
� FAST-FORWARD (FF) was the most successful automatic
planner in the Fifth International Conference on
Artificial Intelligence Planning and Scheduling
(AIPS’00) planning systems competition. Like the
well-known HSP system, FF relies on forward search
in the state space, guided by a heuristic that esti-
mates goal distances by ignoring delete lists. It dif-
fers from HSP in a number of important details.
This article describes the algorithmic techniques
used in FF in comparison to HSP and evaluates their
benefits in terms of run-time and solution-length
behavior.

FAST-FORWARD, abbreviated FF, was the most
successful automatic planner in the Fifth
International Conference on Artificial

Intelligence Planning and Scheduling
(AIPS’00) planning systems competition.
Although its performance clearly distinguished
it from the other planners, the idea behind the
approach is not new to the planning commu-
nity. In fact, the basic principle is that of the
HSP system, first introduced by Bonet, Loerincs,
and Geffner (1997). Planning problems are
attacked by forward search in state space, guid-
ed by a heuristic function that is automatically
extracted from the domain description. To
arrive at such a function, both planning sys-
tems relax the planning problem by ignoring
parts of its specification, that is, the delete lists
of all actions.

FF can be seen as an advanced successor of
the HSP system, which differs from its predeces-
sor in a number of important details: First, it
has a more sophisticated method for heuristic
evaluation, taking into account positive inter-
actions between facts. Second, it uses a novel
kind of local search strategy, employing sys-

tematic search for escaping plateaus and local
minima. Third, it uses a method that identifies
those successors of a search node that seem to
be—and usually are—most helpful in getting
to the goal.

I describe these methods in the subsequent
sections. Afterwards, I overview the results of
an empirical investigation determining which
of the techniques yields which benefits in
terms of run-time and solution-length perfor-
mance. I reflect on an experiment that I have
made and outline the avenue of research that I
am currently focusing on.

Heuristic
In trying to attack domain-independent plan-
ning as heuristic search, the main difficulty lies
in the automatic derivation of the heuristic
function. For human algorithm designers, a
common approach to deriving a heuristic is to
relax the problem � at hand into a simpler
problem �’ that can be solved efficiently. Fac-
ing a search state in �, one can then use the
solution length of the same state in �’ to esti-
mate its difficulty.

Bonet, Loerincs, and Geffner (1997) pro-
posed a way of applying this idea to domain-
independent planning. They relax the high-
level problem description by simply ignoring
delete lists. In the relaxed problem, all actions
only add new atoms to the state but don’t
remove any. During the execution of a relaxed
action sequence, states only grow, and the
problem is solved as soon as each goal has been
added by some action. To illustrate, say we
have an action that moves a robot from some
point A to another point B. The precondition
contains a fact stating that the robot needs to
be at location A for the action to be applicable.
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that accomplishes this is the very well-known
GRAPHPLAN algorithm (Blum and Furst 1997).
Started on a solvable relaxed problem, GRAPH-
PLAN finds a solution plan in polynomial time
(Hoffmann and Nebel 2001). Facing a search
state S, I therefore run a relaxed version of
GRAPHPLAN starting out from S and use the gen-
erated output for heuristic evaluation.

Relaxed GRAPHPLAN can be described as fol-
lows: First, build the planning graph until all
goals are reached. The graph consists of alter-
nating fact and action layers. The first fact layer
is identical to S. The first action layer contains
all actions that are applicable in S. The union
of all add effects of these actions with the facts
that are already there forms the second fact lay-
er. To this layer, again all actions are applied,
and so on, until a fact layer is reached that con-
tains all goals. This process corresponds quite
closely to the computation of the weight val-
ues in hsp, as described earlier. Once the goals
are reached, one can extract a relaxed plan in
the following manner: Start at the top graph
layer m, working on all goals. At each layer i, if
a goal is present in layer i – 1, then insert it into
the goals to be achieved at i – 1. Else, select an
action in layer i – 1 that adds the goal, and
insert the action’s preconditions into the goals
at i – 1. Once all goals at i are worked on, con-
tinue with the goals at i – 1. Stop when the first
graph layer is reached. The process results in a
relaxed plan 〈O0, …, Om–1〉, where each Oi is the
set of actions selected at time step i. We esti-
mate solution length by counting the actions
in that plan.

The estimation values obtained this way are
usually lower than HSP’s estimates because
extracting a plan takes account of positive
interactions between facts. Consider a plan-
ning problem where the initial state is empty,
the goals are {G1, G2}, and there are the follow-
ing three actions.

opG1: P ⇒ ADD G1
opG2: P ⇒ ADD G2
opP: ∅ ⇒ ADD P

The meaning of the notation should be clear
intuitively. HSP’s heuristic estimate of the goal’s
distance to the initial state is four: Each single
goal has weight two. The actions opG1 and
opG2 share the precondition P, however.
Relaxed plan extraction recognizes this, and
selects opP only once, yielding a plan contain-
ing only three actions.
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After applying the action, the add list produces
a fact stating the robot stands at location B,
and the delete list removes the fact stating it
stands at A. In the relaxation, the delete is
ignored, so the precondition fact is not
removed; after executing the relaxed action,
the robot is located at A and B simultaneously.
In a similar fashion, a relaxed planner can
solve the n-discs tower of Hanoi problem in n
steps and simultaneously assign the truth val-
ues TRUE and FALSE to a variable in a Boolean sat-
isfiability problem. Nevertheless, the relaxation
can be used to derive heuristics that are quite
informative on a lot of benchmark planning
problems.

The length of an optimal relaxed solution is
an admissible—underestimating—heuristic
that could theoretically be used to find optimal
solution plans by applying the A* algorithm.
However, computing the length of an optimal
relaxed solution is NP hard (Bylander 1994).
Considering this, Bonet, Loerincs, and Geffner
(1997) introduced the following way of
approximating a relaxed solution length from
a search state S based on computing weight val-
ues for all facts, which estimate their distance
to S. First, initialize weight(f) := 0 for all facts f
∈ S and weight(f) := ∞ for all others. Then apply
all actions. For each action with preconditions
pre(o) that adds a fact f, update the weight of f
to

weight(f) := min(weight(f), weight(pre(o)) + 1)

To determine the weight of an action’s precon-
ditions, one needs to define the weight of a set
of facts. Bonet et al. (1997) assume facts to be
achieved independently.

The updates are iterated until weight values
don’t change anymore. The difficulty of the
state is then estimated as

Here, G denotes the goal state of the problem
at hand. The heuristic function obtained that
way can be computed reasonably fast and is
often quite informative. Bonet and Geffner
therefore used it in their first version of HSP

when it entered the AIPS’98 planning compe-
tition.

The crucial observation leading to FF’s
heuristic method is that although computing
optimal relaxed solution length is NP hard,
deciding relaxed solvability is in P (Bylander
1994). Therefore, polynomial-time decision
algorithms exist. If such an algorithm con-
structs a witness, one can use this witness for
heuristic evaluation. An algorithmic method
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Search
Although the heuristics presented in the pre-
ceding section can be computed in polynomial
time, heuristic evaluation of states is still costly
in the HSP as well as in the FF system. It is there-
fore straightforward to choose hill climbing as
the search method, in the hope of reaching the
goal by evaluating as few states as possible. HSP,
in its AIPS’98 version, used a common form of
hill climbing, where a best successor to each
state was chosen randomly, and restarts took
place whenever a path became too long. FF uses
an enforced form of hill climbing instead.

Facing a search state S, FF evaluates all its
direct successors. If none of these successors
has a better heuristic value than S, it goes one
step further; that is, search then looks at the
successor’s successors. If none of these two-step
successors looks better than S, FF goes on to the
three-step successors, and so on. The process
terminates when a state S’ with better evalua-
tion than S is found. The path to S’ is then
added to the current plan, and search contin-
ues with S’ as the new starting state. In short,
each search iteration performs complete
breadth-first search for a state with strictly bet-
ter evaluation. If a planning problem does not
contain dead-end situations, then this strategy
is guaranteed to find a solution (Hoffmann and
Nebel 2001).

It has been recognized in the SAT community
that the behavior of a local search method
depends crucially on the structure of the prob-
lem it is trying to solve (Frank, Cheeseman,
and Stutz 1997). Important features here are
the number and distribution of solutions as
well as the size of local minima and plateaus.
My observation is that plateaus and local min-
ima, when evaluating states with FF’s or HSP’s
heuristic, tend to be small in many benchmark
planning problems. It is therefore an adequate
approach trying to find an exit state to such
regions by complete breadth-first search. I
come back to this later.

Helpful Actions
The relaxed plan that FF extracts for each search
state cannot only be used to estimate goal dis-
tance but also to identify the successors that
seem to be most useful and to detect goal-
ordering information (Hoffmann and Nebel
2001). Here, I explain the identification of a set
of useful successors, generated by what I call
the helpful actions. Consider the following
small example, taken from the gripper domain,
as it was used in the AIPS’98 competition.
There are two rooms, A and B, and two balls,

which will be moved from room A to room B,
using a robot. The robot changes rooms using
the move operator and controls two grippers
that can pick or drop balls. Say the robot is in
room A and has picked up both balls. The
relaxed solution that our heuristic extracts is

< { move A B }, 
{ drop ball1 B left,

drop ball2 B right } >

This is a relaxed plan consisting of two action
sets. Looking at the first set yields our set of
helpful actions: Moving to room B is the only
action that makes sense in the situation at
hand. The two other applicable actions drop
balls into room A, a useless action, which, to
the human solver, is obvious. It can automati-
cally be detected by restricting any state’s suc-
cessors to those generated by the first action set
in its relaxed solution. However, this is too
restrictive in some cases. To a search state S, we
therefore define the set H(S) of helpful actions,
as follows:

H(S) := {o | pre(o) ⊆ S, add(o) ∩ G1 ≠ ∅}

Here, G1 denotes the set of goals that relaxed
plan extraction constructs one level ahead of
the initial graph layer. Thus, we can consider as
helpful those applicable actions that add at
least one goal at the lowest layer of the relaxed
solution. These are the actions that could be
selected for the first set in the relaxed solution.
The successors of any state S in breadth-first
search are then restricted to H(S). Although not
completeness preserving, this approach works
well in most of the current planning bench-
marks. If enforced hill climbing using this
pruning technique fails to find a solution, we
simply switch to a complete weighted A* algo-
rithm.

Performance Evaluation
A question of particular interest is, If FF is so
closely related to HSP, then why does it perform
so much better? To give an answer, I conducted
the following experiment.

The three major differences between FF and
HSP 1.0 are relaxed plan extraction versus
weight value computation, enforced hill climb-
ing versus hill climbing, and helpful action
pruning versus no such pruning technique. I
have implemented experimental code where
each of these differences is attached to a
switch, which can be turned on or off. Thus, I
have eight planners, where (off, off, off) is an
imitation of HSP 1.0, and, (on, on, on) corre-
sponds to FF. Each of these planners was run on
a large set of benchmark planning problems
taken from 20 different domains. The collected
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they are used by four different planners,
obtained from aligning the other switches. The
time entries in the leftmost column, for exam-
ple, tell us that in 2 of our 20 planning
domains, hill climbing without helpful actions
had shorter running times when using HSP esti-
mates than it did when using FF estimates.
However, the alignment succeeded faster with
FF estimates in 12 of the cases. In the remaining
domains, both estimates lead to roughly the
same run-time performance. 

We can make two observations: First, FF’s
estimates improve run-time performance in
about half of our domains across all switch
alignments. In many of the domains with
improved run-time performance, FF’s estimates
improve run time across all our problem
instances reliably but only by a small amount
(Hoffmann and Nebel 2001). In some domains,
however, HSP’s heuristic overestimates goal dis-
tances quite drastically because it ignores posi-
tive interactions. In these domains, FF’s esti-
mates yield clear advantages.

Second, with enforced hill climbing in the
background, FF’s estimates have clear advan-

data were then examined to assess the impact
that each single switch has on performance.
For a detailed description, I refer the reader to
Hoffmann and Nebel (2001). Here, I overview
the results. Data are subdivided into three
parts, where I vary on each single switch, in
turn, keeping the others fixed.

FF Distance Estimates versus 
HSP Distance Estimates
Look at table 1. There are three tables, each one
corresponding to a single switch. The four
columns in each table stand for the four align-
ments of the other switches. In each column,
the alignment’s behavior with one setting of
the table’s switch is compared to the behavior
with the other setting. Entries in a row show
the number of planning domains in our test
suite, where the corresponding setting of the
switch leads to significantly better performance
than the other setting in terms of running time
and solution length.

Let us focus on the topmost portion of the
table, comparing the behavior of HSP goal dis-
tance estimates to that of FF estimates when
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Table 1. Comparison of Related Planners When Varying on Goal Distance Estimates, 
Search Strategies, or Pruning Technique, from Top to Bottom.

Performance is compared in terms of number of domains in our 20-domain test suite, where one alternative leads to significantly better
performance than the other one.

Distance
Estimate

Hill Climbing Enforced Hill Climbing 
All Actions Helpful Actions All Actions Helpful Actions 

Time Length Time Length Time Length Time Length
HSP distance 2 2 1 2 2 0 1 0
FF distance 12 2 12 5 11 9 9 11

Search
Strategy

All Actions Helpful Actions 

HSP Distance FF Distance HSP Distance FF Distance 

Hill Climbing 5 1 9 1 3 2 1 2
Enforced Hill 
Climbing

9 8 8 10 16 6 16 9

Pruning
Technique

Hill Climbing Enforced Hill Climbing 

HSP Distance FF Distance HSP Distance FF Distance

2 0 3 0 2 1 2 0
FF Distance 13 15
HSP Distance 

5 15 38147

Time Length Time Length Time Length Time Length

Time Length Time Length Time Length Time Length



tages in terms of solution length. However, I
have no good explanation. It seems that the
greedy way in which enforced hill climbing
builds its plans is just better suited when dis-
tance estimates are cautious, that is, low.

Enforced Hill Climbing versus Hill
Climbing
Consider the middle portion of table 1, com-
paring all combinations of the estimates and
pruning technique switches when used by hill
climbing versus enforced hill climbing. Ob-
serve the following:

First, without helpful actions in the back-
ground, enforced hill climbing degrades per-
formance almost as many times as it improves
it, but with helpful actions, enforced hill
climbing is faster in 16 of our 20 domains.
Second, enforced hill climbing often finds
better solutions.

Whether one or the other search strategy is
adequate depends on the domain. The advan-
tage of enforced hill climbing when helpful
actions are in the background is the result of
the kind of interaction that the pruning tech-
nique has with the different search strategies. In
hill climbing, helpful actions save running time
proportional to the length of the paths encoun-
tered. In the enforced method, helpful actions
cut the branching factor during breadth-first
search, yielding exponential savings.

When enforced hill climbing enters a
plateau in the search space, it performs com-
plete search for an exit and adds the shortest
path to this exit to its current plan prefix.
When hill climbing enters a plateau, however,
it strolls around more or less randomly until it
hits an exit state. All the actions on its journey
to this state are kept in the final plan. Enforced
hill climbing, therefore, often finds shorter
plans than hill climbing.

Helpful Actions 
versus All Actions

Now we focus on the bottom portion of table
1. It comprises one column for each variation
of distance estimate and search strategy, com-
paring the behavior with helpful actions prun-
ing to those without. I observe the following:

First, helpful action pruning improves run-
time performance significantly in about three
of four of our domains across all switch align-
ments. Second, only in one single domain is
there a significant increase in solution length
when one turns on helpful action pruning.

On the 20 domains from our test suite, there
is quite some variation with respect to the
degree of restriction that helpful action prun-

ing exhibits. At the lower side of the scale, 5
percent of any state’s successors are not consid-
ered helpful, but at the upper side, this percent-
age rises to 99 percent; that is, only 1 of 100
successors is considered helpful there. In two
domains from the middle of the scale, the
restriction is inadequate; that is, solutions get
cut out of the state space. A moderate degree of
restriction already leads to significantly
improved run-time behavior, which is especial-
ly the case for enforced hill climbing.

The second observation strongly indicates
that the actions that really lead toward the goal
are usually considered helpful. Looking at fig-
ure 1, there are some domains where solution
length even decreases by not looking at all suc-
cessors, especially when solving problems by
hill climbing. When this search strategy enters
a plateau, it can only stroll around randomly in
the search for an exit. If the method is addi-
tionally focused into the direction of the goals,
by helpful actions pruning, finding this exit
might well take fewer steps.

Outlook
Briefly, FF is a simple but effective algorithmic
method, at least for solving the current plan-
ning benchmarks. My intuition is that these
benchmarks are often quite simple in structure
and that it is this simplicity that makes them
solvable so fast by such a simple algorithm as
FF. To corroborate this conclusion, I ran FF on a
set of problems with a more complicated
search-space structure. I generated random SAT

instances according to the fixed clause-length
model with 4.3 times as many clauses as vari-
ables (Mitchell, Selman, and Levesque 1992)
and translated them into a PDDL encoding. The
instances have a growing number of variables,
from 5 to 30. I ran the three planners, FF, IPP,
and BLACKBOX on these planning problems. In
contrast to the behavior observed on almost
any of the classical planning benchmarks, FF

was clearly outperformed by the two other
approaches. Typically, it immediately found its
way down to a state with only a few unsatisfied
clauses and then got lost in the large local min-
imum it was in, which simply couldn’t be
escaped by systematic search. The other plan-
ners did much better because of the kind of
inference algorithms they use, which can rule
out many partial truth assignments quite early.

Following Frank, Cheeseman, and Stutz
(1997), I investigated the state-space structures
of the planning benchmarks, collecting empir-
ical data about the density and size of local
minima and plateaus. This investigation has
led to a taxonomy for planning domains,
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dividing them by the degree of complexity that
the respective task’s state spaces exhibit with
respect to relaxed goal distances. Most of the
current benchmark domains apparently belong
to the “simpler” parts of this taxonomy (Hoff-
mann 2001). I also approach my intuitions
from a theoretical point of view, where I mea-
sure the degree of interaction that facts in a
planning task exhibit, and draw conclusions
on the search space structure from that. The
goal in this research is to devise a method that
automatically decides which part of the taxon-
omy a given planning task belongs to.
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