrix has co(A) = 2 and hence the resulting A-hypergeometric functions will be

functions of two variables. The integral under consideration then reads

Ig(κ) =

∫

Ω
dη3

zα1

1 zα2

2 zα3

3

(c1z1 + c2z2 + c3z3 + c4z1z2 + c5z1z3 + c6z2z3)β
. (3.106)

Computing ker(A), we have

L = {(−1, 0, 1, 1, 0,−1), (−1, 1, 0, 0, 1,−1)}, (3.107)

which means that in this case the lattice is generated by

u = m(−1, 0, 1, 1, 0,−1) + n(−1, 1, 0, 0, 1,−1), m, n ∈ Z. (3.108)

We choose w = (0, 0, 1, 0, 0, 0), which has the advantage of restricting the sum over m. We

have u.w = m, hence [γi]u−
= 0 for m < 0. The fake indicial ideal reads

finw(HA(κ)) = 〈θ2θ5, θ3θ4〉+ 〈Aθ − κT 〉 , (3.109)

with roots

{γi} = {(−α1, C − β,B − β, 0, 0, β −A), (α2 − β,C − β, 0, β −B, 0,−α3), (3.110)

(α3 − β, 0, B − β, 0, β − C,−α2), (A− 2β, 0, 0, β −B, β − C,α1 − β)}

where A = α1 + α2 + α3, B = α1 + α2, and C = α1 + α3. Inserting the roots in eq. (2.29)

gives four solutions

φ1 =cγ1
∑

m≥0,n∈Z

(α1)m+n (A− β)m+n

(−β + C + 1)n(−β +B + 1)m(1)m(1)n
xmyn, (3.111)

φ2 =cγ2
∑

m≥0,n∈Z

(β − α2)m+n (α3)m+n

(−β + C + 1)n(1)m(β −B + 1)m(1)n
xmyn, (3.112)

φ3 =cγ3
∑

m≥0,n∈Z

(β − α3)m+n (α2)m+n

(1)n(−β +B + 1)m(1)m(β − C + 1)n
xmyn, (3.113)

φ4 =cγ4
∑

m≥0,n∈Z

(2β −A)m+n (β − α1)m+n

(1)n(1)m(β −B + 1)m(β − C + 1)n
xmyn, (3.114)

where we have defined x = (c3c4)/(c1c6) and y = (c2c5)/(c1c6). Due to our choice of weight

vector, the sum has been only restricted in m. However, it is easy to see that the sum over

negative integers n vanish due to the presence of (1)n. Hence the above sums have the form

∑

m,n≥0

(a)m+n (b)m+n

(c)m (d)n (1)m(1n)
xmyn (3.115)

which are sum representations of the Appell hypergeometric function F4 (see eq. (A.5)). In

order to compute the integration constants we can follow our prescription and set c4 = c5 = 0

in eq. (3.106) and take Ω = R3. This computes the first coefficient in the expansion K1. We
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follow the same procedure for the remaining integration constants. They can can collectively

be written as

Kr =
1

Γ(β)

∑

i 6=0

Γ(−γir). (3.116)

Setting c1 = c2 = c3 = 1 and c4 = s3, c5 = s1, and c6 = s2, we can write the Feynman

integral as

I(α) =K1s
β−A
2 F4(α1, A− β;−β + α13 + 1,−β + α12 + 1; s3/s2, s1/s2) (3.117)

+K2s
−α3

2 sβ−B
3 F4(β − α2, α3;C − β + 1,−B + β + 1; s3/s2, s1/s2)

+K3s
−α2

2 sβ−C
1 F4(β − α3, α2;B − β + 1,−C + β + 1; s3/s2, s1/s2)

+K4s
β−C
1 sα1−β

2 sβ−B
3 F4(2β −A, β − α1;−B + β + 1,−C + β + 1; s3/s2, s1/s2),

which agrees with the results obtained via the Mellin-Barnes integral representations [67, 68]

and the negative dimension approach [62].

4 Conclusions and outlook

In this paper have studied the relation between the Lee-Pomeransky representation of

Feynman integrals and GKZ systems. We have shown that in generic cases we can associate

a matrix A of co(A) > 0 to a deformed polynomial gr(c, z) = r(c, z) + U(c) + F(c), where

r(c, z) is introduced to ensure a canonical series representation. U(c) and F(c) are toric

polynomials associated with the Symanzik polynomials. Under these restrictions, we can

interpret a large class of Feynman integrals as furnishing a solution of a GKZ system based

on A. The canonical series algorithm then allows us to evaluate integrals with arbitrary

powers in the propagators as linear combinations of A-hypergeometric functions. Feynman

integrals are recovered at the end of the computation by identifying the coefficients of the

toric polynomials with their kinematic values.

Using the canonical series method, we have evaluated several integrals for arbitrary

noninteger powers in the propagators. A particularly nontrivial example is the on-shell

massless box with arbitrary powers in the propagators. With this method the result was

obtained as a particular case of an A-hypergeometric integral and it matches the result

based on the recurrence relations method based on Gröbner bases [63] and the negative

dimension approach [66]. Another nontrivial example is the co(A) = 2 example of the

three-scale massless triangle, which is in agreement with the negative dimension approach as

well. It would be interesting to study the relation between those methods and the canonical

series algorithm.

Computing canonical series is a straightforward computational algebra problem. How-

ever, these series heavily depend on the choice of a weight vector w, which sets the initial

ideal and effectively chooses a domain of convergence. This choice is tied with the available

information about the integration cycle and ultimately with our ability to compute integra-

tion constants. Our recipe of setting Ω = RN
+ is the obvious choice and was motivated by

the cycles, which one obtains by studying the coamoeba of gr(z) in Euclidean kinematics.
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A full characterization of the coamoeba of gr(z) might be necessary when non-Euclidean

kinematics is considered and going to higher codimensions.

The rank of the system arising from the toric version of gr(z) is bounded by vol(A) which,

in general, is greater than the number of master integrals arising from IBP identities or from

the Euler characteristic [69]. The canonical series algorithm produces vol(A) hypergeometric

series in co(A) variables. They collapse to simpler expressions once we set the coefficients c

to their kinematic values. This typically involves setting one or more of these variables to

unity, which amounts to evaluate hypergeometric functions at singular points. At co(A) = 1

the functions appearing at those limits are Γ-functions. At co(A) = 2, those limits lead to

hypergeometric functions of one variable, which then collapse to simpler expressions. It

would be interesting to study the mechanism which relates the number of master integrals

and the number of canonical series solutions.

We believe that the application of GKZ systems and canonical series to Feynman

integrals is not limited to the Lee-Pomeransky representation. Indeed, it would be interesting

to apply these ideas in representations where an algebraic definition of the integration cycles

is available. For instance, this is the case of the representation due to Baikov [70], which

has recently been studied specially in the context of maximal cuts [71–75]. This approach is

closely related to ref. [76], where bases of Pfaffian systems for GKZ systems are constructed

using twisted cohomology groups.

We leave these explorations for future work.
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A Useful formulas

Integrals.
∫

R+

zα

(a+ bz)β
dz

z
=

Γ(β − α)Γ(α)

Γ(β)
aα−βb−α, (A.1)

Re(α) > 0, Re(β − α) > 0.
∫

R+

zα

(1 + z)β1(1 + cz)β2

dz

z
=

Γ(β1 + β2 − α)Γ(α)

Γ(β1 + β2)
2F1(α, β2;β1 + β2; 1− c), (A.2)

Re(β1 + β2) > Re(α) > 0, |arg c| < π
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Sum representations.

2F1(a, b, c;x) =
∑

n≥0

(a)n (b)n
(c)n (1)n

xn, (A.3)

3F2(a, b, c; d, e;x) =
∑

n≥0

(a)n (b)n (c)n
(d)n (e)n (1)n

xn, (A.4)

F4(a, b; c, d;x, y) =
∑

m,n≥0

(a)m+n (b)m+n

(c)m (d)n (1)m(1n)
xmyn. (A.5)

Linear transformations.

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (A.6)

2F1(a, b, c; z) = (1− z)(c−a−b)
2F1(c− b, c− a; c; z), (A.7)

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b− c+ 1; 1− z) (| arg(1− z)| < π) (A.8)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z),

2F1(a, b, c; z) = (1− z)−aΓ(c)Γ(b− a)

Γ(b)Γ(c− a)
2F1

(

a, c− b; a− b+ 1;
1

1− z

)

(| arg(1− z)| < π)

(A.9)

+ (1− z)−bΓ(c)Γ(a− b)

Γ(a)Γ(c− b)
2F1

(

b, c− a; b− a+ 1;
1

1− z

)

.

Pochhammer identities.

(0)0 = 1,

(0)m = 0, m ∈ N,

(0)−m =
(−1)m

(1)m
, m ∈ N,

(a)−m =
(−1)m

(1− a)m
,

(a)m+n =(a)m (a+m)n .

(A.10)

B Macaulay2 example

In this appendix, we will give a short example using Macaulay2 [77] of the algorithm to

compute fake indicial ideal for the party hat integral. The matrix A associated with this

integral is given in eq. (3.81). Our starting point will be to compute the toric ideal IA.

Using the procedure in Part II (Toric Hilbert Schemes) of ref. [57] gives

i2 : A={{1, 1, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 1}, {1, 0, 1,

0, 1, 1}, {0, 1, 0, 1, 1, 1}};

i3 : toricIdeal A

o3 = ideal(b*c - a*d).
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We write

IA = 〈∂2∂3 − ∂1∂4〉 . (B.1)

The next step it to compute the initial ideal of IA with respect to a weight vector w.

Using the built in Macaulay2 package D-modules to obtain the initial ideal with respect to

w = (0, 1, 1, 1, 1, 1) gives

i4 : loadPackage "Dmodules";

i5 : D=QQ[a,b,c,d,e,f,Da,Db,Dc,Dd,De,Df,

WeylAlgebra=>{a=>Da,b=>Db,c=>Dc,d=>Dd,e=>De,f=>Df}];

i6 : IA=ideal(Db*Dc-Da*Dd);

o6 : Ideal of D

i7 : toString inw(IA,{0,-1,-1,-1,-1,-1,0,1,1,1,1,1})

o7 = ideal(Db*Dc)

Notice that K[∂1, . . . , ∂n] is a commutative ring and hence in(−w,w)(IA) = inw(IA). We have

the monomial ideal

inw(IA) = 〈∂2∂3〉 . (B.2)

In Macaulay2 the standardPairs function computes the Standard Pairs of a monomial

ideal. We define a monomial ideal in the commutative ring Q[a, . . . , f ] and compute its

standard pairs.

i8 : R=QQ[vars(0..5)];

i9 : Iinw=monomialIdeal(b*c);

o9 : MonomialIdeal of R

i10 : standardPairs Iinw

o10 = {{1, {d, c, a, e, f}}, {1, {d, b, a, f, e}}}

o10 : List

S(in(w)(IA)) ={{1, {1, 3, 4, 5, 6}}, {1, {1, 2, 4, 5, 6}}}, (B.3)

indw(IA) =
⋂

(∂a,K)∈S(inw(IA))

〈(θj − aj), j /∈ K〉 = 〈θ2〉 ∩ 〈θ3〉 , (B.4)

therefore

finw(HA(κ)) = 〈θ2θ3〉+ 〈Aθ − κT 〉 . (B.5)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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