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FF-Pade  Method of Model  Reduction 
Domain 

Trans. Circuit Theory, 

in  Frequency 

HU  XIHENG 

Abstract-In this  note  the  FF-Pade method based upon  some new 
concepts in model reduction is presented. The new method will overcome 
the chief drawbacks of the  current methods. Some typical examples are 
used to show convincingly that  one has to break free from the 
conventional approaches in order to obtain better results in model 
reduction. 

INTRODUCTIOK 

During the last two decades. much effort has been made to solve  the 
problem of model reduction for large-scale systems. The current methods 
adopt either the time-domain or the frequency-domain approach and the 
latter can be further divided into several groups. The first group is the 
classical reduction method (CRM) which is based upon the classical 
theories of mathematical approximation or mathematical concept such as 
the  Pad6 approximation. the continued-fraction method (second Cauer 
form), and  the time-moment-matching method jl]-[3]. It can be proved 
that all the CRM approaches are equivalent to each other.  There are, 
however. two serious drawbacks which limit the applications of CRM. 

1 )  The reduced model obtained by CRM may  be unstable although the 
original system is stable. 

2) The low accuracy in the mid- and high-frequency ranges. 
The second group is a development from CRM. and can be called the 

modified reduction method (MRM). The best k n o w  MRM is the 
stability-criterion method (SCM): in which the characteristic equation of 
the reduced model is assigned beforehand to satisfy one of some criteria of 
stability (such as the Routh stability criterion, Hurwitz polynomial, 
Mihailov criterion. the stability equation. etc.), while the parameters in 
the numerator are adjusted as in CRM  to improve the  degree of accuracy 
at the low-frequency range. However, the absolute stability ofthe SCM is 
achieved only at the cost of a serious loss of accuracy [SI, [7].  There is 
another method for modeling transfer functions using basic performance 
specifications and frequency-response data at the dominant frequencies 
[ I ] .  However, in that method one has to be faced with a set of nonlinear 
equations the solutions of which rely on special algorithms such as  the 
Newton-Raphson multidimensional method. An extensive discussion for 
the estimation of good starting values was forwarded by [4] to ensure 
rapid convergence of the numerical approach. 

In this note the FF-Pad6 method based upon some new' concepts is 
presented. Some typical examples are used to show that one has to break 
free from the above conventional approaches in order  to obtain better 
results in model reduction. 
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THE NEW CONCEPTS 

The new method is based on the following ideas. 
1) An effective way of improving the CRM is to utilize as much mid- 

frequency information as is contained in the original system and fully 
incorporate it into the reduced model. When accurate fitting in the mid- 
frequency range is achieved. the stability problem will be solved as a 
natural consequence. 

2) The technique for separate treatment of low-frequency and mid- 
frequency ranges. 

3) The principle of an optimal allotment of the limited informational 
resources. 

There are (rn + n + 1)  independent parameters in an m/n-order 
reduced model, and our aim is to convey as much information of the 
original system as possible with this limited number of parameters. These 
parameters may be called the informational resources available to the 
model, which are, of  course, much fewer than that of the original system. 

There are two important ranges in the frequency response of a system: 
1) the low-frequency range which includes the steady-state values and 

the long-term transients of the system: and 
2) the mid-frequency range which involves the short-term transients 

and affects the stability of the control system. 
This mid-frequency range which is sometimes called "dominant 

frequency" range, usually indicates a range containing a prominent peak 
or valley, or the  cross frequency in the frequency response of  the original 
system. 

The CRM model obtained by expansion into a series about s = 0 can 
only fit the original system at the lower frequency range. Although many 
methods of MRM are posed to  overcome the two drawbacks above, the 
methods, unfortunately, treat the two problems in an unrelated manner 
(for  example, using SCM to guarantee stability and improve high 
frequency fitting accuracy by matching Markov parameters).  The results 
by MRM are, therefore, usually unsatisfactory. 

The two  drawbacks of CRM do not emerge  as  two unrelated 
phenomena. According to the investigation conducted by the author. they 
are in effect two different symptoms out of one weakness [SI. The 
weakness is almost invariably due to the fitting inaccuracy in the dominant 
frequency range. 

An optimal allotment of informational resources implies a prudent 
distribution of these resources among the prospective parameters of  a 
reduced model in the two frequency ranges. 

FF-PADE METHOD OF MODEL REDUCTIOK 

In the frequency-fitting-Pad6 approximation method (FF-Pade 
method), the characteristic response of the original system at dominant 
mid-frequencies (usually oscillatory) is reproduced by point-fitting  at two 
selected frequencies near each prominent peak or valley. while the low- 
frequency characteristic is modeled by the  Pad6 approximation. Let the 
Wfi-order original transfer function be: 

(ri2lii) 

and its rn/n-order reduced model be: 

The latter is obtained by the FF-Pade method in three steps as follows [SI, 
161. 

Step I: Build up the ((m + n + 1) - 2p) X (rn + n + 1)  D equation 
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set of  Pad6 approximation as 
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Step 2: Form  a 2 p  x ( rn  + n i 1) D equation set for frequency- 
fitting at p points. Its typical form is as: 

-ao sin e,+aIw, cos e,+a2wz sin 0,-a3Wi cos e, 
+. . .  -blw,g;+0+b307g,+0-. . .=0 (4a) 

uo cos 0, + aI w,  sin 0, - a2wf  cos 0, - alw: sin 0; 

+ - ~ ~ + O + b 2 w ~ g , + O + b J ~ ~ g , + ~ ~ ~ = g r  i = 1 ,  2, " ' , p  (4b) 

where g, and Bi are  the amplitude and phase of the original system G(s) at 
the frequency w,, which is chosen near a dominant frequency. 

Srep 3: Determine the parameters no, . . , a,, b, , . . . , b, by solving 
the ( m  + n + 1) D linear equation set obtained by combining the results 
of Steps 1 and 2. 

It can be seen that the computation in the FF-Pad6 method involves only 
the construction and solution of a set of linear equations. 

It should be pointed out that the choice of frequency-fitting points of a 
system is quite crucial. If they are incorrectly picked, the low-order model 
may  be unsatisfactory or even unstable. But the probability of obtaining a 
stable reduced model is quite high if the frequency-fitting points are 
picked  in the neighborhood of a dominant peak or valley of the original 
system. The range of the neighborhood w, proximity may be suggested as 
folloas: 

I G(wH)I = I G(wL)I = I G(op)l -0.7g0 (for a peak) (6a) 

IG(wH)I = 1 G(wL) l=  I G(w,) l  + 0.7g0 (for a valley) (6b) 

where the wp and w, are the frequencies at the peak or valley, respectively, 
go = IG(w,)l - IG(w,)l as in Fig.  1 (peak case). 

Example 1 will show that different choice of frequency-fitting points 
within the proximity indicated as above would lead to a family of models 
with very similar frequency and time responses although the poles and 
zeros of one model may  be situated in locations quite different from those 
of the corresponding poles and zeros of other models in the family. 

ILLUSTRATIVE EXAMPLES 

E.uamp/e I :  The following system was given by Shamash [9]: 

G ( s )  = 
(S+2)2(S+5)2(S+ 1000) 
(s+ 1)2(si  10)'(s+ loo)* . 

The  current methods of model reduction have given poor results. 
Application of CRM reveals that its 1/2 and 213 order models are 
unstable. Shamash proposed a stable 2/3 order reduced model by partial 
Pad6 method with a retained pole at - 100  as follows: 

R z ( s )  = 
5-367(s+  1.4237kj1.2806) 

( s+ .8774) (~+2 .2429) (~+  1 0 0 )  ' (8) 

FREQUENCY lradlsl 

Fig. 1 .  

-Ckiginal 
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(re< I 

Fig. 2. 

A current result by Alexandro [lo] is 

R :,,t(s) = 
1.9(s+ 1.39kj1.36) 

(s+.874)(~+2.46)(~+31.2) 

and  the reduced model using the Routh method is 

.303(s + 1.03 fj.640) 
( 5 +  .965)(s+  1.04)(~+4.42) ' 

RH 
R 2.1(s)= (10) 

From Figs. 1 and 2 it can be seen that all the above results are 
unsatisfactory. Letting p = 2 and choosing two fitting points at w ,  = 6 
rad/s and w: = 30 rad/s, or w1 = 8 rads and w2 = 35 radk, or wI = 10 
rad/s and w2 = 40 rads.  respectively, the 213 order models by FF-Pad6 
method are obtained as: 

R :,&) = 
4.797(5+3.059kj1.2798) 

(s+.7735)(5+  17.6245)(s+38.7) 
(Ila) 

4.795(5+ 3.2949 kj.6306) 
3 5 ) = ( S +  .7535)(s+20.4391)(s+35.04) 

(1lb) 

R :,J5) = 
4.7836(~+5.2374)(~+2.2131) 

(s+ .7189)(~+27.339?j4.8765) . ( 1  IC) 

The frequency and time responses of the three FF-Pad6 models of (1 la)- 
(1 IC) are very similar. They are also shown in Figs. 1 and 2 for 
comparison. It can be seen that they are much better than the other results. 

The other three examples below are chosen out of 1000 examples 
investigated by the author [8 ] .  

Example 2:  In  the following sy-stern there is a pair of dominant 
complex poles close  to the imaginary axis. which indicates the existence 
of a strong oscillation with a very low damping. 

GO)  

- - (l+2.0587~)(1  +2.5529s+5.4342s2)(l  +3.2648s+2.1476s2) 
(1 +3.0092s+ .7970s2)(1 +6.8538s+ .6965s2)(1 + .1394sa  .6861s')' 
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TABLE I 
REDUCED  MODELS OF EXAMPLE 2 

< ‘”(’) = 1 + 10.0024s + 2 3 . 4 5 4 4 ~ ~  - 1 0 . 1 6 1 6 ~ ~  
I + 7.8764s + 27.1688s’ 

Y 1 L 7.8764s + 2 7 . 3 9 2 1 ~ ~  - 52.0;13s3 
R”(s) = 1 + 10.0024s + 2 3 . 6 7 7 7 ~ ~  + 1 2 . 3 9 5 2 ~ ~  T 5.0106s4 

TABLE II 
REDUCED MODELS OF EXAMPLE 3 

1 + 8.8812s + 2 9 . 0 4 0 9 ~ ~  

c R”(s) = 1 + 7.6194s + 2 0 . 8 6 1 9 ~ ~  + 21.6437s’ 2 R;;(s) = 1 + 8.8818s + 2 9 . 7 7 1 5 ~ ~  + 6 5 . 6 4 4 9 ~ ~  
1 + 7.6194s + 2 1 . 5 9 8 7 ~ ~  + 2 7 . 2 1 0 0 ~ ~  + 13.1700s‘ 

0 x R F F  = I - 1.4257s i 4 . 3 1 0 9 ~ ~  

LL 
Ls 
4 2 ; )  I + ,7003s + , 8 6 1 3 ~ ~  - ,0837s’ 

3 
2 a 

R C , : ( s )  = 
1 + 2.0098s + 3 . 7 1 6 9 ~ ~  

I + ,7474s + , 1 8 9 8 ~ ~  c 2.4977s’ 

20 2 

Its various reduced models are listed in Table I .  The 1/2 to 41.5 order 
models by CRM are unstable. The reduced models by SCM are stable of 
course, but their dynamic responses differ very much from that of the 
original system (see Fig. 3). The R;S(s) is obtained by the method 
presented in this note with two frequency-fitting points at wI = 1 rads  
and w2 = 4 rad/s. It is not only stable but also reproduces the 
characteristic of the original system over a wide range of frequency. 

Exumple 3: The original system is 

- - 1+8.8818s+29.9339s2+67.087s~+80.3787sJ+68.6131s’ 
1+7.6194s+21.7611s’+28.4472s3+ 16.5609s4+3.5338s5+.0462s6’ 

(13) 

It acts like a bandpass filter as shown in Fig. 4. 

TABLE III 
REDUCED  MODELS OF EXAMPLE 4 

- 
.s I G ( s )  = 1 + 7.7617s - 13.5756s’ + 67.6016s3 + 40.2492s4 + 144.0994~~ .- 
6 I + 14.8243s + 75.7619s’ + 163.2959s’ I 139.3768s‘ + 38.6263s’ + 3 . 3 2 8 2 ~ ~  

Rfz(s) = 1 + 7.7617s + 13.2887s’ 65.3749s’ 
I + 14.8243s + 75.4750s’ + 159.0429s’ T 118.1959s‘ 

5 I + 7.7617s + 13.5474s’ T 6 7 . 3 8 3 1 ~ ~  + 3 9 . 8 7 5 0 ~ ~  

2 R“’(s) = I + 14.8243s + 75.73375’ + 1 6 2 . 8 7 8 4 ~ ~  T 1 3 7 . 2 5 1 5 ~ ~  T 34.1479s’ 

R C : ~ )  = 1 T 1.1483s + 4.55894s’ + 5.0011s’ 
I + 8.2109s + 5.2508s’ i 1.4141s’ + ,200s‘ 

% 
LL R r , ( s )  = 1 + .6269s + 9 . 1 0 1 2 ~ ~  - 2.7987s’ + 20.2783s‘ 

1 + 7.6895s i 20.3142s’ + 18.8441s’ - 5.3695s‘ + , 4 6 8 3 ~ ~  

with 4 frequenq-fitting points ai w l  = .43. e’ = .5, w3 = 3,w4 = 
IOrad/s. 

P 
- 10- 
s 

.1 1 10 100 1000 
FREQUENCY I rad I S  1 

Fig. 5 .  

The reduced models by SCM are of course stable but the reduced 
models of different orders obtained by CRM are all unstable. However, 
none of them can  reproduce  the bandpass characteristic of the original 
system, not even with the 4/5 order model. But the 2/3 order FF-Pad6 
model with two frequency-fitting points at w, = 3 rad/s and w2 = 100 
radls can reproduce the original well enough. Plots are shown in Fig. 4 
and various reduced models are listed in Table 11. 

Example 4: The following system acts like a  trapper (at w, = 0.47 rad/ 
s) which has a specific use in electronic networks. Its transfer function and 
frequency response are shown in Table  III and Fig. 5 ,  respectively. In 
fact, the 213 to 415 order reduced models by CRM are all unstable. The 1/ 
2  order model is stable (by chance, most likely), but it cannot work as a 
trapper. 

Two reduced models, RTL(s) and R$L(s) are obtained by using the 
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FF-Pad6 method with three and four frequency-fitting points, respec- 
tively. It can be seen very clearly that even such a complex system can be 
reduced by the new method with good results. while almost all other 
current methods fail. 

CONCLUSION 

To achieve good results in model reduction one should pay more 
attention to its methodology. The important problem is  how to use the 
limited informational resources of a reduced model most effectively, 
instead of trying to guarantee absolute stability of the model at the cost of 
a serious loss in accuracy. It  is necessary to reflect the characteristic of the 
original system in the dominant mid-frequency more faithfully. The  FF- 
Padt method presented in this note can serve this purpose very well. 
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The Observer-Based Controller Design of Discrete-Time 
Singularly Perturbed Systems 

HOSSEIN OLOOMI AND MAHMOUD E. SAWAN 

Abstract-A class of linear  shift-invariant discrete-time singularly 
perturbed systems with inaccessible states is considered. A design 
technique is formulated by which the stabilizing controller can be formed 
through the  controllers of the slow and fast subsystems. Sufficient 
conditions for stability of the closed-loop system under this composite 
controller are given. 

I. INTRODUCTION 

One of the notable features of the singular perturbation approach in the 
design of control systems with two-time-scale property is that the 
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simplified controller  structure is obtainable [l], [2]. With the advent and 
rapid development of microcomputer systems and because of the need to 
implement control systems using digital computers,  a new motivation for 
simplified design exists in the  case of sampleddata systems with two- 
time-scale property. Much of the interest has been centered around the 
design of feedback controllers for two-time-scale sampled-data control 
systems in the past few years [3]-[7]. However, most of these design 
methods are based on the assumption that the state variables are available 
for direct measurement [3]-[5]. Since this assumption is most likely to fail 
in practical situations, alternative design techniques such as output 
feedback [7] and LQG [6] designs have been proposed to overcome this 
difficulty. 

Design of a dynamic feedback controller using a full-order observer  for 
two-time-scale continuous-time systems was considered in [SI. Here we 
extend the work of [8] to discrete-time systems. The hybrid composite 
controller developed in this note makes it different from the  discrete 
composite controller previously obtained in  [9]. The observer-based 
controller design of [9] was formulated in the slow-time-scale where the 
asymptotic stability of the fast modes was presupposed. Therefore, 
unstable fast modes could not be stabilized through this discrete composite 
controller. Such an assumption is not made in this note since the problem 
is formulated in the fast-time-scale. 

Results of this note are also attractive because in contrast to the output 
feedback design [7]. where the composite control does not naturally 
decompose into the slow and fast subsystem controller designs, the slow 
and fast properties of the composite controller  are  preserved.  Further- 
more, it  is preferable to the LQG design presented in [6] because the 
asymptotic system state reconstruction is possible without specifying 
noise statistics. 

II. PROBLEM FORMULATION 

Consider the linear shift-invariant discrete-time singularly perturbed 
system described by the state and output equations [4] 

where x ,  E R"' are the slow states, x2 E R"* are the fast states, u E R'" 
is the input, y E RP is the output, 0 < e 1, and all matrices describing 
the above system are assumed to be constant matrices of appropriate 
dimensions. Defining 

(2) 
system (1) takes the following compact form: 

Using the standard procedure for design of the observer-based controller 
[IO]. the dynamic feedback controller for (3) is defined to be 

where a@).  the estimate of x ( n ) ,  and e@), the reconstruction error,  are 
given by 

i ( n +  I ) = A i ( n ) + B u ( n ) + K [ y ( n ) - C ~ ( n ) - D u ( n ) ]  

=(A-KC)i(n)+Ky(n)+(B-KD)u(n) 

e(n)  = x @ ) - i ( n )  

e ( n +  I ) = ( A - K C ) e ( n ) ;  e(0 )=xo- i (O) .  

0018-9286B7/0300-0246$01.00 6 1987 IEEE 
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