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FFJORD: FREE-FORM CONTINUOUS DYNAMICS FOR

SCALABLE REVERSIBLE GENERATIVE MODELS

Will Grathwohl∗†‡ , Ricky T. Q. Chen∗†, Jesse Bettencourt†, Ilya Sutskever‡ , David Duvenaud†

ABSTRACT

Reversible generative models map points from a simple distribution to a complex
distribution through an easily invertible neural network. Likelihood-based training
of these models requires restricting their architectures to allow cheap computation
of Jacobian determinants. Alternatively, the Jacobian trace can be used if the
transformation is specified by an ordinary differential equation. In this paper, we
use Hutchinson’s trace estimator to give a scalable unbiased estimate of the log-
density. The result is a continuous-time invertible generative model with unbiased
density estimation and one-pass sampling, while allowing unrestricted neural net-
work architectures. We demonstrate our approach on high-dimensional density
estimation, image generation, and variational inference, improving the state-of-
the-art among exact likelihood methods with efficient sampling.

1 INTRODUCTION
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Figure 1: FFJORD transforms a sim-
ple base distribution at t0 into the tar-
get distribution at t1 by integrating over
learned continuous dynamics.

Reversible generative models use cheaply invertible neu-
ral networks to transform samples from a fixed base distri-
bution. Examples include NICE (Dinh et al., 2014), Real
NVP (Dinh et al., 2017), and Glow (Kingma & Dhariwal,
2018). These models are easy to sample from, and can be
trained by maximum likelihood using the change of vari-
ables formula. However, this requires placing awkward
restrictions on their architectures, such as partitioning di-
mensions or using rank one weight matrices, in order to
avoid an O(D3) cost determinant computation.

Recently, Chen et al. (2018) introduced continuous nor-
malizing flows (CNF), defining the mapping from la-
tent variables to data using ordinary differential equations
(ODE). In their model, the likelihood can be computed
using trace operations costing only O(D2). This allows
a more flexible, but still restricted, family of network ar-
chitectures to be used.

Extending this work, we introduce an unbiased stochas-
tic estimator of the likelihood that has O(D) time cost,
allowing completely unrestricted architectures. Further-
more, we have implemented GPU-based adaptive ODE
solvers to train and evaluate these models on modern
hardware. We call our approach Free-form Jacobian of
Reversible Dynamics (FFJORD). Figure 1 shows FFJORD smoothly transforming a Gaussian dis-
tribution into a multi-modal distribution.

∗Equal contribution. Order determined by coin toss. {wgrathwohl, rtqichen}@cs.toronto.edu
†University of Toronto and Vector Institute. ‡OpenAI.
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2 BACKGROUND: GENERATIVE MODELS AND CHANGE OF VARIABLES

In contrast to directly parameterizing a normalized distribution (e.g. Oord et al. (2016); Germain
et al. (2015)), the change of variables formula allows one to specify a complex normalized distribu-
tion px(x) implicitly by warping a normalized base distribution pz(z) through an invertible function
f : RD → R

D. Given a random variable z ∼ pz(z) the log density of x = f(z) follows

log px(x) = log pz(z)− log det

∣∣∣∣
∂f(z)

∂z

∣∣∣∣ (1)

where ∂f(z)/∂z is the Jacobian of f . In general, computing the log determinant has a time cost of
O(D3). Much work has gone into developing restricted neural network architectures which make
computing the Jacobian’s determinant more tractable. These approaches broadly fall into three
categories:

Normalizing flows. By restricting the functional form of f , various determinant identities can
be exploited (Rezende & Mohamed, 2015; Berg et al., 2018). These models cannot be trained as
generative models from data because they do not have a tractable inverse f−1. However, they are
useful for specifying approximate posteriors for variational inference (Kingma & Welling, 2014).

Autoregressive transformations. By using an autoregressive model and specifying an ordering
of the dimensions, the Jacobian of f is enforced to be lower triangular (Kingma et al., 2016; Oliva
et al., 2018). These models excel at density estimation for tabular datasets (Papamakarios et al.,
2017), but require D sequential evaluations of f to invert, which is prohibitive when D is large.

Partitioned transformations. Partitioning the dimensions and using affine transformations makes
the determinant of the Jacobian cheap to compute, and the inverse f−1 computable with the same
cost as f (Dinh et al., 2014; 2017). This method allows the use of convolutional architectures,
excelling at density estimation for image data (Dinh et al., 2017; Kingma & Dhariwal, 2018).

Throughout this work, we refer to reversible generative models as those which use the change of
variables to transform a base distribution to the model distribution while maintaining both efficient
density estimation and efficient sampling capabilities using a single pass of the model.

2.1 OTHER GENERATIVE MODELS

There exist several approaches to generative modeling approaches which do not use the change of
variables equation for training. Generative adversarial networks (GANs) (Goodfellow et al., 2014)
use large, unrestricted neural networks to transform samples from a fixed base distribution. Lacking
a closed-form likelihood, an auxiliary discriminator model must be trained to estimate divergences
or density ratios in order to provide a training signal. Autoregressive models (Germain et al., 2015;
Oord et al., 2016) directly specify the joint distribution p(x) as a sequence of explicit conditional
distributions using the product rule. These models require at least O(D) evaluations to sample
from. Variational autoencoders (VAEs) (Kingma & Welling, 2014) use an unrestricted architecture
to explicitly specify the conditional likelihood p(x|z), but can only efficiently provide a stochastic
lower bound on the marginal likelihood p(x).

2.2 CONTINUOUS NORMALIZING FLOWS

Chen et al. (2018) define a generative model for data x ∈ R
D similar to those based on (1), but

replace the warping function with an integral of continuous-time dynamics. The generative process
first samples from a base distribution z0 ∼ pz0(z0). Then, given an ODE whose dynamics are
defined by the parametric function ∂z(t)/∂t = f(z(t), t; θ), we solve the initial value problem with
z(t0) = z0 to obtain a data sample x = z(t1). These models are called Continous Normalizing
Flows (CNF). The change in log-density under this model follows a second differential equation,
called the instantaneous change of variables formula (Chen et al., 2018):

∂ log p(z(t))

∂t
= −Tr

(
∂f

∂z(t)

)
. (2)

We can compute total change in log-density by integrating across time:

log p(z(t1)) = log p(z(t0))−

∫ t1

t0

Tr

(
∂f

∂z(t)

)
dt. (3)
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Method Train on
data

One-pass
Sampling

Exact/Unbiased
Log-

likelihood

Free-
form

Jacobian

Variational Autoencoders ✓ ✓ ✗ ✓

Generative Adversarial Nets ✓ ✓ ✗ ✓

Likelihood-based Autoregressive ✓ ✗ ✓ ✗

C
h
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e
o

f
V
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ia

b
le

s

Normalizing Flows ✗ ✓ ✓ ✗

Reverse-NF, MAF, TAN ✓ ✗ ✓ ✗

NICE, Real NVP, Glow, Planar CNF ✓ ✓ ✓ ✗

FFJORD ✓ ✓ ✓ ✓

Table 1: A comparison of recent generative modeling approaches.

Given a datapoint x, we can compute both the point z0 which generates x, as well as log p(x) under
the model by solving the combined initial value problem:
[

z0

log p(x)− log pz0(z0)

]

︸ ︷︷ ︸
solutions

=

[
x

0

]
+

∫ t0

t1

[
f(z(t), t; θ)

Tr
(

∂f
∂z(t)

)
]
dt

︸ ︷︷ ︸
dynamics

,

[
z(t1)

log p(x)− log p(z(t1))

]
=

[
x

0

]

︸ ︷︷ ︸
initial values

(4)

which integrates the combined dynamics of z(t) and the log-density of the sample backwards in
time from t1 to t0. We can then compute log p(x) using the solution of (4) and adding log pz0(z0).
The existence and uniqueness of (4) require that f and its first derivatives be Lipschitz continu-
ous (Khalil, 2002), which can be satisfied in practice using neural networks with smooth Lipschitz
activations, such as softplus or tanh.

2.2.1 BACKPROPAGATING THROUGH ODE SOLUTIONS WITH THE ADJOINT METHOD

CNFs are trained to maximize (3). This objective involves the solution to an initial value problem
with dynamics parameterized by θ. For any scalar loss function which operates on the solution to an
initial value problem

L(z(t1)) = L

(∫ t1

t0

f(z(t), t; θ)dt

)
(5)

then Pontryagin (1962) shows that its derivative takes the form of another initial value problem

dL

dθ
= −

∫ t0

t1

(
∂L

∂z(t)

)T
∂f(z(t), t; θ)

∂θ
dt. (6)

The quantity −∂L/∂z(t) is known as the adjoint state of the ODE. Chen et al. (2018) use a black-box
ODE solver to compute z(t1), and then a separate call to a solver to compute (6) with the initial value
∂L/∂z(t1). This approach is a continuous-time analog to the backpropgation algorithm (Rumelhart
et al., 1986; Andersson, 2013) and can be combined with gradient-based optimization to fit the
parameters θ by maximum likelihood.

3 SCALABLE DENSITY EVALUATION WITH UNRESTRICTED ARCHITECTURES

Switching from discrete-time dynamics to continuous-time dynamics reduces the primary computa-
tional bottleneck of normalizing flows fromO(D3) toO(D2), at the cost of introducing a numerical
ODE solver. This allows the use of more expressive architectures. For example, each layer of the
original normalizing flows model of Rezende & Mohamed (2015) is a one-layer neural network with
only a single hidden unit. In contrast, the instantaneous transformation used in planar continuous
normalizing flows (Chen et al., 2018) is a one-layer neural network with many hidden units. In this
section, we construct an unbiased estimate of the log-density with O(D) cost, allowing completely
unrestricted neural network architectures to be used.
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3.1 UNBIASED LINEAR-TIME LOG-DENSITY ESTIMATION

In general, computing Tr (∂f/∂z(t)) exactly costs O(D2), or approximately the same cost as D
evaluations of f , since each entry of the diagonal of the Jacobian requires computing a separate
derivative of f (Griewank & Walther, 2008). However, there are two tricks that can help. First,

vector-Jacobian products v
T ∂f

∂z
can be computed for approximately the same cost as evaluating f

using reverse-mode automatic differentiation. Second, we can get an unbiased estimate of the trace
of a matrix by taking a double product of that matrix with a noise vector:

Tr(A) = Ep(ǫ)[ǫ
TAǫ]. (7)

The above equation holds for any D-by-D matrix A and distribution p(ǫ) over D-dimensional vec-
tors such that E[ǫ] = 0 and Cov(ǫ) = I . The Monte Carlo estimator derived from (7) is known as
Hutchinson’s trace estimator (Hutchinson, 1989; Adams et al., 2018).

To keep the dynamics deterministic within each call to the ODE solver, we can use a fixed noise
vector ǫ for the duration of each solve without introducing bias:

log p(z(t1)) = log p(z(t0))−

∫ t1

t0

Tr

(
∂f

∂z(t)

)
dt

= log p(z(t0))−

∫ t1

t0

Ep(ǫ)

[
ǫ
T ∂f

∂z(t)
ǫ

]
dt

= log p(z(t0))− Ep(ǫ)

[∫ t1

t0

ǫ
T ∂f

∂z(t)
ǫdt

]
(8)

Typical choices of p(ǫ) are a standard Gaussian or Rademacher distribution (Hutchinson, 1989).

3.1.1 REDUCING VARIANCE WITH BOTTLENECK CAPACITY

Often, there exist bottlenecks in the architecture of the dynamics network, i.e. hidden layers whose
width H is smaller than the dimensions of the input D. In such cases, we can reduce the variance
of Hutchinson’s estimator by using the cyclic property of trace. Since the variance of the estimator
for Tr(A) grows asymptotic to ||A||2F (Hutchinson, 1989), we suspect that having fewer dimensions
should help reduce variance. If we view the dynamics as a composition of two functions f = g◦h(z)
then we observe

Tr

(
∂f

∂z

)

︸ ︷︷ ︸
D×D

= Tr

(
∂g

∂h

∂h

∂z

)

︸ ︷︷ ︸
D×D

= Tr

(
∂h

∂z

∂g

∂h

)

︸ ︷︷ ︸
H×H

= Ep(ǫ)

[
ǫ
T ∂h

∂z

∂g

∂h
ǫ

]
. (9)

When f has multiple hidden layers, we choose H to be the smallest dimension. This bottleneck trick
can reduce the norm of the matrix which may also help reduce the variance of the trace estimator.
As introducing a bottleneck limits our model capacity, we do not use this trick in our experiments.
However this trick can reduce variance when a bottleneck is used, as shown in our ablation studies.

3.2 FFJORD: A CONTINUOUS-TIME REVERSIBLE GENERATIVE MODEL

Our complete method uses the dynamics defined in (2) and the efficient log-likelihood estimator of
(8) to produce the first scalable and reversible generative model with an unconstrained Jacobian.
We call this method Free-Form Jacobian of Reversible Dyanamics (FFJORD). Pseudo-code of our
method is given in Algorithm 1, and Table 1 summarizes the capabilities of our model compared to
other recent generative modeling approaches.

Assuming the cost of evaluating f is on the order of O(DH) where D is the dimensionality of the
data and H is the size of the largest hidden layer in f , then the cost of computing the likelihood
in models with repeated use of invertible transformations (1) is O((DH + D3)L) where L is the

number of transformations used. For CNF, this reduces to O((DH + D2)L̂) for CNFs, where L̂
is the number of evaluations of f used by the ODE solver. With FFJORD, this reduces further to

O((DH +D)L̂).
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Algorithm 1 Unbiased stochastic log-density estimation using the FFJORD model

Require: dynamics fθ, start time t0, stop time t1, data samples x, data dimension D.
ǫ← sample unit variance(x.shape) ⊲ Sample ǫ outside of the integral
function faug([zt, log pt], t): ⊲ Augment f with log-density dynamics.

ft ← fθ(z(t), t) ⊲ Evaluate neural network

g ← ǫ
T ∂f

∂z

∣∣
z(t)

⊲ Compute vector-Jacobian product with automatic differentiation

T̃r = gǫ ⊲ Unbiased estimate of Tr(∂f
∂z

) with ǫ
T ∂f

∂z
ǫ

return [ft,−T̃r] ⊲ Concatenate dynamics of state and log-density
end function
[z0,∆logp]← odeint(faug, [x,~0], t0, t1) ⊲ Solve the ODE

∫ t1

t0
faug([z(t), log p(z(t))], t) dt

log p̂(x)← log pz0
(z0) - ∆logp ⊲ Add change in log-density

return log p̂(x)

4 EXPERIMENTS
Data Glow Planar CNF FFJORD

Figure 2: Comparison of trained Glow, planar
CNF, and FFJORD models on 2-dimensional dis-
tributions, including multi-modal and discontinu-
ous densities.

We demonstrate FFJORD on a variety of den-
sity estimation tasks, and for approximate in-
ference in variational autoencoders (Kingma &
Welling, 2014). Experiments were conducted
using a suite of GPU-based ODE-solvers and an
implementation of the adjoint method for back-
propagation1. In all experiments the Runge-
Kutta 4(5) algorithm with the tableau from
Shampine (1986) was used to solve the ODEs.
We ensure tolerance is set low enough so nu-
merical error is negligible; see Appendix C.

We used Hutchinson’s trace estimator (7) dur-
ing training and the exact trace when report-
ing test results. This was done in all experi-
ments except for our density estimation models
trained on MNIST and CIFAR10 where com-
puting the exact Jacobian trace was too expen-
sive.

The dynamics of FFJORD are defined by a neural network f which takes as input the current state
z(t) ∈ R

D and the current time t ∈ R. We experimented with several ways to incorporate t as an
input to f , such as hyper-networks, but found that simply concatenating t on to z(t) at the input to
every layer worked well and was used in all of our experiments.

4.1 DENSITY ESTIMATION ON TOY 2D DATA

We first train on 2 dimensional data to visualize the model and the learned dynamics.2 In Figure 2,
we show that by warping a simple isotropic Gaussian, FFJORD can fit both multi-modal and even
discontinuous distributions. The number of evaluations of the ODE solver is roughly 70-100 on all
datasets, so we compare against a Glow model with 100 discrete layers.

The learned distributions of both FFJORD and Glow can be seen in Figure 2. Interestingly, we
find that Glow learns to stretch the unimodal base distribution into multiple modes but has trouble
modeling the areas of low probability between disconnected regions. In contrast, FFJORD is capable
of modeling disconnected modes and can also learn convincing approximations of discontinuous
density functions (middle row in Figure 2). Since the main benefit of FFJORD is the ability to train
with deeper dynamics networks, we also compare against planar CNF (Chen et al., 2018) which can

1Code can be found at https://github.com/rtqichen/ffjord and https://github.com/rtqichen/torchdiffeq.
2Videos of the learned dynamics can be found at https://imgur.com/a/Rtr3Mbq.
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Samples

Data

Figure 3: Samples and data from our image models. MNIST on left, CIFAR10 on right.

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST CIFAR10

Real NVP -0.17 -8.33 18.71 13.55 -153.28 1.06* 3.49*

Glow -0.17 -8.15 18.92 11.35 -155.07 1.05* 3.35*

FFJORD -0.46 -8.59 14.92 10.43 -157.40 0.99* (1.05†) 3.40*

MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 5.67

MAF -0.24 -10.08 17.70 11.75 -155.69 1.89 4.31

TAN -0.48 -11.19 15.12 11.01 -157.03 - -

MAF-DDSF -0.62 -11.96 15.09 8.86 -157.73 - -

Table 2: Negative log-likehood on test data for density estimation models; lower is better. In nats
for tabular data and bits/dim for MNIST and CIFAR10. *Results use multi-scale convolutional
architectures. †Results use a single flow with a convolutional encoder-decoder architecture.

be viewed as a single hidden layer network. Without the benefit of a flexible network, planar CNF
is unable to model complex distributions.

4.2 DENSITY ESTIMATION ON REAL DATA

We perform density estimation on five tabular datasets preprocessed as in Papamakarios et al. (2017)
and two image datasets; MNIST and CIFAR10. When reproducing Glow, we use the same configu-
rations for Real NVP as Papamakarios et al. (2017) and add invertible fully connected layer between
all coupling layers. On the tabular datasets, FFJORD performs the best out of reversible models by
a wide margin but is outperformed by recent autoregressive models. Of those, FFJORD outperforms
MAF (Papamakarios et al., 2017) on all but one dataset and manages to outperform TAN Oliva et al.
(2018) on the MINIBOONE dataset. These models require O(D) sequential computations to sam-
ple from while the best performing method, MAF-DDSF (Huang et al., 2018), cannot be sampled
from without resorting to correlated or expensive sampling algorithms such as MCMC.

On MNIST we find that FFJORD can model the data as effectively as Glow and Real NVP using
only a single flow defined by a single neural network. This is in contrast to Glow and Real NVP
which must compose many flows to achieve similar performance. When we use multiple flows in
a multiscale architecture (like those used by Glow and Real NVP) we obtain better performance on
MNIST and comparable performance to Glow on CIFAR10. Notably, FFJORD is able to achieve
this performance while using less than 2% as many parameters as Glow. We also note that Glow
uses a learned base distribution whereas FFJORD and Real NVP use a fixed Gaussian. A summary
of our results on density estimation can be found in Table 2 and samples can be seen in Figure 3.
Full details on architectures used, our experimental procedure, and additional samples can be found
in Appendix B.1.

In general, our approach is slower than competing methods, but we find the memory-efficiency of
the adjoint method allows us to use much larger batch sizes than those methods. On the tabular
datasets we used a batch sizes up to 10,000 and on the image datasets we used a batch size of 900.

4.3 VARIATIONAL AUTOENCODER

We compare FFJORD to other normalizing flows for use in variational inference. We train a
VAE (Kingma & Welling, 2014) on four datasets using a FFJORD flow and compare to VAEs with
no flow, Planar Flows (Rezende & Mohamed, 2015), Inverse Autoregressive Flow (IAF) (Kingma

6
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MNIST Omniglot Frey Faces Caltech Silhouettes

No Flow 86.55± .06 104.28± .39 4.53± .02 110.80± .46

Planar 86.06± .31 102.65± .42 4.40± .06 109.66± .42

IAF 84.20± .17 102.41± .04 4.47± .05 111.58± .38

Sylvester 83.32± .06 99.00± .04 4.45± .04 104.62± .29

FFJORD 82.82± .01 98.33± .09 4.39± .01 104.03± .43

Table 3: Negative ELBO on test data for VAE models; lower is better. In nats for all datasets except
Frey Faces which is presented in bits per dimension. Mean/stdev are estimated over 3 runs.

et al., 2016), and Sylvester normalizing flows (Berg et al., 2018). To provide a fair comparison, our
encoder/decoder architectures and learning setup exactly mirror those of Berg et al. (2018).

In VAEs it is common for the encoder network to also output the parameters of the flow as a function
of the input x. With FFJORD, we found this led to differential equations which were too difficult
to integrate numerically. Instead, the encoder network outputs a low-rank update to a global weight
matrix and an input-dependent bias vector. When used in recognition nets, neural network layers
defining the dynamics inside FFJORD take the form

layer(h;x,W, b) = σ




 W︸︷︷︸

Dout×Din

+ Û(x)︸ ︷︷ ︸
Dout×k

V̂ (x)︸ ︷︷ ︸
Din×k

T


h+ b︸︷︷︸

Dout×1

+ b̂(x)︸︷︷︸
Dout×1


 (10)

where h is the input to the layer, σ is an element-wise activation function, Din and Dout are the input

and output dimension of this layer, and Û(x), V̂ (x), b̂(x) are input-dependent parameters returned
from an encoder network. A full description of the model architectures used and our experimental
setup can be found in Appendix B.2.

On every dataset tested, FFJORD outperforms all other competing normalizing flows. A summary
of our variational inference results can be found in Table 3.

5 ANALYSIS AND DISCUSSION
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Figure 4: The variance of our model’s
log-density estimator can be reduced us-
ing neural network architectures with a
bottleneck layer, speeding up training.

We performed a series of ablation experiments to gain a
better understanding of the proposed model.

5.1 FASTER TRAINING WITH BOTTLENECK TRICK

We plotted the training losses on MNIST using an
encoder-decoder architecture (see Appendix B.1 for de-
tails). Loss during training is plotted in Figure 4, where
we use the trace estimator directly on the D×D Jacobian,
or we use the bottleneck trick to reduce the dimension to
H × H . Interestingly, we find that while the bottleneck
trick (9) can lead to faster convergence when the trace
is estimated using a Gaussian-distributed ǫ, we did not
observe faster convergence when using a Rademacher-
distributed ǫ.

5.2 NUMBER OF FUNCTION EVALUATIONS VS. DATA DIMENSION

The full computational cost of integrating the instantaneous change of variables (2) is O(DHL̂)

where D is dimensionality of the data, H is the size of the hidden state, and L̂ is the num-
ber of function evaluations (NFE) that the adaptive solver uses to integrate the ODE. In gen-
eral, each evaluation of the model is O(DH) and in practice, H is typically chosen to be
close to D. Since the general form of the discrete change of variables equation (1) re-

quires O(D3)-cost, one may wonder whether the number of evaluations L̂ depends on D.
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Figure 5: NFE used by the adap-
tive ODE solver is approximately inde-
pendent of data-dimension. Lines are
smoothed using a Gaussian filter.

We train VAEs using FFJORD flows with increasing la-
tent dimension D. The NFE throughout training is shown
in Figure 5. In all models, we find that the NFE increases
throughout training, but converges to the same value, in-
dependent of D. We conjecture that the number of evalu-
ations is not dependent on the dimensionality of the data
but the complexity of its distribution, or more specifically,
how difficult it is to transform its density into the base dis-
tribution.

5.3 SINGLE-SCALE VS. MULTI-SCALE FFJORD

200 400 600 800
NFE

0.9
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1.1

1.2

B
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/d
im

Single FFJORD
Multiscale FFJORD

Figure 6: For image data, a single
FFJORD flow can achieve near perfor-
mance to multi-scale architecture while
using half the number of evaluations.

Crucial to the scalability of Real NVP and Glow is
the multiscale architecture originally proposed in Dinh
et al. (2017). We compare a single-scale encoder-decoder
style FFJORD with a multiscale FFJORD on the MNIST
dataset where both models have a comparable number of
parameters and plot the total NFE–in both forward and
backward passes–against the loss achieved in Figure 6.
We find that while the single-scale model uses approxi-
mately one half as many function evaluations as the mul-
tiscale model, it is not able to achieve the same perfor-
mance as the multiscale model.

6 SCOPE AND LIMITATIONS

Number of function evaluations can be prohibitive. The number of function evaluations re-
quired to integrate the dynamics is not fixed ahead of time, and is a function of the data, model
architecture, and model parameters. This number tends to grow as the models trains and can be-
come prohibitively large, even when memory stays constant due to the adjoint method. Various
forms of regularization such as weight decay and spectral normalization (Miyato et al., 2018) can
be used to reduce the this quantity, but their use tends to hurt performance slightly.

Limitations of general-purpose ODE solvers. In theory, our model can approximate any differ-
ential equation (given mild assumptions based on existence and uniqueness of the solution), but in
practice our reliance on general-purpose ODE solvers restricts us to non-stiff differential equations
that can be efficiently solved. ODE solvers for stiff dynamics exist, but they evaluate f many more
times to achieve the same error. We find that a small amount of weight decay regularizes the ODE
to be sufficiently non-stiff.

7 CONCLUSION

We have presented FFJORD, a reversible generative model for high-dimensional data which can
compute exact log-likelihoods and can be sampled from efficiently. Our model uses continuous-
time dynamics to produce a generative model which is parameterized by an unrestricted neural
network. All required quantities for training and sampling can be computed using automatic differ-
entiation, Hutchinson’s trace estimator, and black-box ODE solvers. Our model stands in contrast
to other methods with similar properties which rely on restricted, hand-engineered neural network
architectures. We demonstrated that this additional flexibility allows our approach to achieve on-par
or improved performance on density estimation and variational inference.

We believe there is much room for further work exploring and improving this method. FFJORD
is empirically slower to evaluate than other reversible models like Real NVP or Glow, so we are
interested specifically in ways to reduce the number of function evaluations used by the ODE-solver
without hurting predictive performance. Advancements like these will be crucial in scaling this
method to even higher-dimensional datasets.
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APPENDIX A QUALITATIVE SAMPLES

Samples from our FFJORD models trained on MNIST and CIFAR10 can be found in Figure 7.
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Figure 7: Samples and data from our image models. MNIST on left, CIFAR10 on right.

APPENDIX B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 DENSITY ESTIMATION

On the tabular datasets we performed a grid-search over network architectures. We searched over
models with 1, 2, 5, or 10 flows with 1, 2, 3, or 4 hidden layers per flow. Since each dataset has
a different number of dimensions, we searched over hidden dimensions equal to 5, 10, or 20 times
the data dimension (hidden dimension multiplier in Table 4). We tried both the tanh and softplus
nonlinearities. The best performing models can be found in the Table 4.

On the image datasets we experimented with two different model architectures; a single flow with
an encoder-decoder style architecture and a multiscale architecture composed of multiple flows.

While they were able to fit MNIST and obtain competitive performance, the encoder-decoder ar-
chitectures were unable to fit more complicated image datasets such as CIFAR10 and Street View
House Numbers. The architecture for MNIST which obtained the results in Table 2 was composed
of four convolutional layers with 64 → 64 → 128 → 128 filters and down-sampling with strided
convolutions by two every other layer. There are then four transpose-convolutional layers who’s

11



Published as a conference paper at ICLR 2019

filters mirror the first four layers and up-sample by two every other layer. The softplus activation
function is used in every layer.

The multiscale architectures were inspired by those presented in Dinh et al. (2017). We compose
multiple flows together interspersed with “squeeze” operations which down-sample the spatial reso-
lution of the images and increase the number of channels. These operations are stacked into a “scale
block” which contains N flows, a squeeze, then N flows. For MNIST we use 3 scale blocks and
for CIFAR10 we use 4 scale blocks and let N = 2 for both datasets. Each flow is defined by 3
convolutional layers with 64 filters and a kernel size of 3. The softplus nonlinearity is used in all
layers.

Both models were trained with the Adam optimizer (Kingma & Ba, 2015). We trained for 500
epochs with a learning rate of .001 which was decayed to .0001 after 250 epochs. Training took
place on six GPUs and completed after approximately five days.

B.2 VARIATIONAL AUTOENCODER

Our experimental procedure exactly mirrors that of Berg et al. (2018). We use the same 7-layer
encoder and decoder, learning rate (.001), optimizer (Adam Kingma & Ba (2015)), batch size (100),
and early stopping procedure (stop after 100 epochs of no validaiton improvment). The only differ-
ence was in the nomralizing flow used in the approximate posterior.

We performed a grid-search over neural network architectures for the dynamics of FFJORD. We
searched over networks with 1 and 2 hidden layers and hidden dimension 512, 1024, and 2048. We
used flows with 1, 2, or 5 steps and wight matrix updates of rank 1, 20, and 64. We use the softplus
activation function for all datasets except for Caltech Silhouettes where we used tanh. The best
performing models can be found in the Table 5. Models were trained on a single GPU and training
took between four hours and three days depending on the dataset.

Dataset nonlinearity # layers hidden dim multiplier # flow steps batchsize

POWER tanh 3 10 5 10000

GAS tanh 3 20 5 1000

HEPMASS softplus 2 10 10 10000

MINIBOONE softplus 2 20 1 1000

BSDS300 softplus 3 20 2 10000

Table 4: Best performing model architectures for density estimation on tabular data with FFJORD.

Dataset nonlinearity # layers hidden dimension # flow steps rank

MNIST softplus 2 1024 2 64

Omniglot softplus 2 512 5 20

Frey Faces softplus 2 512 2 20

Caltech tanh 1 2048 1 20

Table 5: Best performing model architectures for VAEs with FFJORD.
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B.3 STANDARD DEVIATIONS FOR TABULAR DENSITY ESTIMATION

POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP -0.17 ± 0.01 -8.33 ± 0.14 18.71 ± 0.02 13.55 ± 0.49 -153.28 ± 1.78

Glow -0.17 ± 0.01 -8.15 ± 0.40 18.92 ± 0.08 11.35 ± 0.07 -155.07 ± 0.03

FFJORD -0.46 ± 0.01 -8.59 ± 0.12 14.92 ± 0.08 10.43 ± 0.04 -157.40 ± 0.19

MADE 3.08 ± 0.03 -3.56 ± 0.04 20.98 ± 0.02 15.59 ± 0.50 -148.85 ± 0.28

MAF -0.24 ± 0.01 -10.08 ± 0.02 17.70 ± 0.02 11.75 ± 0.44 -155.69 ± 0.28

TAN -0.48 ± 0.01 -11.19 ± 0.02 15.12 ± 0.02 11.01 ± 0.48 -157.03 ± 0.07

MAF-DDSF -0.62 ± 0.01 -11.96 ± 0.33 15.09 ± 0.40 8.86 ± 0.15 -157.73 ± 0.04

Table 6: Negative log-likehood on test data for density estimation models. Means/stdev over 3 runs.
Real NVP, MADE, MAF, TAN, and MAF-DDSF results on are taken from Huang et al. (2018). In
reproducing Glow, we were able to get comparable results to the reported Real NVP by removing
the invertible fully connected layers.

APPENDIX C NUMERICAL ERROR FROM THE ODE SOLVER

ODE solvers are numerical integration methods so there is error inherent in their outputs. Adaptive
solvers (like those used in all of our experiments) attempt to predict the errors that they accrue and
modify their step-size to reduce their error below a user set tolerance. It is important to be aware of
this error when we use these solvers for density estimation as the solver outputs the density that we
report and compare with other methods. When tolerance is too low, we run into machine precision
errors. Similarly when tolerance is too high, errors are large, our training objective becomes biased
and we can run into divergent training dynamics.

Since a valid probability density function integrates to one, we take a model trained on Figure 1 and
numerically find the area under the curve using Riemann sum and a very fine grid. We do this for a
range of tolerance values and show the resulting error in Figure 8. We set both atol and rtol to
the same tolerance.
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Figure 8: Numerical integration shows that the density under the model does integrate to one given
sufficiently low tolerance. Both log and non-log plots are shown.

The numerical error follows the same order as the tolerance, as expected. During training, we find
that the error becomes non-negligible when using tolerance values higher than 10−5. For most of
our experiments, we set tolerance to 10−5 as that gives reasonable performance while requiring few
number of evaluations. For the tabular experiments, we use atol=10−8 and rtol=10−6.
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