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FFPred 3: feature-based function 
prediction for all Gene Ontology 
domains
Domenico Cozzetto*, Federico Minneci*, Hannah Currant & David T. Jones

Predicting protein function has been a major goal of bioinformatics for several decades, and it has 
gained fresh momentum thanks to recent community-wide blind tests aimed at benchmarking available 
tools on a genomic scale. Sequence-based predictors, especially those performing homology-based 
transfers, remain the most popular but increasing understanding of their limitations has stimulated 
the development of complementary approaches, which mostly exploit machine learning. Here we 
present FFPred 3, which is intended for assigning Gene Ontology terms to human protein chains, when 
homology with characterized proteins can provide little aid. Predictions are made by scanning the 
input sequences against an array of Support Vector Machines (SVMs), each examining the relationship 
between protein function and biophysical attributes describing secondary structure, transmembrane 
helices, intrinsically disordered regions, signal peptides and other motifs. This update features a 
larger SVM library that extends its coverage to the cellular component sub-ontology for the first time, 
prompted by the establishment of a dedicated evaluation category within the Critical Assessment of 
Functional Annotation. The effectiveness of this approach is demonstrated through benchmarking 
experiments, and its usefulness is illustrated by analysing the potential functional consequences of 
alternative splicing in human and their relationship to patterns of biological features.

�anks to a combination of experimental assays and computational studies, knowledge about protein function 
has been steadily accumulating in public databases, where it is commonly described through the Gene Ontology1 
(GO). On the one hand, hypothesis-driven research has traditionally led to the thorough characterization of 
one or few proteins at a time. On the other hand, high-throughput technologies have opened the way to very 
large-scale exploratory surveys to study biological processes, identify binding partners, or establish subcellu-
lar locations. Meanwhile, some homology-based approaches for annotation transfers have developed enough to 
produce fairly con�dent results. �e GO consortium, for instance, makes wide use of a semi-automated tool for 
phylogenetic analysis and functional inference2, and of mappings between protein domain families to GO terms 
that are valid for all their members3. Despite these multi-pronged e�orts, however, a substantial fraction of depos-
ited sequences still have no functional annotation at all, and the remaining ones usually lack assignments for at 
least one GO domain. When available, this information may not be at the �nest level of detail possible, not only 
because of the way some electronically inferred annotations are generated, but also because of the varying levels 
of resolution characterizing experimental results4,5. Finally, nature can still spring surprises: protein moonlighting 
demonstrates that novel functions can still await discovery even for well-researched proteins6.

One way to �ll in some of these gaps employs machine learning to examine diverse biological data types 
separately or in combination, and to provide functional hypotheses that complement homology-based annota-
tion transfers7–9. In particular, over the years several supervised methods have been devised for function predic-
tion from amino acid sequences, which are easier to collect than structural data or genome-wide measurements 
of gene expression or protein-protein interactions. GOStruct10 and FANN-GO11, for instance, make GO term 
assignments by analysing the patterns of BLAST12 E-values to experimentally characterized proteins using struc-
tured Support Vector Machines (SVM) and multioutput neural networks, respectively. Given the computational 
complexity of training classi�ers with multiple correlated outputs, it is di�cult to learn the relationship between 
the input features and the whole GO; the proponents have therefore adopted workarounds such as reducing the 
number of output terms and ensemble modelling. Rather than tackling this complex structured learning problem, 
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other researchers have tested with success the possibility of converting it into a set of simpler binary classi�cation 
tasks. �is approach has recently allowed our group to train GO term-speci�c neural networks from features 
describing the results of pro�le-pro�le comparisons13.

Alignment-derived features, such as similarity scores, sequence coverage and E-values, can help learn which 
sequence similarity patterns correlate with the conservation of individual annotations, thus allowing more e�ective  
control on homology-based annotation transfers. Complementary e�orts have investigated the usefulness of bio-
physical attributes to make homology-free inferences, under the assumption that proteins with similar functions 
would have similar biological features despite the lack of signi�cant sequence similarities. For example, the occur-
rence of signal peptides gives useful hints about protein subcellular location, and also limits the number of their 
molecular functions and of the biological processes they partake. �e idea was �rst implemented in ProtFun, 
which is based on neural networks trained for the functional classi�cation of protein sequences from similarities 
in amino acid composition, and content of signal peptides, trans-membrane helices, post-translationally modi-
�ed residues as well as other biological features14,15. �e observation that the length and position of intrinsically 
disordered protein regions strongly correlates with some molecular activities and biological processes led to an 
expanded set of sequence-derived features, which FFPred scans through a library of GO term-speci�c SVMs to 
annotate protein chains16,17. A more recent study has con�rmed the e�ectiveness of this feature-based approach 
with the use of random forests for supervised learning18.

In this paper, we describe the latest FFPred release, which updates the previous one with an extended vocab-
ulary spanning all three GO domains, re�ecting the increasing attention in cellular component annotations, as 
evidenced from recent experiments in the Critical Assessment of Functional Annotation initiative. We evaluate 
FFPred 3 prediction accuracy using two complementary approaches and describe its improvements over the pre-
vious version. Finally, we show how its predictions can help get a glimpse into the e�ects of alternative splicing on 
human protein function. �e results show patterns of functional conservation and variation consistent with the 
presence or absence of particular biophysical attributes and with general biological knowledge.

Results and Discussion
Summary of tool updates. �anks to the continued growth of annotation databases, the latest FFPred 
release features a GO term vocabulary, which spans all three GO domains for the �rst time and is almost twice the 
size of that in the previous update. Supplementary Data �le 1 lists the 868 GO terms, for which a dedicated SVM 
is available along with the classi�cation accuracy estimated from the validation experiments following the train-
ing procedures. �e new release makes still use of SVMs, which are known to successfully handle imbalanced 
classi�cation tasks–typical in computational biology–where it is extremely important to allow for error control 
and avoid over�tting to known observations. Subcellular localization prediction has been the focus of many 
previous studies, which mostly focused on the well-known compartments of eukaryotic cells–such as nucleus, 
cytosol, endoplasmic reticulum, Golgi apparatus, mitochondrion and other organelles. �e newly added cellular 
component terms in FFPred 3 also include some of the numerous macromolecular complexes found in them. �e 
extensions to the other two sub-ontologies provide more speci�c descriptions for functional categories previously 
covered, and they re�ect the increasing body of knowledge in areas such as organelle localization, immune sys-
tem and reproductive processes, response to stimuli and chromosome segregation. A small fraction of molecular 
function and biological process terms have been removed (Fig. 1a,b), because they no longer occur in curated 
databases–mostly a�er the GO consortium made them obsolete. �e majority of functional categories that have 
been retained can be predicted with negligible changes in expected accuracy–though some exceptions exist. As 
a consequence of the extended knowledge about human protein function since the last update, the patterns of 
biophysical attrbutes linked to terms such as sulfur compound metabolic process (GO:0006790), neurotrophin 
TRK receptor signaling pathway (GO:0048011), growth factor activity (GO:0008083) and protein kinase binding 
(GO:0019901) can be more easily identi�ed and modelled. For other functions, such as calcium ion transport 
(GO:0006816), single organismal cell-cell adhesion (GO:0016337), ATPase activity (GO:0016887), and nuclease 

Figure 1. Comparison between FFPred 2 and FFPred 3. Extent of the overlap between FFPred 2 and FFPred 3 
GO term lists in the MF (a) and BP (b) domains. Most common terms in the MF (c) and BP (d) sub-ontologies 
are expected to be predicted with similar accuracy, as measured by the MCC.
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activity (GO:0004518), SVM performance has dropped, suggesting that their relationships to sequence-derived 
features are more complex than previously appreciated (Fig. 1c,d).

�e tool is designed with a focus on the function of human proteins, and so annotations curated for other 
organisms are never used for training. To learn e�ectively the relationship between biophysical attributes and 
GO terms, su�ciently large numbers of positive instances are needed, thus limiting the speci�city of the func-
tional categories that can be currently predicted. While this feature may not be desirable for all applications, its 
bene�ts to overcome some well-known limitations of homology-based annotation transfers have already been 
reported15,17. Interestingly, previous work showed that the tool can also help annotate protein function for other 
eukaryotic organisms. �e updated tool is publicly available on the web at http://bioinf.cs.ucl.ac.uk/�pred.

Performance evaluation. �e accuracy estimates in Supplementary Data �le 1 are GO term-speci�c and 
point out the usefulness of FFPred 3 to prioritize human genes for downstream experimental screening when 
homology o�ers little or no help. To complement this analysis and gauge how well protein function as a whole 
can be predicted for such di�cult cases, a timed experiment similar to the Critical Assessment of Functional 
Annotation challenge was conducted, by training a separate SVM library using the public databases released 
in November 2013. �e resulting 597 classi�ers were then used to assign GO terms to human proteins with 
no experimentally veri�ed biological roles at that time, and their accuracy was �nally measured against the 
UniProtKB-GOA data as of March 2016. For comparison purposes under di�cult working conditions with lim-
ited or completely missing homology information, additional predictions were generated by a baseline method 
(Naïve), which ranks GO terms by prevalence in UniProtKB-GOA, and by a sequence similarity-based approach 
(BLAST), which can transfer annotations only from distantly related and experimentally characterized proteins 
as detailed in Methods. Other machine-learning based tools for GO term prediction from patterns of biological 
features could not be included in the study: ProtFun15 has not been updated in a very long time and only covers 
a handful of currently valid GO terms, whereas ProFET18 requires training from scratch classi�ers for all GO 
categories of interest.

�e precision-recall plots in Fig. 2 and the data in Table 1 provide graphical and numerical reports on the 
evaluation results for the three separate GO domains, according to standard practice in the �eld. At high levels of 
recall (i.e. above roughly 40% for molecular function and 20% for the other two sub-ontologies), FFPred 3 pre-
dictions achieve higher precision values than the baseline approaches do, and the maximum F-scores in Table 1 
clearly back up this observation. However, the highest scoring predictions made by BLAST for subcellular loca-
tions and by Naïve for all sub-ontologies attain higher precision than the corresponding ones by FFPred 3. �is 
result surprisingly suggests that these less sophisticated approaches are more useful than FFPred 3, when only a 
handful of assays can be run on each protein. Or are they?

It is widely accepted that an obvious pitfall of precision-recall analysis is the total disregard of how informa-
tive predictions are. �e most con�dent GO term assignments made by Naïve for each test protein–GO:0043226 
(binding), GO:0005488 (organelle) and GO:0009987 (cellular process)–are far from useful in cutting down the 
options for the design of experiments, indeed. Nonetheless, their very shallow nature guarantees that they will 
be eventually con�rmed for most, if not all, proteins. Furthermore, comparing the precision values achieved 
by di�erent methods and plotted against the same level of recall could be more ambiguous than it looks at �rst 
sight. If the recall is less than 1.0, the predictors are evaluated on non-identical sets of target proteins, which 
can even be disjoint. Another confounding aspect is the number of GO term predictions above a given decision 
threshold made for individual proteins: predictors based on high-throughput functional data aim at high recall 
and generally produce longer lists of assignments than those generated by methods based on homology trans-
fers, which tend to achieve higher precision. Finally, correctly assigning the term t to distinct proteins p and q 
can pose prediction challenges of diverse nature, depending on how many proteins are annotated with t, and on 
how closely p and q follow the patterns of features used to build the classi�ers–e.g. sequence similarity, domain 
architecture, biological attributes, gene expression and so on. �erefore, it is useful to look at method perfor-
mance from a di�erent angle, by considering both the accuracy and the informativeness of equal numbers of high 

Figure 2. Graphical summary of the precision–recall analysis. �e three panels show the evaluation results 
for the MF (le�), BP (centre) and CC (right) domains, respectively. �e full triangles mark the points associated 
with the maximum F-measure.

http://bioinf.cs.ucl.ac.uk/ffpred
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scoring predictions for each target and sub-ontology–thus reducing the above biases and yielding results that can 
be interpreted more clearly and more easily by non-specialists, too.

�e top row panels in Fig. 3 summarize prediction quality in terms of F1 measure and the underlying pre-
cision and recall values are plotted in Figure S1. It is quite clear that FFPred 3 is superior to both Naïve and 
BLAST across all three GO domains, because it achieves higher recall than the other predictors do, in combina-
tion with intermediate values of precision. �e data also clearly con�rm the expectation that Naïve predictions 

GO 
domain Method �reshold TP FP FN NP Precision Recall F1

MF

FFPred 0.581 1443 3457 1818 427 0.390 0.461 0.422

BLAST 0.210 952 5740 2309 216 0.266 0.282 0.274

Naïve 0.152 1081 1643 2180 454 0.397 0.391 0.394

BP

FFPred 0.576 5792 13013 14469 655 0.353 0.331 0.342

BLAST 0.203 5272 83543 14989 345 0.173 0.271 0.211

Naïve 0.273 4136 8423 16125 661 0.329 0.241 0.278

CC

FFPred 0.730 3800 7424 4576 985 0.369 0.500 0.425

BLAST 0.204 2030 15655 6346 422 0.215 0.251 0.232

Naïve 0.579 2869 3077 5507 991 0.483 0.340 0.399

Table 1. Performance comparison between FFPred 3 and the baseline prediction methods. For each 
method, the table reports the total numbers of true positives (TP), false positives (FP) and false negatives 
(FN) each method achieves at the decision threshold that maximises the F1 score for each GO domain. NP 
is the number of proteins with at least one prediction with a con�dence score greater than or equal to the 
corresponding threshold value, which is used to calculate the average precision of each method according to 
equation (4) in the main text. �e average recall is calculated using equation (5) using the number of proteins 
with annotations in the GO domain under consideration, which can be found in the section “Methods”. �e 
latter two values are used to locate the full triangles in the precision-recall space shown in Fig. 2.

Figure 3. Comparison of the prediction accuracy and informativeness against number of top ranked 
predictions. �e graphs on the top row compare the average F-measure of the highest scoring GO term 
assignments made by FFPred 3, Naïve and BLAST for the MF (le�), BP (centre) and CC (right) domains, 
respectively. �e bottom row shows the average information content of the true positives for the same 
predictions in the top row. Data are plotted only when there are at least 25 targets with x ∈  {1, 2, 3, 4, 5} 
predictions and x validated annotations or more. �e label n represents the case where for each protein the 
number of predictions assessed equals the number of experimentally supported functions.
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generally are highly precise, but not deep enough in the GO graph to outperform the other approaches in terms 
of recall. �e results for the CC sub-ontology are an interesting exception: the low numbers of false negatives 
most likely arise from the relatively shorter distances between nodes associated with experimental annotations 
and nodes associated with the most frequent terms in UniProtKB-GOA. �e plots also clearly illustrate the limits 
of homology-based transfers in such challenging situations. When the evolutionary distances from previously 
annotated proteins are large, only the most general functional aspects are retained (e.g. catalytic or transporter 
activity), while the �ner details diverge (e.g. the nature of the substrates and the chemistry of the reactions), thus 
resulting in high numbers of both false positives and false negatives, and ultimately a�ecting negatively precision, 
recall and F-measure values.

As mentioned above, the design and implementation of FFPred 3 produced a list of GO terms with varying 
levels of detail, so it could be questioned how informative its predictions are and how helpful they can be to exper-
imenters. In Fig. 3, the plots in the bottom row show the average amount of useful information the highest scoring 
predictions would actually provide. For this purpose, the analysis only considers true positive predictions, which 
are not regarded as equally valuable as in the standard precision-recall analysis, however. �ey are rather weighted 
according to their information content, which estimates their speci�city and informativeness from their occur-
rence in the UniProtKB/SwissProt database – so that more frequent functional categories are down-weighted, 
and vice versa. �e plots undoubtedly prove that FFPred 3 correct predictions are consistently more speci�c than 
those generated by BLAST, which in turn are more speci�c than those made by Naïve. �erefore, despite the 
relatively low levels of term speci�city, FFPred 3 can give useful hints to drive the experimental characterization 
of proteins, when routes alternative to homology transfers are needed. Table S1 gives some clear examples of how 
well FFPred 3 top-ranked predictions compare with the validated GO term assignments, which some proteins 
with no prior experimental functional data have recently acquired.

Insights into the functional consequences of alternative splicing in humans. Experimentally sup-
ported functional information for individual splice variants is generally scarce–only a handful of isoform-level 
GO term annotations have been reviewed and included in public databases. Even when some isoforms encoded 
by the same gene have been assayed, the data are still largely incomplete, because the experiments are usually 
focussed on a particular functional aspect. Within this active area of research, FFPred 3 and similar methods for 
protein function prediction have the opportunity to help investigate the functional rami�cations of alternative 
splicing. Indeed, very o�en comparative sequence analysis can only suggest that the relatively small sequence 
changes between splice isoforms cause more or less pronounced structural and functional di�erences. In other 
words, this approach is typically unable to put forward more detailed testable hypotheses. �is opens up the pos-
sibility that alternative splicing products may not encode biochemically active molecules, but rather constitute 
a reservoir for natural selection19–21–a conjecture that is also hard to verify. Notwithstanding, experimental evi-
dence shows that the functional divergence between alternative splice variants can vary from subtle modulations 
of biochemical activities to completely antagonistic regulatory roles22. It is therefore interesting to investigate: i) 
which functional aspects tend to be more robust to splicing, and consequently conserved across splice variants of 
the same gene; and ii) whether canonical isoforms tend to be enriched in functions that are di�erent from those 
over-represented in their alternative variants–see Methods for further details on the conservation and primarity 
scores.

To examine these patterns, a large-scale survey was carried out on 9,214 human proteins and their recorded 
splice variants using FFPred 3, under the assumption that eventually they all ful�l a physiological role in the 
cell. �e analysis was restricted to the GO term predictions compatible with the manually curated assignments 
existing in UniProtKB/SwissProt, as to reduce the e�ects of spurious results on the biological interpretation. �e 
summary data in Supplementary Data �le 2 indicate that the GO terms used in this study display varying levels 
of conservation across sets of alternatively spliced transcripts, even though it is di�cult to assess the statistical 
signi�cance of the observed di�erences. Only �ve predicted (and admittedly broad) functions appear to be con-
sistently assigned to all the variants of a gene, and very few of them are highly conserved, when the focus is on the 
most reliably predicted GO terms–i.e. the SVM Matthews correlation coe�cient value is in the top 50% of the dis-
tribution recorded for the corresponding sub-ontology. For instance, only six of such terms annotate all isoforms 
of a gene in 90% or more of the cases examined. �erefore, despite the use of a consolidated set of predictions, 
the �ndings support the expectation that alternative splicing plays a role in diversifying the cellular functional 
repertoire. Support for this theory is strengthened by the di�erential associations of individual biological roles 
with canonical or alternative splice isoforms – as gauged by the GO term primarity scores. �e Supplementary 
Data �le 3 indicate that there are many more GO categories preferentially associated with principal variants than 
with alternative ones, partly because these analyses are restricted to predicted functions in line with available 
annotations in UniProtKB/SwissProt. Nevertheless, the GO terms with high primarity scores tend to represent 
more constitutive cellular functions, and those with negative scores appear to be mostly associated with larger 
sets of alternatively spliced genes or to be induced by changes in the environment or in the cellular conditions. 
As mentioned above, it is di�cult to draw statistically sound conclusions from this initial study: identifying the 
canonical isoform of each gene is still an open question, and here a rather simple and pragmatic approach was 
taken just like in previous studies.

To emphasize the unique advantages that analyzing biological features can o�er, Fig. 4 gives some insight 
into their relationship with some of the most conserved functions in each GO domain–see Methods for more 
details. �e heatmap allows to link the over- and under-representation of speci�c biophysical attributes with 
the conservation of particular functional aspects. Similarly, Figs 5 and 6 show the extent of positive or negative 
correlation between sequence-derived feature groups and the GO terms that are preferentially associated with 
principal or alternative splice variants, respectively. �e results generally re�ect well-established trends between 
functional categories and the occurrence or lack of intrinsically disordered residues, transmembrane helices and 
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signal peptides, and these interpretable patterns of association also apply to extended lists of GO terms, which are 
either expected to be predicted with lower con�dence or to be less conserved (Figures S2, S3 and S4).

�e �gures above provide a general overview across the whole human isoform proteome; however, the online 
server allows to study how alternative splicing is likely to preserve or abolish individual functions, by providing 
a detailed graphical view of the biological features detected in the input sequences. �e following showcases how 
functional conservation and variation are consistent with the presence or absence of particular biophysical attrib-
utes and, most importantly, with independent biological knowledge.

Protein intrinsic disorder has long been linked to binding activities and regulatory processes in the light 
of both experimental and computational investigations23–25, and its enrichment in DNA binding proteins has 

Figure 4. Enrichment of biological features for the most conserved functions in human alternative 
isoforms. �e heatmaps compare the feature values calculated for the annotated splice variants with those used 
to train the classi�ers for each of the �ve most conserved and con�dently predicted functions in the MF (top), 
BP (centre) and CC (bottom) domain, respectively. �e classi�ers are in the top 50% of the corresponding sub-
ontology. Warmer (colder) colours represent median feature group values that are higher (lower) in the human 
isoform proteome than in the positive training set for the corresponding GO term. Grey cells indicate feature 
groups not used by FFPred 3 to make predictions.

Figure 5. Relationship between biological features and GO terms preferentially associated with main splice 
isoforms. For each function, the heatmaps report the correlation between the feature values calculated for the 
annotated splice variants with the estimated probability produced by the corresponding classi�er. Only the �ve 
GO terms with highest expected accuracy and propensity for the canonical splice variants are listed for the MF 
(top), BP (centre) and CC (bottom) domain, respectively. �e classi�ers are in the top 50% of the corresponding 
sub-ontology. Warmer (colder) colours represent higher (lower) values of median correlation across each 
feature group. Grey cells indicate feature groups not used by FFPred 3 to make predictions.
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a two-fold explanation. Basic leucine zipper (bZIP) and AT hook domains–both well known examples of dis-
ordered regions–are frequently found in many transcription factors and regulators, and some are conserved in 
their splice isoforms, too. �e proto-oncogene c-Fos (UniProt accession P01100) and the high mobility group 
protein HMGI-C (UniProt accession P52926) include one bZIP and three AT hook motifs, respectively, which 
are all conserved across their known splice isoforms. Most o�en, however, DNA binding proteins usually include 
additional disordered segments that are not directly involved in DNA binding, but rather in the establishment of 
transient and highly speci�c protein-protein interactions for transactivation purposes. �ese regions are either 
maintained upon splicing–like the C-terminal domain of c-Fos–or swapped with other disordered segments to 
rewire cellular and signaling networks26.

Signal peptides and transmembrane helices provide useful hints about protein subcellular localization and 
transmembrane transporter activities. They are unsurprisingly over and under-represented accordingly in 
those splice isoforms that need to retain the corresponding roles. �e main and alternative isoforms of both the 
calcium-transporting ATPase type 2C member 1 (UniProt accession P98194) and of the 5-hydroxytryptamine 
receptor 3E (UniProt accession A5X5Y0) clearly illustrate this point. Alternative splicing hardly a�ects the trans-
membrane segments of these channels–only the isoform P98194-2 loses one helix–therefore they still localize in 
the membrane, and likely act as transporters of possibly di�erent molecules.

Some associations–such as those between beta strands and several functional categories–may not look bla-
tantly obvious, but brief scrutiny reveals their consistency with known biological facts. Nucleotides such as FAD, 
NAD and NADP are commonly bound by β α β  super-secondary structure motifs, which usually occur in tan-
dem in the Rossman fold where they can form relatively large beta sheets. Mitochondrial glutathione reductase 
(UniProt accession P00390) has �ve known isoforms that all preserve the nucleotide binding site, for instance, 
thus suggesting that the sequence di�erences do not impact this functional aspect, but something else. It is known 
that the isoform P00390-1 is indeed found in the mithocondrion, while isoform P00390-2 is cytoplasmatic, for 
instance. �e enrichment of residues in beta strands in isoforms at the cell periphery is also easily explained by 
the abundance of immunoglobulin-like (Ig-like) domains, which fold into a beta sandwich structure and are 
involved in a wide range of functions such as cell surface recognition, immune response and muscle structural 
organization. Both the mucosal addressin cell adhesion molecule 1(UniProt accession Q13477) and the leukocyte 
Ig-like receptor subfamily A member 5 (UniProt accession A6NI73) exemplify well this over-representation. Both 
proteins include a signal peptide followed by two Ig-like domains, one transmembrane helix and a C-terminal 
cytosolic region. All recorded splicing events cause the removal or replacement of sequence regions outside the 
signal peptide and the core of the Ig-like domains, thus proving that the alternative variants are still secreted.

Figure 6. Relationship between biological features and GO terms preferentially associated with alternative 
splice isoforms. For each function, the heatmaps report the correlation between the feature values calculated 
for the annotated splice variants with the estimated probability produced by the corresponding classi�er. Only 
the �ve GO terms with highest expected accuracy and propensity for alternative variants are listed for the MF 
(top), BP (centre) and CC (bottom) domain, respectively. �e classi�ers are in the top 50% of the corresponding 
sub-ontology. Warmer (colder) colours represent higher (lower) values of median correlation in each feature 
group. Grey cells indicate feature groups not used by FFPred 3 to make predictions. Some GO names have 
been abbreviated: RNA polymerase II core promoter proximal region sequence-speci�c DNA binding 
transcription factor activity involved in positive regulation of transcription (transcription factor activity (A); 
RNA polymerase II core promoter proximal region sequence-speci�c DNA binding transcription factor activity 
(transcription factor activity (B); RNA polymerase II transcription regulatory region sequence-speci�c DNA 
binding transcription factor activity involved in positive regulation of transcription (transcriptional activator 
activity (C); sequence-speci�c DNA binding RNA polymerase II transcription factor activity (transcription 
factor activity (D).
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Based on these examples, we would expect that this updated version of FFPred 3 will assist experimentalists 
narrow down the number of assays to functionally characterize individual variants of their own interest. In turn, 
those e�orts will de�nitely stimulate further bio-curation work to interpret this information and make it available 
in machine-readable format. Initial computational studies have been carried out to advance this area of functional 
genomics using gene expression pro�le data27,28; their integration with other complementary sources of biological 
information that are tissue and condition-speci�c will undoubtedly be the focus of many more investigations in 
the near future.

Methods
Datasets and procedures for training and testing. Training procedures employed the term de�ni-
tions and relationships de�ned in the GO1 OBO �at �le released on 2015-02-03, the annotations for human 
proteins in UniProt-GOA29 released on 2015-04-02 and in UniProtKB30 release 2015_02, and the UniRef9031 
release 2015_02 for sequence similarity searches. GO term-speci�c Support Vector Machines (SVM) were trained 
as detailed before17, and the following is a brief overview of the procedure, which is also graphically summarised 
in Supplementary Figure S5. Candidate functional classes were identi�ed based on the availability of su�ciently 
large and con�dent positive and negative instances, which were split into training (70%) and validation (30%) 
data. �e training subset was then encoded through 258 sequence-derived features covering a range of 14 di�er-
ent functional and structural aspects; the resulting vectors were fed into SVM-Light32 to perform feature selection 
and parameter optimization. Based on the number of training instances available for each function, the number 
of folds k ranges between 3 and 5, within the constraint that the partitions are equally sized. Feature selection 
was performed using a backward elimination approach, which involves �rst using all feature groups to estimate 
classi�cation accuracy, and then iteratively testing if the removal of each feature group improves it. At each step, 
a grid search of the SVM hyper-parameter space was conducted with k-fold cross-validation to estimate SVM 
performance using the highest average Matthews correlation coe�cient (MCC)

=
⋅ − ⋅

+ ⋅ + ⋅ + ⋅ +

TP TN FP FN

TP FP TP FN TN FP TN FN
MCC

( ) ( )

( ) ( ) ( ) ( ) (1)

where TP is the number of proteins correctly labelled as positives (true positives); TN is the number of proteins 
correctly labelled as negatives (true negatives); FP is the number of misclassi�ed negative cases (false positives); 
and FN is the number of misclassi�ed positive instances (false negatives). �ese parameters were used to build 
a binary classi�er from all training examples, the performance of which was tested against the proteins in the 
unseen validation set. Only GO terms corresponding to predictors achieving MCC ≥  0.05 were retained, and for 
them FFPred 3 makes predictions with SVMs trained on the joint training and validation sets to make the most 
of available annotations. Platt scaling33 is applied to estimate the posterior probability that the input protein per-
forms the function associated with a SVM given the raw output score.

Datasets and procedures for performance evaluation. Only for the purpose of estimating predic-
tion accuracy, an intermediate version of the SVM library was trained using the GO OBO �at �le released on 
2013-11-05, the UniProt-GOA gene association �le for human submitted to the GO Consortium on 2013-10-
28, UniProtKB and UniRef90 release 2013_10. �e training procedures outlined above produced a vocabulary 
consisting of 400 terms in the biological process (BP) domain, 108 in the molecular function (MF) domain, and 
89 in the cellular component (CC) domain, which allowed to make predictions for all human protein sequences 
released as targets of the second Critical Assessment of Functional Annotation challenge34. �e benchmark set 
was collated from the UniProt-GOA gene association �le, by selecting those human proteins that received GO 
term assignments supported by evidence code EXP, IDA, IMP, IGI, IEP, TAS or IC between 2014-01-20 (end 
of the CAFA2 prediction stage) and 2016-03-14 (the database release date). Annotations to the term “protein 
binding” (GO:0005515) were discarded because they convey limited functional information unless the context 
is quoted (e.g. where and when the activity takes place and the requirement or absence of other molecules), and 
because these quali�ers are neglected by current function prediction evaluation protocols. �is resulted in 3,881 
annotations for 1,365 proteins in total–602 MF annotations for 454 proteins, 1,802 BP annotations for 661 pro-
teins, and 1,477 CC annotations for 991 proteins.

Prediction accuracy was measured separately for each GO domain by precision-recall analysis as in similar 
studies following the lead of the CAFA experiments34,35. For each protein x in the benchmark set and decision 
threshold v, the set of predicted terms Px,v was built by collecting all terms with con�dence scores greater than or 
equal to v and their ancestors in GO linked by “is a” relationships and di�erent from the root; the set of reference 
terms Rx was generated in a similar way by up-propagating the validated annotations for x. �ese sets were used 
to calculate the number of true positives tpx,v, false positives fpx,v and false negatives fnx,v respectively as the sizes 
of the intersection Px,v ∩  Rx, of the set di�erence Px,v\Rx and of the set di�erence Rx\Px,v. �ese data were combined 
into precision

=
+

p
t p

t p f p (2)
x v

x v

x v x v
,
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and then averaged across the test set using the formulas

∑=p
n

p
1

(4)
v

x
x v,

∑=r
m

r
1

(5)
v

x
x v,

where m is the number of target proteins in the GO domain at hand and n is the number of those with at least one 
prediction scoring at least v. Finally, the average F-measure for the threshold v was calculated as

= ⋅
⋅

+
F

p r

p r
2

(6)
v

v v

v v

that is by taking the harmonic mean of p
v
 and rv.

A complementary evaluation of function prediction quality was carried out on the top-ranked predictions 
for each target t and GO domain d. To this end, a�er ranking based on con�dence scores, the initial predictions 
were trimmed to the same length l ∈  {1, 2, 3, 4, 5, nt,d}, where nt,d is the number of experimental annotations for t 
in the sub-ontology d. To handle ties in con�dence scores, �rst 1,000 prediction lists of the desired length l were 
randomly sampled without replacement for each protein. �en, the average values of precision, recall, F-measure 
were calculated for each list of top l predictions; �nally the average of such statistics over all replicates were 
analysed.

Along with the above statistics, the average sum of true positive information content was also calculated from 
all replicates. �e information content of a GO term t was estimated in a Bayesian framework as proposed by 
Clark and Radivojac36 using the equation

∩
= − | ≈ =P

P

P P
ic t t t

N t t

N t

N t

N t
( ) log Pr( ( ))

({ } ( ))

( ( ))

({ })

( ( )) (7)

where P(t) represents the set of parent nodes of t, and the function N(·) returns for any set of GO terms the num-
ber of human proteins annotated in UniProtKB-SwissProt with evidence code EXP, IDA, IMP, IGI, IEP, TAS or 
IC.

�e Supplementary Data �le 4 includes the complete sets of reference annotations and of predictions used in 
these performance comparison experiments.

Baseline function prediction methods. Naïve predictions were generated based on the frequency of 
the GO term annotations for human sequences recorded in UniProt-GOA as of 2013-10-28. To this end, initial 
counts were obtained for all GO terms except “protein binding” (GO:0005515) supported by the evidence codes 
EXP, IDA, IPI, IMP, IGI, IEP, IC and TAS. �e data were then propagated following “is a” links in the GO released 
on 2013-11-05, and �nally scaled between 0 and 1 for each domain separately, by dividing the �nal counts by the 
number of occurrences of the root node and rounding the result to three decimals like FFPred does. �e resulting 
6,504 pairs of GO terms (469 for CC, 1,268 for MF and 4,767 for BP) and scores were used to annotate all proteins 
in the benchmark set.

BLAST predictions were obtained by �rst collecting all BLAST12 hits in the UniRef9031 sequence database 
released in October 2013 with an E-value greater than 1e-03. �en the annotations in UniProtKB release 2013_10 
supported by evidence code EXP, IDA, IPI, IMP, IGI, IEP, IC and TAS were transferred to the target sequences. 
GO term con�dence scores were calculated by dividing the local alignment sequence identity by 100. When mul-
tiple BLAST hits were annotated with the same function, the highest score was retained.

Annotation and functional analysis of human splice variants. �e sequences of the human iso-
form proteome and the classi�cation between main and alternative splice variants were obtained from the release 
2015_03 of UniProtKB/SwissProt and the accompanying “varsplic” �le. Individual isoforms were discarded if a) 
their amino acid sequence is unknown; or b) it is shorter than 15 amino acids; or c) it is longer than 1500 amino 
acids, or d) it includes non-standard amino acid symbols; or e) it is recorded in a separate database entry due to 
substantial di�erences from the canonical sequence. When these �lters led to the exclusion of main variants, asso-
ciated alternative sequences were removed from the dataset as well. �is initial screening yielded 28,310 splice 
variants for 9,267 UniProtKB/SwissProt entries.

FFPred 3 was run to make isoform-speci�c GO term predictions, which were then screened for consistency 
with the UniProtKB/SwissProt data. Only functional classes that were either explicitly assigned by the curators 
or implied by the GO data released on 2015-02-27 were retained. Removal of principal isoforms at this stage also 
led to the elimination of all related alternative variants, hence producing a �nal dataset Pas consisting of 28,142 
sequences for 9,214 UniProtKB/SwissProt entries.

Patterns of conservation and variation were analysed for all GO terms predicted to the splice isoforms of at 
least 20 distinct UniProtKB/SwissProt entries. For each functional class G, the survey aimed at quantifying its 
tendency to be conserved upon splicing, as well as its preference for principal rather than alternative splice var-
iants. �e average conservation of G across splice variants of the same gene was measured as the ratio between 
the number of UniProtKB/SwissProt entries where G was assigned to all isoforms, and the number of database 
records where it was predicted for at least one isoform. �e primarity of G–that is its enrichment among main 
isoforms rather than alternative variants–was taken as
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δ = −

m

n

a

m (8)G
G G

where mG and aG are respectively the numbers of main and alternative isoforms annotated with G, while n =  9214 
is the number of genes in the dataset, and m =  28142 is the total number of splice variants. �erefore, δG >  0 if 
G is preferentially found among canonical isoform predictions; δG <  0 if G is assigned more o�en to alternative 
variants than to main ones; and δG =  0 if G is equally associated with the two sets of protein products.

To investigate further and interpret the conservation of each GO term g in the light of current biological 
knowledge, the biological attributes associated with the set of canonical and splicing variants annotated with g 
(Vg) were compared with those previously observed in the positive training set (Tg) of the corresponding SVM. In 
particular, for each sequence-derived feature f, the median value mg,f,T observed during the training process was 
compared to mg,f,V–the median value in Vg–by �rst mapping the latter to the lowest percentile p

g f T, ,
 seen in Tg and 

then by calculating

= ⋅ −E p2 1 (9)g f g f T, , ,

�erefore, Eg,f =  0 if the two median values are identical, Eg,f >  0 if on average f takes higher values in Vg than in 
Tg, while Eg,f <  0 if f typically has lower values in Vg than Tg. Similarly, the association between a feature f and a 
functional class g that is over-represented in either set of canonical or alternative protein isoforms was estimated 
using Pearson’s correlation coe�cient between the values f takes on Vg and the corresponding SVM output scores.
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