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1 Introduction

The Fronsdal program has been formulated to define consistent non-linear field theories

which include interacting higher-spin gauge fields at the classical level [1]. Its long standing

motivation has been a deeper understanding of the symmetries behind quantum gravity.

Numerous attempts have been devoted to find solutions to this problem from various per-

spectives, which include the Noether procedure (see [2-29] and references therein, for an in-

complete list of relevant works), the frame-like formalism [30-36], and key attempts [37-42]

to obtain directly a fully non-perturbative formulation of a higher-spin theory.



However, in spite of the above remarkable efforts, all attempts are being confronted
with one and the same conceptual subtlety, which is intimately related to the definition of
a non-local extension of the classical field theoretic deformation problem that lies at the
basis of Einstein General Relativity and QFT.

So far, it has been possible to make sense of pseudo-local higher-spin Lagrangians and
equations of motion up to the cubic order, where cubic couplings have been recently fixed
completely both using holography [43-50] and Noether procedure [27, 51]. However, beyond
the cubic order a proper extension of the functional class of local Lagrangian functionals
and equations of motion is currently lacking. This goes hand in hand with the proliferation
of infinitely many explicitly non-local off-shell solutions to the Noether procedure,! which
lead to one and the same observable defined by AdS/CFT correspondence. It was further
argued in [51] that no proper extension of the functional space of non-localities is possible
in a properly defined generalised field theoretic context and that one may have to resort
to String Theory, i.e. beyond the realm of field theory, to achieve a proper definition of
higher-spin theories.

On the other hand any CF'T defines, up to off-shell ambiguities, a formal bulk field
theory. From this perspective AdS/CFT acquires a tautological meaning and can be con-
sidered as some kind of general non-local map/transform which can be inverted to fix bulk
Lagrangian couplings in a process that has been referred to as holographic reconstruc-
tion [45, 48-50, 57-59]. Exactly in the same way as it is possible to enlarge the functional
domain to define an integral transform, the key question is about a clever choice of regu-
larity conditions which ensure a proper independent definition of both the boundary and
bulk sides of the duality.

For these reasons it is important to push beyond tree-level, and investigate quantum
properties of higher-spin gauge theories independently on both the bulk and boundary sides
to test the degree of non-localities. With this motivation in mind, the aim of this work
is to revisit the ambient space formalism and formulate a consistent scheme to quantise
higher-spin gauge theories on AdS by writing down their quantum action in a fixed gauge.
Together with recently developed tools [60] to evaluate loop diagrams with external legs
on AdS,? this constitutes a key step towards quantum tests of the duality, beyond the one-
loop vacuum energy checks [64—75] which only probe the free theory. In particular, in this
work we write down the full cubic quantum action for the type-A theory in the de-Donder
gauge and invert the corresponding kinetic terms for both ghosts and physical fields in
the same gauge. We would like to stress here that upon considering a gauge fixing at the
path integral level and after inserting the ghost Faddeev-Popov determinant, the quantum
action is complete and does not need to be supplemented with additional off-shell terms.?
We also outline a systematic procedure to formally reconstruct the full quantum action at

1See e.g. [18, 46, 51-56] for a detailed discussion of this issue.

2For work on quantum corrections in flat space see [61]. For previous investigations of quantum correc-
tions in AdS, see [62, 63].

3This is unlike at the classical level, where no ghosts would be introduced and one would require the
additional off-shell terms. For an example of the latter in the context of higher-spin gauge theories, see
e.g. [14, 15] in flat space.



any order in weak fields given the physical vertex for traceless and transverse fields. In the
next section we provide a short summary of the main results.

1.1 Summary of results

In this work we determine the gauge fixed path integral of the minimal type A higher-
spin gauge theory on AdSgzy1 up to cubic order fluctuations, together with associated
propagators in the same gauge. The path integral reads

7= / (dg)[dd] de] 8[D(p)] e~Seleed] (11)

with quantum action
Sq [QD’ c, E] = S[‘)O] + Sghost [507 57 C] ) (12)

where ¢ collectively denotes the spectrum of Fronsdal fields in the type A theory, and
¢, ¢ the corresponding ghosts. Above we have explicitly inserted a J-function measure to
enforce the de-Donder gauge condition (2.45).* Expanding up to cubic order:

Sle] = SPp] + SO g] + ... (1.3a)
Sghost [, €, €] = Séfl)ost [p, ¢, c] + Séi)ost (o, ¢ c]+.... (1.3b)

The free minimal type A Fronsdal action is given by
Sl = >~ S@[p), (1.4)

se2N

where S®)[p,] is the action® (2.39) describing a free totally symmetric spin-s Fronsdal

gauge field ¢ [76]. The field g is a parity even scalar of fixed mass m3 = —2(d — 2) /R?.

This is the minimal spectrum compatible with global higher-spin symmetry [38, 77, 78].
In section 3.1 we derive the cubic order action in de Donder gauge, which reads

g3 — Z Vi, 52,55 (1.5a)
51282253
V51752»53 = Vg;r{;z,ss + V8(11?52753 + Vs(f352,53 + Vs(i)smss’ (1'5b)
where [27, 48] (using the ambient space formalism reviewed in section 2.1):
Vg;?;27s3 = 57;?:92,53(7081 (Xb Ul) Pso (X27 U2) Psg (X37 U3) ) (16&)

X=X

TT _ $17)527)83
81,582,853 951732»333)1 y2 3

4We focus in this work on the standard Faddeev-Popov gauge fixing prescription in a weak field ap-
proximation. In particular we do not consider the most general gauge-fixing functions D(p) + w = 0 or
their non-linear deformations and possible weighted averages. The latter more general gauge fixings can be
studied with similar techniques used in this work and are left to future investigations. In particular it would
be very interesting to investigate non-linear gauge fixing which could simplify perturbative computations.
We note however that in order to study non-linear gauge fixings, one should also address the problem of
locality and the issues involved when dealing with infinite summations in spin [51, 55].

5Note that owing to the de Donder gauge fixing we can drop the part of the Fronsdal operator propor-
tional to the de Donder tensor.



are the cubic couplings for traceless and transverse fields, with coupling constants [27, 48]

d=3 % 3 4od=t
1 T 2 F
Is1,52,85 = H ) (1.7)
\/>F(d—|—51—|—82+53—321 )
Their de Donder gauge off-shell completion is given in the ambient formalism by
Vg}?sz,s:g =3 (8)]1 81,82,83) Ul : Xl 90;(11)¢52¢53 - (ayQ S1 32753)S081 U2 : X2 808(21)8055
2 (ay3 31,82,33)9051S082 U3 . X3 90/5(31) ) (18&)
(2) 1 T /(1) (1) -
V51,52783 = 5 (6y18y2f51,52,53) U - Xy Psy Us - Xo Poy ' Psz T cyclic
1 .
(@ = 24 22009,) (05,03, £47%3 50) #l Uz - X2 @) 0y + cyelic, (1.8b)

1
V,g:f,)sz,83 g (d + 2y18y1)<d + 2y28y2)(d + 2-))38373)(8321 83728373 81,82,83) @s(l )(108(2 )808(3 )
+

(d+2y3ay3)(d 2+2y18y1)(8y18y28y3 81,82 83) U1 Xl SOS(I )SOSQSDS(:’,) + CyChC

l—‘OOM—‘

(3y13y23y3f51,32,53)U1 X1 Us - Xo GV U3 - X500, (1.8c)

which are fixed by requiring gauge invariance in the de-Donder gauge and where we use
the notation (3.9). Notice that one cannot remove the X? dependence until it has been
in the building blocks ;.

The free ghost action can be fixed by the linear gauge transformations, and is given

commuted® through all derivatives present in fs1 52,53

by (see section 3.2 and, for notation, section 2)

(e 9]

St e = 360! [ (@00 A wd (ot d=-D]es (@] . (19)
s=2 d+1 -

where cs_1, ¢s—1 are the ghosts associated to the Fronsdal field ¢s. Likewise, the cu-
bic action is fixed by the first order deformation of the linearised gauge transformations,
and reads

(1.10)

3
Séhzyst [p, ¢, ] Z 5o /Adsd_H Cs2—1(T, Ouy) (Ouy - V2) T13 (Cs1—15Ps3)

)

u=0

vt S e@.00) G Vi) T 1,00
AdSqi

S
s3=2 3

In general X2 can be replaced by a simple differential operator acting on fg;’Ts%Sg:

Fo e ss (Vi) XT = — (1 + 2H10v,0y,) for 5,55 (Vi)



where

N 1 1
Ti3 (513 9053) = 78)71 fsj;j;z,s;), 51%053 - 7(d -2+ 2ylay1)aylaj2/3 5;22,33 gl)(pgg (1'11)
(d 2 + 2)30y,)0y, 03,0y, F1%, 4, 0 - 00,€1 Us - X3 o7
1
8 (d + 2y38y3)(d 2 + 23}16)71)8371832283)3 S1 82,83 8U a 2 § )Spls(g )7

and

Thy (§17w52)=+18y1f§;?;2,53 1605, + (d 2+ 210y, )0, 03, 117 .0, - 00,6 s,
(d 2+ 2)10y, )0y, Oy, O3, f1: 52,538U3 aU3§1 Us - X2905(2)
—fw+ﬂyﬁ%ﬂd 2+ 210y, )9, 035,03, F1 T . 0u, - O, €D
- §8y15y2f31,52,33 &1 Uz - Xo g, (1.12)

which come from the first order deformation (3.26) of the linearsied gauge transformation
induced by the de Donder gauge cubic couplings (1.5).

Having gauge fixed the action, in section 4.2 we also determine the complete form
of the bulk-to bulk propagators for Fronsdal fields and ghosts in the de-Donder gauge,
completing the results of [44] to include the gauge terms required for an off-shell source.

The bulk-to-bulk propagator for a spin-s Fronsdal field in de Donder gauge is given by

ILs (21, u1; 2, u2) = T, @y (1, u1; 2, u2) (1.13)
2 2
uj . U2 :
+ mﬂ'@wé (1'17“17 T2, U2> m T o («TlaU17$27U2)
uju3

+ m A o (w1, u15 72, u2) ,

where we decompose in traces. The traceless components are given in spectral form by

Ty 3, (1, W13 To, W) Z/ dv gfi‘”l ) (w1 V)l (wg - V)l QO s—i(x1, w20, w2),  (1.14a)

T (T1, W15 2, w2) = Z/ dv QWW2 () (w1 - V)™ (wa - V) Qs _a (@1, w13 72, w2),
(1.14b)

T @2 (xl?wl’mZ’wQ Z/ dv gf:ﬁzl 2 ) ( v)l (w2 : v)l+2 QV757271(‘%1’ wl;x27w2)v
(1.14c)

Tt ot (L1, W13 T, w3) / dv g%% ) (wy - V)" (ws - V) Dy s—2—i(x1, wi; T2, w2),

(1.14d)



in terms of harmonic functions Q (see section B), whose coefficients read

64s(s —1)(d +2s —5)

P1P2 — 1.15
9501 ) I(—d+1—2s+2)((d+2s—2)?+ 4v?) (1.152)
s—2

) 5" )
(A2 +4d(l+5—2) +4 (12 +2(s — 1) + 12 + (s — 2)2))?

P10 (I+2)(—d+1—25s+4)((d+25s—2)? +4%)

15 (14+2)(—d+1—25+4) ((d+25s—2)2+4%) 5 ;

A% L) = e Lo ), (1sg

2

' o (I+2)%(—d+1—2s+4)((d+2s —2)% +42)"

g;p,;f%fl (v) = 4(d + 2s E 5)2 ) gf;fé*l () - (1.15d)

The function 0532) (v) is given by (B.4). Notice that the above formula have a smooth

! = 0 limit combining the above expression with the explicit form of cls__g (v). Roughly
speaking the first term corresponds to the traceless part of the propagator while the other
terms are compensating for non-physical components generated by the traceless part in
order for the de-Donder gauge condition to be satisfied.

The ghost bulk-to-bulk propagator is similarly given by:

s—1 oo
Hfll'l(x1,w1;$2,w2) = Z/ dv g1 s 1-1 (V) (w1 - V) (wa - V) Q1 y(21, w1; 29, wo).
=t (1.16)
with
d+2s—5 1
(1—1)(2s+d—1—5),,2+(3_3+g)2'

hs—l,s—l—l (V) = _Cgs_l) (V) (117)

We also determine the ghost bulk-to-boundary propagators in section 4.1.2, which in
the ambient space formalism read

(U-Z)(-2P-X)+4+2(U-P) (Z_X)]sfl

h. . _ 2
K (X, U; P, Z) = Cays1,51X (C2x . p)ire?

. (1.18)

and normalisation

(d+2s=3)T'(d+s—2)
d
2md/2T (s + 2)
These are to accompany the bulk-to-boundary propagators for the associated spin-s gauge

fields, which were determined by Mikhailov in [79].
It is interesting to notice the factor of X? appearing in the bulk-to-boundary prop-

Cd+371,371 = (119)

agator for the ghosts. Although this factor does not affect the intrinsic projection, this
is the correct ambient representation compatible with the fact that in our ambient space
conventions ghost do not uplift directly as ambient space harmonic functions. This is due
to the leftover mass term present in the ambient equations (2.26). At the practical level



one can reabsorb the additional factor of X2 of (1.18) in the vertices redefining the fields
in terms of harmonic representatives allowing a more uniform notation. However, since
this issue is not important for the discussion of the present paper we do not discuss it
further here.

2 Notation, conventions and ambient space

In this work we consider higher-spin gauge theories in Euclidean anti-de Sitter (AdSzy1)
space, where the boundary dimension d is general.

Throughout we employ an operator formalism to manage the tensor indices (for a
review see e.g. [80], whose conventions we adopt throughout), where fields are represented
by generating functions. For example, a totally symmetric rank-s bulk field ¢, ., is
represented as

1
pyopis (T) = s (T3u) = y‘ﬁm---us (z)ult .l (2.1)

where we introduced the constant (d + 1)-dimensional auxiliary vector u*. In packaging
totally symmetric tensor in generating functions as above, the action of the covariant
derivatives is defined as a differential operator in both x* and u*:

1
Vi = Vu—swilL = Vﬂ—i-wzb

S (2.2)

‘g

where u® = ef (z) u with viel-bein e, (z), wgb is the spin connection and L.’ the Lorentz
tensors which are given by
0 p O

Lab a

=Uu w — U 8u“7 8uaub = 52 (23)

In the following we shall work with contracted auxiliary variables u# = el (z)u® and the

a

o () Oya. As a consequence of the vielbein postulate:

associated derivative Oyr = €
[V, u”] =0, [Our, V] = 0. (2.4)

The operator formalism is useful since it allows to translate tensor operations in terms
of an operator calculus, which simplifies manipulations. For instance, the contraction:

Pprpis () M1 () = 8l s (2304) ¢ (T50) (2.5)

and the operations: divergence, symmetrised gradient, box, symmetrised metric, trace and
spin are represented by the following operators:

divergence: V - 0, sym. gradient: u -V, box: [, (2.6)

sym. metric: u?, trace: 02, spin: u - 9y.

In section A.1 we give the operator algebra.



In this formalism, the usual Fierz-Pauli conditions for a symmetric bosonic spin-s field
of mass m2R? = A (A —d) — s on AdS4;1 are given by:

(O—m2) ps (x,u) = 0, (2.72)
(Ou - V) s (z,u) = 0, (2.7b)
(Ou - Ou) s (z,u) = 0, (2.7¢)

For A = s+d—2, ¢s is a gauge field and the system (2.7) is invariant under the gauge
transformation

60 oy (x,0) = (u- V) oy (2,u), (2.8)

with symmetric traceless rank-(s — 1) gauge parameter

1
Es—1 (z,u) = mgul,“usilu“l coutTL (Oy - Oy) Es—1 (z,u) = 0, (2.9)

which is on-shell:

(O- mg) Es—1 (x,u) = 0, (2.10a)
(04 - V) &s—1 (z,u) = 0, (2.10b)
(Oy - Ou) &s—1 (xz,u) = 0, (2.10¢)

where ngQ =(s—1)(s+d—-2).

Fields which are symmetric and also traceless may furthermore be encoded in gen-
erating functions (2.1) of a null auxiliary vector w? = 0. In the operator calculus (see
e.g. [24, 81] and references therein) one replaces the partial derivative d,, with the Thomas
derivative [82]:

A 1
aw# - 811)}" -

(2.11)

which preserves w? = 0. In this case the operator calculus simplifies to just four operators:

~

0, w-V, V0w,  w-Oy. (2.12)

In section A.2 we give the corresponding operator algebra.

On the conformal boundary of AdS;y1, operators of non-trivial spin can likewise be
encoded in generating function notation. A totally symmetric spin-s operator O;, ;. at
the boundary point 4, i = 1,...,d can be packaged as

Oh-..is (y) — Og (y; Z) = Oh...is (y) Zil v Zis7 (2‘13)

with the null auxiliary vector 22 = 0. In this case the Thomas derivative is:”

1
d—2+22-0."

"This is sometimes referred to as the Todorov differential operator [83] in the CFT literature.

D=0, — a2, (2.14)




2.1 Review: ambient space formalism

In the ambient space formalism [84] one regards AdS;y; as a co-dimension one hyper-
surface
X2+ R*=0, (2.15)

in a (d + 2)-dimensional ambient flat space-time, which we parameterise by Cartesian co-
ordinates X4 where A = 0,1,...,d + 1 with metric = (—++...+) to describe Eu-
clidean AdS.

The totally symmetric spin s field ¢, ,, of mass m2R* = A (A —d) — s on AdSz41
is represented uniquely in ambient space by the tensor w4, 4.,

OXM  9XxXAs
Ponsis () = Ort1 T Optts

PA; ... As (X ($)), (216)
subject to the following constraints [85]:
e Tangentiality to surfaces of constant p = v/—X?2:

(X -00) s (X, U)=0, i=1,...,s. (2.17)

e The homogeneity condition:
(X - 0x +p) s (X,U) =0, ie. os(AX,U)=A"*ps(X,U), (2.18)
where we are free to choose either = A or u = d — A. In this work we take y = A.

These constraints make sure that the ambient uplift of fields that live on the AdS manifold
is well-defined and 1:1. Like in the previous section, in the above we introduced a generating
function to represent the ambient field w4, 4,:

1
oa,.A (X) = s (X,U) = P AL (X)UM .. U4, (2.19)

with constant ambient auxiliary vector U4,

The above discussion extends to differential operators. In the operator formalism, the
ambient space representative V4 of the Levi-Civita connection V, on AdSg4q is given
by [86—88]:

9, XB

Va=Ploys — 5zlan X V=0, (2.20)

with projector

X XB
Ph=of-~5- (X-PP=0  (P-X),=0 (2.21)
and
0 0

EAB - UAW - UB aUA (222)



In this framework, the intrinsic Fierz-Pauli system (2.7) is described by

0% s (X,U) =0, (2.23)
(aX : aU) Ps (Xv U) = Oa (223b)
(Ou - 0u) ¢s (X,U) =0, (2.23¢c)

supplemented with the tangentiality and homogeneity conditions (2.17) and (2.18).
For a spin s gauge field A = s+ d — 2, the gauge transformation (2.8) reads

U-X
68 s (X,U) = |U - 0x + —z U0y = X - 0x)| &1 (X, U), (2.24)

where the ambient representative of the gauge parameter is subject to the tangentiality
and homogeneity conditions

(X 00) &1 (X,U) =0, (X -0x+pu—1)&_1(X,U)=0, (2.25)

and the on-shell constraints (2.10) are represented as:

92 + % (d—2420-0y)| &1 (X, U) =0, (2.26a)
(Ox - Ou) &s—1 (X, U) =0, (2.26b)
(O - O) €51 (X,T) = 0. (2.26¢)

It is straightforward to verify that (2.24) under the constraints (2.25) and (2.26) leaves the
Fierz system (2.23) invariant.

Traceless fields living on the AdS manifold are represented by traceless ambient rep-
resentatives with respect to the ambient metric 745, which themselves can be encoded
in generating functions (2.19) with null ambient auxiliary vector W2 = 0. The Thomas
derivative (2.11) reads

1

Oy = Oya — W40, . 2.27
WAT WA T T 2w oy AW (2:27)

It is also sometimes useful to impose the constraints:
X -U=0, X-W =0, (2.28)

which take care of the tangentiality condition (2.17). Preserving the above constraints in
the operator calculus (which is given in section A.3 and section A.4) requires the following
modifications of dy and the Thomas derivative (2.27):

Dya=(P-9y), (2.29a)
1
d—1+2W -P-dy

DwA = Oya — Wa (0w - P -0w), (2.29b)

with projector (2.21).

,10,



The AdS boundary. The ambient formalism can also be extended to the AdS bound-
ary [84, 85, 89-93]. As the boundary is approached, the hyperboloid (2.15) asymptotes
to the light-cone. This limit does not yield a well-defined boundary metric, but one can
obtain a finite limit by considering a projective cone of light-rays:

PA=eXx4, e—0. (2.30)
Because X? is fixed, these null co-ordinates satisfy:
P?2=0, P~ )P, A #£0, (2.31)

and are identified with the AdS boundary. For Euclidean AdS in Poincaré co-ordinates
ot = (z, yi), we have:

2,2
1
X0(z) = RV 2 (2.32a)
2z
1— 2 _ .2
X ()= p~—2 —Y (2.32b)
2z
. Ry!
Xi(z) =~ (2.32¢)
z
and the boundary points are parameterised by the Poincaré section:
1 1 . ,
P'ly)=5(1+y"), PP u=50-v), Py=y (2.33)

2 2
A symmetric spin-s boundary field f;, ;. (y) of scaling dimension A is assigned an
ambient representative fa, 4, (P), which is traceless with respect to the ambient metric®

P fay.a, =0 (2.34)

and scales as
fapoa. AP) = X"2F4, 4. (P), A > 0. (2.35)

Like for the ambient description of bulk fields detailed above, we require that fa, 4, is
tangent to the light-cone:

PYfa,a, (P)=0. (2.36)
However, because P? = 0, there is an additional redundancy
far.a,(P) = fay.a.(P) 4+ Pa, Aa,..a,), (2.37a)

PAlAAln-Asfl =0, AAl-nAsfl ()‘P) :A_(A+1)AA1‘..A371 (P)v ﬁAlAQAAl...Asq =0, (237b)

which, combined with (2.36), eliminates the extra two degrees of freedom per index

of fa,. A,
The operator formalism also extends to ambient boundary fields, where we have:

1
faya, (P) = fo(P,Z) = nglmAS (PyzM ... z%, 7z2=0, P-Z=0, (2.38)

with the null ambient auxiliary vector Z2 = 0 imposing the traceless condition (2.34) and
it is useful to introduce the constraint P - Z = 0 which implements tangentiality to the
light-cone (2.36).

8This follows from the tracelessness of fi,. i, .

— 11 —



2.2 Functionals in de Donder gauge

In this paper we are interested in providing a convenient formalism to deal with AdS
Feynman rules for higher-spin gauge fields in the de-Donder gauge, including ghosts. It is
thus a key step to describe in detail the corresponding tensor calculus.

An off-shell Langrangian for a spin-s gauge field ¢; freely propagating on AdS;,1 is
given by the Fronsdal action [76], which in the operator formalism reads

SO [p) = & / s (2, 8,) (1 _ L2, . au> Fy 05 (,11) (2.39)
2 AdSgi 4 u=0
with Fronsdal operator
Fo=0-m2—u?@y,-0,) — (u-V)D, (2.40a)
D= (V-0,)— %(u V), - D), (2.40D)

where m2R? = (s —2) (s +d — 2) — s and D is the de Donder operator. Fronsdal fields
have vanishing double trace:
(Ou 0u)? s (,u) =0, (2.41)

and gauge transformation:
5§0)sos (z,u) =u- V&1 (z,u), (2.42)

with symmetric and traceless rank s — 1 gauge parameter: (9, - 9y)&s—1 (x,u) = 0. The
equation of motion derived from the free action (2.39) is given by

(1 — iuQ&L . 8u> Fs (z,u, V,0,) ¢s (x,u) = 0. (2.43)

Since the operator (1 — %u28u . 8u) is invertible,” this is equivalent to
Fs (x,u, V,0,) ¢s (z,u) = 0. (2.44)
In this work we consider Fronsdal fields in the de Donder gauge:
Dy, =0, (2.45)
where the equation of motion (2.44) takes the form
(O- m? — u?0, - ) s (w,u) = 0, (2.46)

and can be inverted off-shell. The residual gauge freedom is given by (2.42) with on-shell
gauge parameters:

(O- mg) &s—1 (z,u) =0, (2.47)

%Tts inverse on doubly traceless fields can be easily computed, and is given by

1, - 1 u25?
(1*1“81‘ a") —(“im :
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where ngQ = (s—1)(s+d—2). Any further gauge fixing would thus be an on-shell
gauge fixing. For example, the remaining freedom (2.47) can be used to eliminate the trace
of the de Donder field (2.45) on-shell, such that it becomes transverse and traceless (7'T):

(V- 0u) ps (x,u) =0, (Oy - Ou) s (x,u) = 0. (2.48)

This recovers the Fierz Pauli system (2.7).
It is sometimes useful to express the double-traceless Fronsdal field in terms of its
irreducible components

2

Y )90'5 (x,u) (2.49)

P (mu) = 2 () 4 515 o)

where

(O - Ou) s (z,u) = @ (z,u), (O - Ou) §s (z,u) = (Oy - D) ¢l (z,u) = 0. (2.50)
In the de Donder gauge, the two traceless fields ¢ and @5 completely decouple, with
only the de Donder gauge condition (2.45) relating them. The equation of motion (2.46)
decomposes as:
(O- mz) Ps(z,u) =0 (2.51a)
(O —mf) ¢l(z,u) =0 (2.51b)
where m?R? = 5% + (d — 1)s — 2.
de Donder functionals in ambient space. The double traceless of the Fronsdal field
also extends to its ambient representative:

(00 - 9)* s (X,U) =0, (2.52)

which supplements the tangentiality and homogeneity conditions (2.17) and (2.18).

Using the identities (A.5) for the action of the ambient representative of the covariant
derivative on tangent fields, it is straightforward to write down the ambient counterpart of
the de Donder gauge condition (2.45) and equation of motion (2.46):

ﬁ(ps(X, U) :{8(] -0x — 1 [U -Ox + UX2)( (d—2+2U - 8U):| 8[2]} ws(X,U) =0 (2.53a)
Fops(X,U) = [8)( + 2UX Oy - Ox + 28(2]] ws(X,U) =0, (2.53b)
with gauge transformation
XU
0 (X, U) = [U Ox + g (d—2+2U- am] E1(X,0), (2.54)

where the ambient representative of the gauge parameter (2.47) is subject to the on-shell
constraints

042 UX O - 0x + 5 (d 242U - aU)] €1(X,U) =0, (2.55a)

(Bu - 9v) &s1(X,U) =0, (2.55b)

in addition to the tangentiality and homogeneity conditions (2.25).
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The decomposition (2.49) of the Fronsdal tensor into irreducible components takes

he f
the form U.p.U

gps(X,U):@(X,U)—I—m

o, (X,U), (2.56)
where

(8U : aU) Ps (X7 U) = (pls (X7U) ) (8U : aU) Ps (Xa U) = (aU : 8U) QO; (X’ U) =0.
(2.57)
Both components are subject to the same homogeneity and tangentiality conditions (2.18)
and (2.17). In de Donder gauge, they are governed by the ambient equations of motions

X
0X + 2U oy - 8X:| 2s(X,U) =0 (2.58a)

O4+22—= U X o - 0x + %2 (d +2U - aU)} ¢l (X,U) = 0. (2.58b)

3 Off-shell cubic couplings in de Donder gauge

3.1 Fronsdal field cubic couplings

The cubic action for traceless and transverse fields (2.48) in the type A higher-spin gauge
theory on AdSgy is given in the ambient space formalism by [27, 48]'°

3
Sg=3 VI . (3.1a)
$1>82>83
Vsj;?;g,sg f 51,852,583 Ps1 (Xl’ Ul) Pso (X27 U2) Pss (X37 U3) X=X’ (3'1b)

TT _ 5175283
81,82,83 951752’33321 y2 3

where

Vi =0y, - 0x,, Y2 = 0y, - Ox, , Y3 = 0y, - Ox,, (3.2)

and with coupling constant [27, 48]

d—3 % 3
1 wr2 11 L (si+ %50 (3.3)
951752’53_\ﬁl“(d+51+52—|-$3—3 i—1 31+1) |

where N is the only free parameter and is related via holography to the number of CFT de-

grees of freedom. The off-shell completion of the traceless and transverse cubic action (3.1a)
can be determined using the Noether procedure, which at the cubic order requires:

5:8@ + 575 =, (3.4)

108ee [11, 19, 24, 25, 87] for previous studies and classifications of metric-like cubic vertices of totally
symmetric higher-spin gauge fields in AdS. See also [28] for some recent developments on cubic couplings
in the Maxwell-like formulation [94, 95] of higher-spin gauge fields.
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where S®) is the free off-shell type A action (1.4) for Fronsdal fields with linearised gauge

transformations (2.42). The S®) is the off-shell cubic action we would like to determine

and 5§1) the corresponding first order deformation of the linearised gauge transformations.
Modulo the free Fronsdal equations of motion (2.44), the condition (3.4) reads:

5@ =, (3.5)

which we may solve in de Donder gauge for S®) using the traceless and transverse ac-
tion (3.1a) as a starting point.

Since the de Donder gauge condition (2.45) allows to replace gradients with traces,
SG3) can be decomposed in traces of the constituent fields:

SH =" 3" Vi (3.6a)
S§1>82>>83
Versniss = Vss + Vo0 + VI, o+ VP, o, (3.6b)
where
Vs ss = L6 050055 + cyelic (3.7a)
VEss = F0, 0 0l s + cyclic (3.7b)
Vs sa = 3 505 Py P (3.7¢)

for some functions fs(l1 ), 8 ?gj and f§f’?32783 of the operators (3.2), which we determine in
the following.

For all three constituent fields in de Donder gauge, variation of the TT vertex (3.1b)
under a linearised spin-s; gauge transformation is given by

© or 1o 2 T (0)
558171)}81,82,83 - 5 (aXQ - an) (8))1 51,82,33) 551—].@528053
1
+ Oy, 1T, ) UL - X1 0y, - Ox, fgl)—lsoszwss
1
d—2+2010y,)(d — 1+ i0y,) (09,03, f1 1, ) 5§1)_190SQ<P'53

— (
T (1)
- (d - 2 + 23}18)]1)(83}583)1 81,82753) aUd ' 8X3§Sl—1¢52@53 ? (38)
where for convenience we introduced the notation:
1
"W(X,U) = —— f(X,U 3.9
FOXU) = e G, (3.9)
for some field f(X,U) in ambient space. In (A.3) we give some useful identities. The
first line of the variation (3.8) is the standard off-shell transformation for traceless and
transverse fields [25, 27], while the remaining terms denote the corrections to the latter in
de Donder gauge.
The approach we take to determine the off-shell cubic couplings (3.6b) is to begin with
traceless and transverse fields (2.48) and uplift them to de Donder gauge one-by-one. We

express this schematically as follows:

T @ 1 ©, 2 ® 3
V51,52,53 V§17)82,83 é§17)52753 ‘1 §1?32783’ (3‘10)
Psq Ps1sPso Ps1yPsgrPsg
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where the notation — signifies solving (3.5) at each step for the Fronsdal field ¢, in de
®s;

Donder gauge. In taking this approach to solve at a given order n in traces for V§?)82 s3, the
corrections Vél 52,8 ) that are higher order in the traces of the fields do not contribute since
only n fields are uphfted to de Donder gauge and the rest are kept traceless and transverse.

We thus first solve for Vg,)swg where ¢,, is in de Donder gauge with ¢, and ¢,
traceless and transverse. In this case, the first line of the transformation (3.8) of the TT
vertex is vanishing on the free equations of motion of ¢,, and ¢s,, while the final two
lines are vanishing owing to the traceless and transverse conditions (2.48). The term on
the second line is non-vanishing and must thus be cancelled by the variation of V5(117)52753.
Since the term to be cancelled is proportional to the divergence of the gauge parameter,
the appropriate counter-term is simply given by:

5 (ayl 31,32,33) U - Xy 90/3(11)@829053 . (311)
By cyclising, we thus have:
1
Vs(11,)52,83 = (8371 51,82,83) Ul : X1 90{9(11)(10829083 - 5 (ay2 51;?;2,53)9081 U2 : X2 505(21)9083
-5 (8373 51,32,33)9051 Pso Us- X3 ‘70;(31) . (3.12)

We can now proceed to @ and solve for Vﬁf?sZ,SS by compensating terms coming from
the variation

651 1

0
5( ) <V££2753 + Vél?SQ 53) ~ _aﬁhayzfsl,sg 83 Ul Xl 8Ul aXlgegl) 1 U2 X2 805(2 )SDSS

(d 2 + 23}26)]2)8))18))2 51752 s3 8 aXl 551 1 U2 _X2 (p (2)()053 . (313)

Like in the previous step, since each term is proportional to the divergence of the gauge
parameter we can straightforwardly write down the counter-term

1
5 6371 ay2f:§1;?;2,s3 Ul : Xl 90;(11) U2 : X2 @;(21)9083
1
+ Z(d - 2 + 23}28:)}2)83271 8y2f‘,§1;?;2,83 solsl U2 : X2 902(22)80337 (314)
which gives
1
Vs(f)@ 5= 5 aylanyg;?;%% Ui - Xy gos( ) Us - X5 gps(2 )<p33 + cyclic

1 .
+ =2+ 20y,)0%, Dy, 15, o, 5, Uz - Xo '@ pg, + cyclic. (3.15)

Proceeding to the final step @, we determine Véi)swg by cancelling terms coming from the
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variation:!

(0) TT 1 2
5§S (Vsl 59,83 + V§1)82 S3 + V§1)32,33)

aXl 0x, 8y1ay28y3fsl,52,33 §si-1U2- Xo 0 ') Us - X3 80/(1) (3.16)

e

= 0x, - Ox, (d — 2 + 2Y30,)09,0%, 0y, f15, o, Es1-16%, Us - X392

(d—2+ 23)18)71)837183728373 31,32,33 §( ) Uz - Xop A Us - X390( )

s1—1 So S3

_l’_

HM\HM\H.&\H,&M—AL\DM—‘I\DM—M& =

(d =1+ Vi0y,)(d — 2 + 2)10,)0y, 0y, Oy, f1 T, oy €11 Ua - Xa L) Us - X3
(d + ylayz)( - 2 + 2y18y1)(d 2 + 2y36y3)8y18y26y3 51,82,83 551 19082 U3 X3 ¢S(3)
(d 2 + 2y18y1)(d + 23}383)3)83}1 aygayg S1, 52,83 gg})—lgpfsg [U3 : X3 aUB : aXS - 2](70{9(32)

(d— 2+ 2010y,)0y, 03,03, f17 L €1 Uy - Xo oD Uy - X5 0y, - Oyl D)

s1—1 S2 S3

(8371 8372 fsl,32,33)§81 1Us - Xo 905(2) D3S033

+ 500 Ox5(d — 2 + 2010y, )(0y, 0y, 0y, 31,52,53)€§1) WU Xa !V,

1
2 (d + yzayl)(d 2+ 23)13))1)(63)163;26% 51,32,53)551 1 Uz - Xo 90;(21)90/83

1
+ 3 9 aU2 an (d 2+ 23}38373)8y18y28y3fs1,52753 531 1¥Pso Us- X3 30,(2)

1
+ 5 (d + ylayz)(d - 2 + 2y38y3)8y38y1 832/2 fg;?;g,s;g 5317190/52 U3 : X3 90,5(32)

1 (1)
1—

+ 5U2 Ox, (d — 2+ 2V30y,)(d — 2 + 210y, )0y, 00,03, F1 1, o & A

19082 @33
7(d +1+ ylayz)(d 2+ 2ygay3)(d 2+ 23}18)71)83/1 ayzayg 51,32,53 631 19032905(3 )

+ Oy, - Ox, (d — 2+ 2)10y, )0y, 0y, 05, f1, 52,85551 1<Ps280s(3)
(d + 1 + ylayz)(d 2 + 2y18y1)8y18y26y3 81,82,53 551 18052808(3)

- (d 2+ 2y18y1)ay36371 81,82783 651 1 D2¢52¢83

This requlres

V§?932,33 - (d =+ 2y18y1)(d + 2y28y2)(d + 23}36313)8321 8)12 8)13 31,32,33 90/3(11)@,5(2 )30 (3 )

(d + 2030y, (d — 2 + 2)10y,)0y, 03,03, f175, o Ur - X1 0D, 0D + cyclic

8y18y28y3fs1 52,53 U - X1 2 (1) Us - Xo 90/(1) Us - X3 (p/(l) (317)

S1 S83 7
which gives the complete cubic coupling (3.6b) in de Donder gauge.

The variation is given by:

0 A A A~ A
5§5) Vsi,s2,53 = T13F 5505, + T12F 55053, (3.18)

1—1

"'We use the summation notation Y;dy, = 3°°_, V;dy;.
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which is proportional to the equation of motion (2.53) for Fronsdal fields in de Donder
gauge and thus vanishes on-shell, as required. The operators Tio and Tis finally read:

Ti3 (617%3)=—}3y1f3;?;2,53§1%3— ~(d — 2+ 219,99, 03, 1T, eVl (3.19)
(d 2 + 2Y30y,)0y, 03,0y, f1 %, 4,00, 001 Us - X3 o)
— S 2D500)(d — 2+ 2010,)0, 83,83, 1, ., B, - V),
and
Tho (&1, 0s5) = + 3)/1 T s §10sy + (d 2+ 2010y, )0y, 0, f1 1%, 00, - st oy
(d 2 + 2019y, )0y, 8y, 03, FI T L O - Oy €10 Us - Xz oD
—*(d+2y35y3)(d 2+ 210y,)0y, 05,05, 17, o, 0us - uy €1 )
53321 Oy, fIT 61Uz Xa gD, (3.20)

Establishing the results of this section made extensive use of the following identity that
holds for generic functions f ());) of Y;:'?

fQu) (U Xq) = [(X2'3X2 +U2'5U2+Q—1—;l> Oy,
Oy, - O, 09,0, — D, - O, <Q 1 g 4 yiayi> 8y18§;3:| FON)
F(Q 5+ )0y, X, (3.21)
and the identities (A.9).

3.2 Ghost cubic couplings

Using the standard Faddeev-Popov procedure, ghost fields are introduced upon exponen-
tiating the determinant in the gauge fixed path integral:

[ et 5 D00er) ) 511 = [lapllallae oD e Smnloned (3,22

where S[p] is the action for the type A theory with ghost action

D(6¢p) cs-1 (,u) . (3.23)

Sposlpeid = s - D[ e (@0 5

- AdSqis 08s—1

In the above we used ¢ to collectively denote the Fronsdal fields in the spectrum of the type
A higher-spin gauge theory, subject to the de Donder condition (2.45). The ¢, ¢ collectively

12Where we introduced the operator Q = — (X5 - 0x, + Ui - 9u,).

1
2

e

i=1
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denote the corresponding ghost fields, which are traceless owing to the tracelessness of
Fronsdal gauge parameters (2.42).

The ghost action (3.23) is entirely specified by the non-linear gauge transformations
d¢ of the Fronsdal fields. In particular, expanding (3.23) up to cubic order

Sghost [0, &) = S50 [o,6,d + S50 [ 6] + ... (3.24a)
SO e =3 (s — 1)!/ Gor(2,00) [0+ A~ Ou(tt- O+ d — 1)] o1 (2, 1)
5=2 AdSg41 u=0
(3.24D)
o] 5 ) )
s® ,C,c|l = 3—1!/ Cs—1(x, Oy D(S() cs—1(z,u , 3.24c¢
ghost [90 ] §;< ) AdSusn 1( )6€s 1 ( _ (P) 1 ( ) 4=0 ( )

we see that the cubic vertices of the ghost action are determined by the first order defor-
mation 521) of the gauge transformations of the Fronsdal fields in de Donder gauge. Given
the cubic action (3.6) for the type A theory and its off-shell variation (3.18), the the first
order deformation 561 is fixed by the cubic consistency condition (3.4):

From the transformation of the free type A Fronsdal action (1.4) under 521) .
S1—

(1) 2)
6&51 15( ZS' /

1 .
A 551 P s (x,u) (1 — 1“28“ . Bu) Fs s (x,u). (3.25)
dSg41

Combined with (3.18), the cubic consistency condition (3.4) requires:

-1
1 1 1 .
6é53 1S0 2 _372' <1 - Zugalm : 8“2) T13 (517 SD83) 5 (326&)
1
5(1) __i 1_1u28 O T (5 ) (3 26b)
55171(‘083 - s3! 4 3%u3z " Yus 12 (S1, Psa ) » .

where 115 and 112 were defined in the linearised variation (3.18) of S (),
For the ghost cubic action (3.24c), we thus have

Sione [9:7:c] = / Coa1(, ) (Duy - V2) T3 (csy-1, 0s) (3.27)
sa= 2 AdSa 41 u=0
vl @00 0 T Tz )|
53 JAdSqiq u=0
where we used the identity:
1 —1
D <1 - 4u283> =0, -V +0?). (3.28)

The O(u?) terms do not contribute owing to the tracelessness of the ghost fields.

,19,



4 Propagators

4.1 Bulk-to-boundary propagators
4.1.1 Review: Fronsdal bulk-to-boundary propagators

The solution of the source-free Fronsdal equation (2.44) in de Donder gauge
(O- m?2 — u?0, - ) ps (z,u) =0, (4.1)
subject to the standard AdS/CFT boundary condition for spin-s gauge fields'3

lim Prpi...ps (y77') 62(1_S)T = Piy..is (y) ) (4'3)

700

can be constructed from the bulk-to-boundary propagator:

s (T,u) = / ddy’ K, (x,u;y’, 52) D (y’, z) , (4.4)
OAdS 1
where:
(D —m? —u?0, - 8u) K (x,u; v, z) =0, (4.5a)
lim (‘32(1_8)7,[(#1..'# i (y,’r;y’)) = méd (y—1v). (4.5b)
700 s 2s+d—2

Since the equation (4.1) for the bulk-to-boundary propagator is source-free, we can go
on-shell and choose the traceless and tranverse gauge (2.48) using the on-shell gauge pa-
rameters (2.47). The equation of motion for the propagator becomes:

(D — mg) K, (:U,u; Yy, z) =0, (4.6a)
(Oy - V) K (x,u;y', z) =0, (4.6b)
(O - Ou) K (:c,u; Yy, z) =0, (4.6¢)

with boundary condition (4.5b) unchanged. It is most straightforward to solve for the
bulk-to-boundary propagator in ambient space, in which the ambient representative of the
bulk-to-boundary propagator satisfies

0% K, (X,U;P,Z) =0, (4.7a)
(Ov - 0v) Ks (X,U; P, Z) = 0. (4.7¢)

Together with the tangentiality and homogeneity conditions:

(X -0y) Ko (X, U; P,Z) = (X -0x + s+d—2) K, (X,U; P, Z) =0, (4.8a)
(Z-0p) Ky (X,U;P,Z)=(P-0p+s+d—2)K,(X,U; P,Z) =0, (4.8b)

13For concreteness, here we used co-ordinates z* = (yi, r) for AdSg41:
ds® = ¥ dYidy’ + R*dr®, (4.2)

with R the AdS radius. The boundary of AdS is located at r = oo, with boundary directions y*, i =1,...,d.
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the solution is fixed uniquely up to an overall coefficient [79]:

(U-2)(=2P - X) +2(U - P)(Z-X)]"

Ko(X,U; P,Z) = Cyya—as C2x P (4.9)
The coefficient is fixed by equation (4.5b) to be:
2s4+d—3)I'(s+d—2
Cstd—2,s = ( )T ) (4.10)

2142 (s +d—3)T (s —1+ &)

In ambient space it is straightforward to extend the above result to the bulk-to-
boundary propagator Ka s of a totally symmetric spin-s field of generic mass m?R? =
A (A — d) — s, which has the same ambient equation of motion (4.7) but with the homo-
geneity degree:

(X-0x +A)Kas (X, U; P, Z) = 0. (4.11)

The result is simply [79, 96]:
(U-Z)(-2P-X)4+2(U-P)(Z-X)
(—2X . P)A—l-s

R CEor- S VAL
BT gnd2 (AT (A+1-9)

KA,S (Xa U; P: Z) = CA,S R (4123)

(4.12b)

which coincides with (4.9) for A = s+ d — 2, as required.

4.1.2 Ghost boundary-to-bulk propagators

The bulk-to-boundary propagator for the ghost associated to a spin-s gauge field is the
solution to the Fierz system:

(-O+mg) th 1 (z,u3y,2) =0, (4.13a)
(Ou - D) K (w039, 2) = 0, (4.13b)
(0 V) KB, (2, u;9,2) =0, (4.13c)

which is represented in ambient space as

% + 5 (d 242U - 8y)| K (X,U; P,Z) =0, (4.14a)
Oy - Ox K& (X,U; P, Z) =0, (4.14b)
0 K™ (X,U;P,Z) =0, (4.14c)

subject to the following homogeneity and tangentiality conditions

(X -0y) K (X, U;P,Z) = (X -0x + 5 +d—3)K (X, U; P, Z) =0, (4.15a)
(P-8z) K (X,U;P,Z) = (P-0p +s+d—3)K (X, U; P, Z) = 0. (4.15b)

By virtue of the commutator (A.4), the solution for the propagator can be obtained by
dressing with X? the solution to the massless ambient space Fierz system (4.7) of the
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previous section, to accommodate for the non-zero mass term in the ambient equation of
motion (4.14a). To wit, we make an ansatz of the form

ngE1 (X7 U; P, Z) = ()(12)(1Kd+s—3—2a,s—l(X’ U; P7 Z)) (416)
where Kgis-3-2q,s—1 is given by (4.12) with A =d + s —3 — 2a. The —2« is to preserve
the homogeneity degree (4.15). Plugging the ansatz into the equation of motion (4.14),
one finds that o = —1.

To summarise, the bulk-to-boundary propagator for a ghost field associated to a spin
s gauge field is given in ambient space by

[(UZ) (—QP‘X) +2(U.P) (Z~X)]S_1
(—2X . p)d+25—2

KEEI(Xa U; Pv Z) = C(d—i-s—l,s—lAXQ ’ (417)

where Cgis_1,5-1 is defined in (4.12b).

4.2 Bulk-to-bulk propagators
4.2.1 Bulk-to-bulk propagators of Fronsdal fields in de-Donder gauge

The solution to the Euler-Lagrange equations for the Fronsdal action (2.39) with some
source Jg,

1 .
<1 - 1ufaul .aul> Fsps (wyu) = —Js (x,u),  (Oy-0u)* Js (x,u) =0, (4.18)
can be expressed in terms of the bulk-to-bulk propagator I,
s (x,u) = 5!/ IIs (21, u1; 22, Ouy) Js (T2, u2) , (4.19)
AdSg41
which satisfies the simpler equation

1 “
(1 - Zu%&“ : 8u1> Fs (z1,ur) Uy (21, u1; 22, u2)

= - {{(ul “ug)® g+t (21, xg)}} + (ug - Vo) Ag s—1 (21, u1; 22, u2) , (4.20)

where A, ;_1 is a pure gauge term, subject to the constraints
(8u1 : aul)Q As,s—l (1‘1, Up; T2, u2) = (aug : 8u2) As,s—l (LUl, Uy; T2, UQ) =0. (421)

The pure gauge term Ag 1 is is often disregarded when the source Js is conserved.!?
In the context of Witten diagrams, this is the case when the constituent fields of .J; are
external and thus on-shell. See [44, 45, 49, 50, 63, 97, 98] in the context of the four-point
tree-level exchange of a spin-s gauge field. However when the source is off-shell, such as in
loop diagrams, this no longer holds and the explicit form of Ags_; is required.

M The double-traceless condition on the source J, arises from the double-tracelessness of Fronsdal fields.
'5To be more precise, in the case of Fronsdal fields, As,s—1 drops out if the source is conserved up to
traces: (Ou - V) Js (x,u) = O (u?). This is owing to the tracelessness of the Fronsdal gauge parameters.
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In the following we complete the results of [44, 63, 97, 98] and determine the full spin-s
bulk-to-bulk propagator (4.20) in de Donder gauge, including the form of the pure gauge
terms A ;1. To this end, it is useful to express the double-traceless Fronsdal field in terms
of its irreducible components (2.49), for which it is useful to employ the notation

os(T,u) = <¢S(x’w)> : (4.22)

sz, w)

where we have introduced a traceless auxiliary variable w with the property w? = 0, which
ensures the tracelessness of each component. See section 2. In this notation, the Fronsdal
bulk-to-bulk propagator is thus a 2 x 2 matrix

TH1 5o TR, A

) _ | Te1p2 T

(21, u1; 22, uz) = 2, (4.23)
Toh @2 Tl ol

which involves off-diagonal mixing terms between the two off-shell irreducible components
of a doubly traceless Fronsdal field.

In the de Donder gauge, the gauge fixed equation of motion for the bulk-to-bulk prop-

agator is'0

1
<1 1 u? Oy, - 8u1> (01 - m2) — u(0y, - Ouy) | W (21, u1; T2, u2) (4.24)

1
= - {{(Ul cug)® 6% (1‘1,$2)}} + (u2 - Vo) <1 ~1 u? Oy, - 8u1> A s—1 (21, ur; x2,u2) ,

and propagator must also satisfy the de Donder condition:
. 1
Dll'[s(:cl,ul; .’L‘Q,Ug) = (Vl . 8u1 — 5 Uuq V831> Hs(xl,ul; 9, UQ> =0. (4.25)

To solve for the propagator it is most straightforward to use ambient space with constrained
auxiliary variables (2.28). In terms of the latter, and furthermore focusing on the irreducible
components (4.23), the de Donder condition (4.25) reads:

0 0

D . 1 1 . _ T - 1 1 .
(VI'DWwaz"‘(zsm—s 2>W1 ViTgig, Vi DW17rsow’2+(2s+d—3 2) W1V “w&wé)

where the zeros on the second line are owing to the tracelessness of the de-Donder operator.
To solve for the propagator, we can decompose the four trace-less components in the basis

'Where for convenience we re-defined Ag,s—1 — (1 — $uiu; - Ou; ) Ass—1.
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section B of bi-tensorial harmonic functions 2 on AdSg,:

s,s—1

S o) o
Tp1pa (Xl, Wl; XQ, Wg) = Z/ dv 9801802 (V) (Wl . V)l (W2 . V)l Qu,sfl(le Wl; XQ, Wg), (427&)

T, (X1, Wi; Xo, Wa) Z/ dv gsmo2 5 (v) (W V) (W2'V)lQu,s—z—z(Xl,Wl;X%Wz),
(4.27b)
o0 7 o~
o a (X1, W13 X, Wa) = ) / dv g1, (v) (W1 - V) (Wa - V)2 Qo i (X1, Wi Xo, Wa),
o0
(4.27¢)
s o (X1, Wi Xo, Wa) sz Wy - W) (W, - V) Q Xy, Wy Xo, W.
7T¢¢>( 1, W15 Ao, 2 Vg, (V)( 1 )( 2 ) u,s—z—z( 1, Wi; A2, 2),

(4.27d)

where the functions gfﬁzl (v), gf;% (v), g:’g”l 5 (v) and g%(p2 5 (v) are to be determined.

The symmetry under (z1,u1) <> (22, us) requires gfls% 5 (V) = g;péml 5 (), while the
de Donder condition (4.26) demands that:

(1+2)(—d+1—2s+4) ((d+2s — 2)? + 4%

ancis (V) = TR 9%, () (4.282)
(I+2)(—d+1—2s+4) ((d+2s—2)2 +41?) 5,
g, ) = T 25(— 5 )g;jgfa,z ().  (4.28b)

The above relations can be straightforwardly derived using (B.7).

With the de Donder condition fulfilled, the propagator and the gauge term A1 are
fixed uniquely by the equation of motion (4.24). The latter can be likewise expanded in
the basis of harmonic functions, as:

(A0
Ass—1= < A 0) (4.29)
1
where
g, (X1, Wis Xa, Wa) = / dv NP () (Wh - V) (W - 9) 10,0 (X0, Wa; X, W)
l o0
(4.30a)

s—2

At (X1, W5 Xo, Wy) :Z/dmfg 1o (V) (W) (W W) Qoo (X, Wi Xo, Wa).
=0

(4.30D)
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Plugging in the propagator ansatz (1.14a) with the de Donder constraints (4.28) and the
above ansétze for the gauge terms (4.30) into the equation of motion (4.24), we find:

64s(s —1)(d +2s —5)

P1P2 — 4.31
gs""’*l( ) l(—d+1—2s+2)((d+2s—2)?+ 4?) ( 2)
s—2
) 5" )
(2 +4d(l4 s —2) +4 (=124 20(s — 1) + 2 + (s — 2)2))?
51 (I+2)(—d+1—25s+4)((d+25s—2)? +4%)
'3 (14+2)(—d+1—25+4) ((d+25s—2)2+4%) ;5 ;
9o () = T 23(— 3 ) 97 (V) (4.31c)
2
™ (I+2)2(=d+1—-2s+4)2((d+2s—2)2 +4%)° ; ;
g;p,}gféfl (v) = 4(d + 2s E 5)2 ) gf;fz?*l ), (4.31d)
and, for the gauge term:
ML () = (2545 — d)kyy (v) (4.322)
4 1
AL (v) = U= D(=d+1-25+3) ((d+2s —4)* +4v2) kg (v) | (4.32b)
where we have defined for convenience:
(s)
_ 9 (v)
ki (V) =~ —5— 955 (4.33)
B 16(s —1)s
(d—1+2s—2)((d+2s—2)? 4+ 4?)

(s—2)
¢ o (v)
(2 +4d(l+s—2)+42ls—1(1+2)+1v2+s2—4s+4))

The above results are straightforward to obtain using (B.8) and the completeness rela-

tion (B.3) where cl(s) (v) is given explicitly by (B.4).

Note that in this section we determined the bulk-to-bulk propagator using the con-
strained ambient space auxiliary variables (2.28). The unconstrained form can be obtained
uniquely from the homogeneity and tangentiality conditions (2.18) and (2.17).

4.2.2 Bulk-to-bulk propagators of ghost fields

The equation for the bulk-to-bulk propagator of a ghost field c¢s;_1 associated to a spin-s
Fronsdal field in de Donder gauge can be derived from the Euler-Lagrangian equations of
the free ghost action (3.24b). The resulting propagator equation is:

ST (1) ) (4.34)

where we recall that m§R2 = (s—1)(s+d—2). The ghost fields and thus their bulk-to-
bulk propagators are traceless, so the harmonic function decomposition of the latter takes
the form:

(O — m)IE™, (21, w13 22, wa) = (wy - wo)

s—1 fo%e)
" (X1, Wh; Xo, W) = Z/ dvhs_i1s—1-1(v) (Wi - V) (W, - V) Qy sm1-1(X71, Wi Xo, Wo).
=0/ —o°

(4.35)
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Using the identity (B.8) and completeness relation (B.3), the coefficients hs_1 s—1_; (V)
can be straightforwardly determined:

_ d+2s—5 1
I :7(5 1) .
s1sm11 (V) = = (V)(1—1)(25+d—l—5)y2+(s—3+%)2

(4.36)

5 Beyond cubic order

We conclude presenting technical trick which, given the gauge-fixed de Donder gauge ver-
tices of Fronsdal fields, allows to obtain the corresponding ghost vertices directly in the
ambient space formalism. This trick is shown to work at any order in the weak fields once
the corresponding de-Donder completion of the vertices is obtained.

The key observation is the identity:

-1
D (1 - izﬁaﬁ) =0,V +0(u?), (5.1)

from which, keeping track of normalisations, one obtains the following ghost vertex in terms
of the variation of the physical vertex:

3) 1 Ou -0
S( _/ eYu1Pug
host
81 s JAds,, 0€s—1

The observation is that the above ghost action is exactly proportional to the gauge variation

(u1 - V1 Cs—1)u, (

T(p.€) e w) ] 62

of the de-Donder vertex up to a simple substitution, which can be identified as:
Fz €102 (X3Fap3) = — foy c1 2 (Us - Vacs) (53)
—C — f—c -Vsc .
X§ 1 P2 (A3/393 53 X§ 1p2(U3-Vac3),
where we have used that the degree of homogeneity of Us - V3cs is the same as that of ¢

together with the fact that both Us - V3c3 and X§f3g03 are tangent tensors. In particular,
we arrive to the following list of substitutions:

1
(Foo)® = — (U 0x ™D 4 U X (d+ 20+ 20 - 9p)c™ ) | (5.40)
(.F805)/(n) N %8[] Oy e+ 7 (5.4b)

which trivially allow to recover the ghost vertex from (3.19) and (3.20).

The latter substitutions generalise to all orders in the Noether procedure. Indeed the
n-th order deformation of the gauge transformation has also the same general structure
as above:

n 1 1 o
ol =5 (1-10202)  TOE). (5.5)

with the functional T extracted from:
508 4 4 5D SE) = 1) (¢ L) Fop. (5.6)

One can then obtain the ghost vertex at order n simply from the above right-hand side,
with the substitutions (5.4).
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A Operator algebras

A.1 Intrinsic totally symmetric fields

(0%, u-V] =2V - au,
(02, u%) = 2(d 4 2u - D).

Vi, Vo] = A0, — un0Ou,,)
O,u-V]=Afu-V(2u-9,+d—1)—2u?*V-9,]
V0,00 =A[(2u- 0y +d—1)V -0, — 2u- V]
[V Ou,u- V] =0+ [ (- 0y +d — 2) — u?02]
[V - 0y, u?] = 2u
]
]

A.2 Intrinsic traceless fields

. 2 .
Owr, W’ = g — Wy, Ot
Gy 0 = 9w = T g, WO

(Vs Vo] = MwyOu, — w04,
[O,w-V] = Aw- V(2w -y +d — 1),

V0,0l = A2w -9y +d — 1)V -

. 9 . .
Opyw - V] =0—
[V Oy w - V] d—1+2w-0y

A.3 Totally symmetric ambient fields

[X-@U,VA] =0,
[0y - 0u,Val =0,
V4, X% =0,
B x4
[DUav ] X2 DU7

From which one can derive the useful identity:

[0, (X%)™] = —2n(2X - Ox +d + 2n + 4)(X?)™" L.
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It is also useful to note that:

V00l (X,U) =0 0xf (X,U) + i 0 0uf (X,U) (A.52)
U-Vi(X,U)=U-0xf(X,U)— %(x-ax _U-a) f(X.U), (A.5b)
V2 (X,U) = R (X.U) — 55 [(X-0x +d)X -0y ~U-0p] F(X.U) (A5

2
w2l oo+ (U0 ebrono). (A.54)

where f (X, U) is a generic field in ambient space that is tangent (2.17).
It is furthermore often convenient to adopt the notation (3.9)

n . 1
Fx,U) = X f(X,U). (A.6)

The ambient field <p§”) has gauge transformation:
el (X,U) = U - 0x ) (X,U) + U - X (d =2+ 20 42U - 9p)&"1) (X.U) (A7)
and homogeneity condition:

(X - 0x + pu+2n)(™ (X,U) = 0. (A.8)

Fields <p§n), ;(n) and féﬁ)l enjoy the identities:

Op(™ = —2U - X 9y - Ox oMY = U2 pl{m D) (A.92)
+2n(d+2n—4+2U - 8U)<pg"+1) )
0 Ox oV =5 [U-0x ™ 4 U X (d =24 2n 42U -00)¢l"D], (A9b)
O™ = —2U - X 9y - O ¢/ (A.9¢)
—2(d+2U - 3p) ") 4 2n(d + 2n + 2U - 9y) "
0el”, = —2U - X ay - ox €7V (A.9d)

—2(d—2+2U - 0p)e" ) 4 on(d+2n — 4+ 20U - )Y
A.4 Traceless ambient fields

Here we give the operator algebra for the null auxiliary ambient vector W? = 0 subject
to the tangentiality constraint X - W = 0. We furthermore restrict to the hyperboloid
X?+1=0.

V- Dy, W-V] = (Cl;1+w-aw>v2 (A.10a)
- ((W-aw)2+ww-aw+ (d;1)2>w-aw,
[V, W - V] :—2(Z—I+W-6W) WV, (A.10b)
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where we introduced:

Dy = (d—1+2W -P-8y) Dw. (A.11)

From which one can derive:
(V2 (W - V)" fson (X, W) = —n(d — 1425 —n) (W - V)" fs_n, (A.12a)
[V - Dyyy (W - V)] fon (X, W) = g (d—2+2s—n)(W.v)? (A.12b)

x[O=(s+d=1)(s=1)+s—n] fo_n (X, W),
with fs_, a homogeneous function of degree s —n in W.
B AdS Harmonic functions

Square integrable functions F' (x1,u;; 2, u2) on AdSy41 which depend only on the geodesic
distance between x; and x2 can be expanded in a basis of regular totally symmetric eigen-
functions €, j (z1,x2) of the AdS Laplacian:

d 2
(D% + <2> + 17+ J) Q j(z1,22) =0, (B.1a)

which are traceless and divergenceless:
(V1 '5w1) Qg (21, w1; T2, w2) = 0. (B.2)

They satisfy the completeness relation:

3 / v ¢l (W) (Wi - V) (W - Vo), oy (X1, Wi Xo, Wa) = (X1, Xa) (W3 - Wa)°
=07~

(B.3)
where l 4 )
O 2(5_l+1)l(§_l+8_§)l (B.4)
! l!(d—2l—f—2s—1)l(%l—l—}—s—iy)l(%—l—ks—i—il/)l7
and the orthogonality relation:
(e}
/ dX Ql’/’s(Xl, Wl;X, Dw)/ dVQV7s(X, W; XQ,WQ) = QD7S(X1,W1;X2, WQ) . (B5)
AdS —0o0

They also admit the integral form [99]

2
(X1, Wi X, Wa) = & / AP K, (X1, Wi; P,D7)K
O0AdS 2 ’ 2

T 5 —iv,s

(X27 WQ; P7 Z)7 (BG)

where the K4, _ are the bulk-to-boundary propagators (4.12a).
2 b
In expressing the bulk-to-bulk propagators in this work in a basis of the above harmonic
functions, it is useful to employ the following identities:

Vi Dy (W1 V1)1, (X1, Wi; Xo, W) | (B.7)
I(d+1+2s—2) [(d )2 2] 1

— - Shlds—1) + 02| (W V), (X0, Wi Xa, Wa),
2(45 +1+s-1) [\2 i VI (W V) (X0, W3 Xz, W)
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Oh [(’w1 V1) (X1, Wi Xo, WQ)} (B.8)

d d
= — |:l(d+ l + 2s — 1) + <2 + iV) <2 — ’il/> + S:| (w1 . Vl)lQ%S(Xl,Wl;XQ, WQ) .
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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