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Thesis Abstract 

FFT Applications to Plane-Polar Near-Field Antenna Measurements 

by 

Mark S. Gatti 

Master of Science in Electrical Engineering 

The Jet Propulsion Laboratory has built a near field antenna measurement facility 

based on the plane-polar measurement technique which utilizes the Jacobi-Bessel transform 

for the pattern analysis. This technique is useful because one can very accurately and easily 

measure antennas which are only slightly smaller than the available room size. This thesis 

develops the algorithms necessary so that the data measured on the plane-polar facility can be 

reduced by the use of the Fast Fourier Transform (FFT), which enhances many aspects of 

antenna pattern calculation from near field measurements. Furthermore, these tools are 

extended to include the calculation of the surface distortion of a parabolic antenna. This 

diagnosis technique can prove useful in mapping the contours of surface errors such that a 

designer may attempt to improve the antenna performance. 

The results of applying the FFT to the analysis of polar data show promise in that the 

accuracy is maintained for greater angles of interest. Also, for principal plane patterns the 

computer resources required in terms of CPU execution time are much less than the Jacobi

Bessel technique. The areas of savings are a direct result of integrating the radiation integral by 

the FFT. The results of this technique are compared to those of the Jacobi-Bessel technique, 

and advantages and disadvangates are compared. 
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Chapter 1 

INTRODUCTION 

Review 

The characterization of an antenna's radiation properties is a very important part of 

the antenna engineer's task once a design has been turned into hardware. These radiation 

properties are often measured on far-field ranges which are built outdoors and are often 

subject to unfavorable conditions. These conditions include the limited range size, or the 

need for a large amount of real estate, the ability to isolate the test antenna from the effects 

of the weather, the ability to define the antenna performance completely, and the 

interference caused to the measurement by the weather conditions. These concerns may 

be eliminated by the use of near-field measurement techniques in which the fields of the 

antenna under test are measured by a probe in the near-field region of the antenna. By 

using near-field techniques, the antenna engineer may characterize the entire antenna 

pattern and not just several cuts, and the results can be as accurate or better than the results 

of far-field measurements if the near field range is built indoors. Accurate measurements may 

continue to be made during any weather conditions without delaying the test schedule. The 

problems associated with the near-field techniques are that a more complicated 

measurement system is required, since the phase and magnitude of the field must be 

measured, that computing the far field is more difficult than in far-field measurements, and 

that the final results may not be determined in real time as the measurements occur. 

Near-field techniques have come to be used to measure the far-field parameters of 

antennas which are sensitive to the effects of gravity, such as spacecraft antennas, antennas 

which must not be exposed to inclement weather, and antennas which are classified for 

security purposes. For these reasons and others, many researchers have shown an interest 

in this technique which has been included in the IEEE Standard Test Procedures for 

Antennas [1979], and which has been thoroughly reviewed by Johnson, Ecker and 
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Hollis [1973], Appei-Hansen [1982], and more recently by Yaghjian [1986]. In these 

reviews, three different near-field techniques are discussed, each of which are referred to by 

the coordinate system in which the data is acquired: planar, cylindrical, and spherical. Of 

these three types of near-field measurement systems, the planar technique has been the 

most widely used. This popularity results from several reasons, among which is the fact that 

the coordinate system is simple to work with, it fits the geometry of many high gain antennas, 

and a great deal of analysis has been done to understand the various errors involved in the 

formulations [Y aghjian, 1975]. 

The far-field patterns of an antenna may be calculated from the near-field 

measurements in one of several ways. The most widely used technique is that of the modal 

expansion method which was pioneered by Kerns [1950, 1960, 1981]. This technique uses 

data measured on a plane in a Cartesian coordinate system. The modal expansion method 

was soon afterward expanded to account for the effects of the probe on the measured data 

[Joy, Leach, Rodrigue, and Paris, 1978, and Paris, Leach, and Joy, 1973,1978]. The near

field ranges which are now widely used are usually based on these techniques since much 

data has been published describing the results, analytical techniques, and error bounds 

[Baird, Newell, Wacker, Kerns, 1970]. 

The Radiating Regions About an Antenna 

The definition of the near-field of an antenna is discussed by Johnson, et. al., 

[1973]. In that paper the terms which are preferred for definitions are the reactive near-field, 

the radiating near-field, and the radiating far-field. The authors of that paper prefer to use the 

terms reactive near field, radiating near field, and radiating far field to describe the regions 

about a radiating element or aperture and to reserve the terms Fresnel and Fraunhofer to 

describe the approximations used in various analytical techniques. This is because Fresnel 

and Fraunhofer are terms which come from optics, which have no region similar to the 

reactive near field. Figure 1.1 illustrates the definitions of the various regions. In Figure 1.1 a, 
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a planar aperture distribution is given in the xy-plane and the point P is separated from the 

center of the coordinate system by a distance R. The field at the point P is given by the 

superposition of every radiating element in the aperture, which is an integral in the case of a 

continuous aperture. In this figure, the distances r1 and r2 are seen to change by 

significantly different amounts as P moves farther away in a fixed direction. Thus, the phase 

between these points changes significantly. This can be shown for all points in the aperture 

and thus the radiation pattern will depend on the radius to the observation point. However, 

at large distances r1 and r2 are approximately parallel and do not differ in relative length asP 

moves away in a fixed direction. Therefore, the pattern is not visibly dependent on the 

distance RasP moves away in a fixed direction. It is at this point that Pis in the far-field of the 

aperture. Thus the far-field of the aperture is that distance at which the patterns of the 

antenna no longer change shape as a function of distance from the aperture. Figure 1.1 b 

illustrates the distances defining the three regions for antenna measurements. 

Planar Near-Field Measurement Techniques 

In the planar near-field measurement technique, the field data is acquired on a plane 

which is finite in extent but which intercepts the major portion of the radiating field. This data 

is then used to calculate the far-field quantities of the antenna under test. There are basically 

two ways to calculate the far-field patterns from the near-field measurements: 1) by using the 

complete electromagnetic fields surrounding the antenna, called the source distribution 

method, and 2) by using a modal expansion technique as mentioned in the previous section. 

In the source distribution method, the probe used to measure the fields must be small with 

respect to the wavelength and the antenna under test, but there is no means to compensate 

for the effects of the probe. In the modal expansion technique, the pattern of the probe is 

transformed to obtain a modal expansion in terms of wavenumbers. Thus, the effects of the 

probe may be eliminated on a term-by-term basis from the modal expansion. The modal 

expansion technique has an advantage in that information is obtained which is useful in the 

calculation of errors and in the elimination of secondary probe/test antenna interactions. 
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Rahmat-Samii, Galindo-lsrael, and Mittra [1980] have devised a technique by which 

the near-field data is measured in a plane on concentric rings. This is referred to as the plane

polar technique and utilizes a Jacobi-Bessel expansion to describe the far-fields. This 

technique begins as the modal expansion technique does, with the Lorentz reciprocity 

theorem, but then a convolutional expression of the antenna pattern and the probe pattern 

is developed from which a radiation type integral is derived. This integral is similar in form to 

the first term of the modal expansion as described above and is a Fourier transform. The 

integral is expanded by the Jacobi-Bessel expansion and the coefficients are found which 

are used to describe the far-field pattern. Since the equation resulting from the convolution 

expression is equal to the first term of the modal expansion, the use of probe compensation 

in the Jacobi-Bessel technique has the same form as used by the modal expansion 

technique. An alternate algorithm to the solution of the integral expression has been 

recently given by Bennett [1985] which is based on the use of the Fast Fourier Transform 

operating on each ring of data. 

The plane-polar data acquisition technique is useful for several reasons, among 

which are the ability to limit the motion of the probe to a single direction, the ability to maintain 

a uniform load due to gravity on the antenna under test, and that the size of the antenna 

under test may be large compared to the facility used to measure the data. Figure 1.2 shows 

the measurement geometry of a plane-polar facility. The data acquired in this facility consists 

of the measured fields on concentric rings, each of which is evenly spaced from its 

neighboring rings. One such facility has been developed at the Jet Propulsion Laboratory 

(JPL) and has proven useful in the measurement of large spacecraft antennas [Rahmat

Samii, and Gatti, 1985]. 

Thesis Topics 

This thesis is concerned with the calculations of the far-field patterns from measured 

data on a plane-polar coordinate system using alternate techniques than the Jacobi-Bessel 

technique. Because of the interest in the plane-polar data acquisition technique, it has 
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been suggested that alternate methods to reduce the data be investigated, particularly the 

use of the 2-dimensional Fast Fourier Transform (FFT) in the evaluation of the radiation type 

integral that results from the convolution expression mentioned above. The ability to use 

near-field data to estimate the distortions on the surface of a parabolic antenna has also been 

suggested [Rahmat-Samii, 1984] since the FFT has a direct application to this type of 

analysis. In order to use the FFT algorithms, the data must lie on a rectangular grid system 

which is related to the x-y coordinate system of the near-field facility. Chapter 2 develops an 

interpolation which is required to transform the data from a polar to a Cartesian coordinate 

system. Comparisons between the measured data and the interpolated data are given for 

the principal plane cuts of the near-field coordinate system. Chapter 3 develops the FFT 

approach which is used to calculate the patterns of the antenna under test and the results 

are compared to those of the Jacobi-Bessel technique. Chapter 4 addresses the possibility 

of using the near-field data in calculating the surface errors of parabolic antennas. An 

algorithm which uses the FFT techniques from Chapter 3 is conceived and presented which 

may prove useful in the surface error calculations. Results of applying this algorithm are 

given for a specific test case. The usefulness of the FFT in this application is that its output 

provides the- far-field information in the particular coordinate system required to begin a 

surface diagnosis of the reflector. 

Plane-Polar Measurement Technique 

Since this thesis is using a variation of the techniques described by Rahmat-Samii, 

et. al., [1980], and the Jet Propulsion Laboratory's plane-polar measurement facility is used 

to acquire the near-field data, a description of the acquisition technique will be useful. The 

measurement facility is configured as shown in Figure 1.2 where the antenna under test 

rotates about the z-axis. For large probes, it may be necessary to also rotate the probe as the 

antenna rotates to allow for probe compensation. The probe is positioned above the 

antenna under test and will move in one direction along the x-axis. Measurements are taken 

when the probe is stationed at a fixed distance on the x-axis and the antenna under test 
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rotates 360". The probe then moves to the next location, usually 1/2!.. from the last location, 

and the process is repeated. A complete data set thus consists of field values measured on 

concentric rings in the measurement plane. This data may be directly used in the 

subsequent analysis of the far-field parameters using the Jacobi-Bessel techniques as 

discussed in Chapter 3. 

Computing Facility 

In order to calculate the far-field parameters of the antenna under test, a computing 

facility must be available which has the capability to store large amounts of data and that will 

execute large programs efficiently. Many comparisons are made in the literature which state 

the various speeds, storage requirements, accuracies, and other computing resources 

which are obtained by certain algorithms. These comparisons must be set in the proper 

perspective. For this thesis, the computing facility which is used is a UNIVAC 1180, which 

has a 36 bit word size, and the programs are written in ASCII FORTRAN 77. 
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Figure 1.1 a Illustration of the Distances from an Aperture in the x-y Plane 

to a Point P in Space 
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Figure 1.1 b The Definitions of the Three Regions Surrounding a Radiating Aperture 
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Figure 1.2 The Plane-Polar Near-Field Data Acquisition Configuration 



Chapter 2 

INTERPOLATION BETWEEN POLAR AND CARTESIAN COORDINATES 

Measured Oata Coordinate Systems 

The near-field data, as obtained from the plane-polar measurement facility at JPL, 

consists of two complete sets of data for two independent probes. These independent 

probes are actually two orthogonal positions of the same probe. The two sets of data are 

required in order to reconstruct the far-field quantities of the test antenna as described in 

Chapter 3. Each data set consists of the field values measured on concentric rings of a given 

spacing for both the amplitude and phase of the measured field. Figure 2.1 shows the 

coordinate system for the measured data. The data measured is proportional to the magnetic 

field components Hr and H<jl. This data is then transformed from the polar to the Cartesian 

components Hx and Hy required for use by the plane-polar algorithms. Each ring typically 

consists of 901 points of data evenly spaced between <jl = o· and 360·, inclusive. The 

spacing between rings is uniform except for the first ring, which is of a radius approximately 

1/4 A about the coordinate center. Obviously, the field for the inner rings is very 

oversampled when compared to the 1/2 A criterion as described in Appendix B and by Joy 

and Paris [1972] for the efficient use of FFTs. However, the measurement algorithm is 

simplified by this technique since every ring of data is acquired by the same sampling routine. 

There is no increase in acquisition time since the antenna under test must rotate a full 360. 

regardless of the radius of the ring. As the outer rings are approached, one can see that the 

sampling is approaching or, depending on the distance to the outermost ring, exceeding the 

1/2 A requirement described in Appendix B for the use of the FFT. The Jacobi-Bessel 

algorithm employed by Rahmat-Samii, Galindo-lsrael, and Mittra, [1980] was implemented on 

the JPL UNIVAC in such a way as to ignore the unnecessary data in the innermost rings and 

to use increasingly more data in the outermost rings. 
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In order to utilize the FFT routines, the measured data must lie on a rectangular grid 

system in the measurement plane and be expressed as Hx and Hy. This grid system will have 

a uniform spacing between the points on the grid in both the x and y directions. It is critical 

that this spacing be uniform for a given direction so that the FFT may be properly used; 

however, the spacing in one direction is allowed to be different than that in the orthogonal 

direction. This is because the FFT will integrate along one direction first and then perform 

the integration in the orthogonal direction. Appendix 8 illustrates the technique of 

combining two 1-dimensional FFTs to obtain the 2-dimensional Fourier Transform. Figure 

2.2 shows the rectangular coordinate system which will be the basis for the following 

discussions. This figure also shows the boundaries of the measured data from the polar 

coordinates. Notice that the maximum values in the x andy directions, xmaxm and ymaxm, 

are limited to be equal to or less than the maximum distance to the outermost ring. This is 

because there are no values of the field beyond the last ring. As will be shown later, the four 

corners of this rectangular region will be filled with zeroes for the function value. 

Selection of an Appropriate Interpolation Scheme 

The situation was thus one of the incompatiblity between the polar coordinate system 

that the data was measured on and the coordinate system used by the FFT algorithm to 

reduce that data. In particular, one must somehow interpolate the measured polar data onto 

a rectangular coordinate system. It is necessary that the interpolation meet certain 

requirements. These are: 

1) Simplicity, 

2) Efficiency, 

3) Accuracy, and 

4) Reduce to the value of the point at a point which is one of the original given . 

The reason for the requirements of simplicity and efficiency are that there will be a large 

amount of data to interpolate. For example, if there are 63 rings of data, each of which 
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consisting of 901 points, then one would have to store, look up, and work with 113,526 data 

points. There is a factor of two included for the two independent measurements. The data is 

complex valued and thus the computer storage is twice as many words as data points. The 

accuracy requirement is self evident; the object of the thesis will be compromised if the 

interpolation is inaccurate. Also note that any interpolation, which is to be a viable candidate, 

will have to be able to recover the value of the data point when that point is chosen. If this last 

requirement is ignored, then the interpolation will have built in errors. The interpolation 

techniques which were investigated were the bivariate Lagrange and the cubic spline 

[Abramowitz and Stegun, 1964, Ferziger 1981, and Ngai and Profera, 1984]. These 

techniques are discussed in Appendix A. For the bivariate Lagrange interpolation there is a 

choice to be made; does one choose a simple linear bivariate interpolation, also known as 

the 4-point bivariate, or does one choose a higher order bivariate? 

The choice for the interpolation is made according to the requirements mentioned 

above. The cubic spline is very accurate; however, it requires special treatment for the end 

points [Ferziger, 1981, p. 9] which occur at the edges of the rectangle defining the 

measurement plane. There has to be continuity in the derivatives at the endpoints for this 

interpolation to be satisfactory. Since the field will drop abruptly to zero past the outermost 

ring, one would have to write a special software routine to calculate the derivatives in order to 

handle this. Sometimes other problems occur which may cause the fit obtained by the spline 

to "wiggle". The cure would be to use the tension spline in which case the simplicity 

requirement is breached. For these reasons the spline has been eliminated from further 

consideration for the purposes of this thesis. 

The remaining technique is the bivariate Lagrange interpolation. This technique 

meets all of the requirements given for an acceptable interpolation routine. An n-point 

interpolation is only slightly different than the 4-point interpolation. In fact, the latter is a 

subset of the former. The advantages of using the 4-point interpolation are that the routine 

will run more quickly compared to higher order forms on the UNIVAC mainframe and may be 
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more easily implemented. The 4-point technique is used in many areas of interest in antenna 

related problems [Ngai and Profera, 1984 ]. In addition, the n-point scheme could cause 

the implementation difficulties previously mentioned for the spline case for the values near 

the boundaries. It is shown in Appendix A that the Lagrange interpolation algorithm will 

recover the value of the function at point where the value is known. 

For the reasons of simplicity, efficiency, accuracy and function value return, the 4-

point bivariate Lagrange interpolation routine was selected as the routine for the completion 

of the thesis. Future references to an interpolation scheme refer specifically to the 4-point 

Lagrange. 

Implementation of the Interpolation Scheme 

The 4-point Lagrange interpolation algorithm, as discussed in Appendix A, was 

implemented in FORTRAN on the JPL UNIVAC mainframe. The data to be interpolated exist 

in a file which was created by a software package written for the plane-polar algorithms. In 

addition to converting the data to Hx and Hy, this software package converts the complex 

number representation of the data from the polar form to the Cartesian form, which consists 

of a real and an imaginary part, by making use of Euler's equations. This was done since the 

FORTRAN compiler is readily adaptable for use with complex numbers of that form. The FFT 

algorithm which was used for the integration of the data was also set up to work with this 

format for a complex number. 

For an interpolation routine to work efficiently, the data must be rapidly accessible. 

This means that if the value of the function at a particular point is desired, one should be able 

to look that value up directly by the use of various computer lookup indices. In the UNIVAC 

FORTRAN there are two solutions to the accessibility problem: direct access disk files and 

arrays in virtual memory. The data in the file from the plane-polar measurements are in a direct 

access file where each ring of data for both Hx and Hy comprises one record. This meant that 

a given ring could be directly accessed; but, a particular point would have to be looked up in 

the given ring. Because direct access files are simple to store, a second file was created 
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where each record consists of an (Hx, Hy) pair. A lookup scheme was derived so that the 

program could quickly access a particular point given the radius and angle. The alternative 

was to read the entire file into data arrays which are in virtual memory. This option would 

decrease the execution time of the routine at the cost of a larger memory requirement, and 

therefore a more complex program, since the FORTRAN virtual memory features would have 

to be used. The execution times for the interpolation based on the use of direct access files 

will be discussed later; however, one should be aware that quicker interpolations would be 

obtained by using the virtual memory features. 

Assuming that a suitable method exists to access the data one must perform the 

interpolation to a given rectangular gricj system. This grid system is shown in Figure 2.2. 

Here, xmaxm and ymaxm are chosen as the maximum distances for which measured data 

exists. In the plane-polar system these distances are equal since the data are in circular 

format. By selecting these distances to be no larger than the outermost ring of measured 

data the number of points which must be interpolated is minimized. Given this distance, one 

may select the L\x and L\y to fully define the measurement plane. The number of scans in 

each direction is an arbitrary, odd number since the grid is square and the x = 0 andy= 0 

scans are included. For the FFT routine used in this thesis to work, the number of scans 

must be an integer which is equal to 2P, where p is an integer. Clearly, the number of 

measured/interpolated scans do not equal an integer of this type. This situation poses no 

real problem because the FFT will return accurate results for a given case provided zeros are 

appended around the entire measurement plane to make the number of scans for the 

interpolation area equal to an integer 2P. This is called zero fill and is discussed in 

Oppenheim and Schafer, [1975], Rabiner and Gold, [1975] and is the typical technique for 

satisfying the 2P requirement. With reference to Figure 2.2, the entire data set which is 

integrated by the FFT then becomes that region defined by the distances xmaxf and ymaxf, 

where the subscript f refers to the FFT distance. 
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With the coordinate system defined as in Figure 2.1, one begins to calculate the 

values of the measured field along the grid. There are three regions of interest as defined in 

figure 2.3: 

1) r> rmax, 

2) rmin ::>: r ::>: rmax, 

3) r< rmin. 

The first region is the simple case; the field values along grid points where r > rmax are set 

equal to zero. The second region is the next in simplicity; here one chooses the rings which 

bound the point in radius and then finds the two points on each ring which bound it in the 

angle cp, measured from the x-axis. The location of these four points in terms of rand tlJ, and 

their field values, are passed to the interpolation routine with the result being the value at the 

desired grid location. For this case it is essential that the spatial description of the field values 

being interpolated are expressed in terms of rand cp. Then one can visualize that the four 

points represent the four surrounding points in r-ep space, along constant lines of rand tlJ, 

and the application of the bivariate interpolation can be justified [Appendix A, Figure A1). 

The third region is a special case; there are not two rings which bound the point of interest. 

In this case the points chosen to perform the interpolation are those two on the innermost 

ring which bound the desired point in cp and the point at the origin. This is observed to be a 

degenerate version of case 2, where the point at the origin represents a multiple point on the 

"inner" ring. It is apparent that the only areas for which r > rmax are the four corners of the 

measurement grid. It would be simple to increase the interpolation grid to xmaxf or ymax1 and 

to fill the field values with zeroes beyond the outermost ring, but this would only cause the 

interpolation to take longer. The increase in grid size was done in the software which 

calculates the FFT and subsequent far-field quantities. 

The Representation of the Complex Measured Data 

It was discussed earlier that the data was represented in the computer in the 

Cartesian form of complex numbers. The interpolation was done on the data in this form. 
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However, the interpolation was also performed on the the amplitude and phase of the 

complex field value in polar form. The interpolation will yield different answers for each of 

these cases since the relationship is nonlinear between the interpolated quantities in the 

polar form and linear in the case of the Cartesian form. The concern is over the 

representation to choose. Consider that the data in raw form is measured by a receiving 

system which returns amplitude and phase. The Cartesian representation occurred in the 

routine which converted the data to a file 1.1sable by the UNIVAC. Possibly it would be more 

appropriate to interpolate the amplitude and phase for this reason. Conversely, all of the data 

will be changed to a real and imaginary representation for use by all the subsequent 

FORTRAN routines. In this case there may be an ambiguity from interpolation in amplitude 

and phase for data which will be handled as real and imaginary. This situation is addressed 

and resolved in the section which discusses the results of the interpolation on test and 

measured data. 

Test Data Files 

In order to write, debug, verify and test the software routines which were generated, 

it would be convenient to have a data file which represents a known radiation field. This data 

file can be any set of measured data from one of the many available from the JPL near-field 

range, or it can be a simple simulated field which is generated by the computer. The 

advantage of a simulated field was that any small problems which occur would be the result of 

the interpolation algorithm and not of the measured data. However, a simulated field will not 

yield substantial information regarding the overall accuracy of the interpolation routine. 

The simplest simulated field is that of a uniform amplitude with the orthogonal 

components of the field being in phase quadrature. For example, if the field is given by: 

(2.1) 

Hx = 1/}12 + jO 

Hy = 0 - j/}12 = Hxe-Pt12 , 
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then the resultant far field would be a right-hand circularly polarized field with a peak value 

equal to the area of the circle defined by the outermost ring. This file could be used to 

examine the computing requirements of all the subsequent software routines with respect to 

time, storage, and data handling, and still yield some information regarding accuracy. A 

FORTRAN program was written to generate this simple test field. This program allowed the 

user to vary the number of rings of data. Throughout the course of the thesis study, this 

program was used to generate the test fields used to perform various timing runs, etc. 

The second type of test data was obtained from actual measurements from the 

Viking Project High Gain Antenna (HGA), during the Galilee antenna testing. The data 

consists of 63 rings of 901 points apiece for boih Hx and Hy, at an operating frequency of 

8.415 GHz. This particular HGA has been used continually over the last five years and is well 

characterized in both the far-field and the near-field. It is known that the antenna radiates a 

field which is right elliptical polarized at the operating frequency. The antenna was used to 

provide the evidence that the Jacobi-Bessel near-field reduction technique was correct .. 

Many different comparisons between the far-field and near-field using this antenna were 

made and very good results were obtained. Therefore, a comparison between the far-field 

patterns as calculated by the Jacobi-Bessel and the FFT algorithms can be made to evaluate 

the performance of the FFT algorithm. 

Measured Data Results 

The computer programs were generated to perform the interpolation in accordance 

with the interpolation technique described in the previous section. The program was tested 

with the simulated uniform test case and the Viking HGA. The results of the simple simulated 

test case showed that the routine performed the algorithm to completion and that the 

amplitude and phase of the results matched that of the input file. This indicated that the 

algorithm was ready to be applied to the measured Viking HGA data. 

The Viking Data was interpolated and checked by comparing the resulting data on 

the rectangular coordinates to the given data on the concentric rings. The comparison was 
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made on the <)! = o· and 90" scans (x and y axes) in the measurement plane. These particular 

scans were chosen because each coordinate system lines up at this orientation and it is an 

easy matter to display the results accordingly. 

The following questions are of interest in making the comparisons: 

1) How does the data compare as a function of distance from the center of the 

coordinate system? 

2) Which is the better complex number representation to interpolate - that of the 

Cartesian or polar form? 

3) Was the coordinate system of the software properly aligned with that of the 

measured data? 

· 4) Does the output match better if the real and imaginary parts are displayed or if the 

amplitude and phase parts are displayed? 

5) What is the computer execution time as a function of the number of scans? 

With the above questions in mind, a systematic approach can be made in the data 

processing. The data was interpolated twice; once by using the real and imaginary parts of 

the complex field values, and once by using the amplitude and phase parts of the same field 

values. For each of these test runs the data is displayed on a plot of the quantity in question -

vs - the distance from the center of the coor{finate system. The quantity in question will be 

the real and imaginary parts, or the amplitude and phase parts of the fields. This approach 

was followed for both of the principal axes and the results are given in Figures 2.4- 2.11. In 

these figures are plotted two curves, each of which is independent. One curve is generated 

by plotting the interpolated field value at the scan locations along the x or y axis, and the 

other curve is generated by plotting the measured field value at the ring locations in the $=0" 

or 90" direction. The ring spacing does not necessarily equal the grid spacing, so the points 

plotted for each curve do not necessarily occur at the same value of distance from the center 

of the coordinate system. 
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Figures 2.4 and 2.5 show the real and imaginary parts of the Hx field for the $=0· 

scan. However, Figure 2.4 shows the field as the result of an interpolation on the real and 

imaginary parts of the input data, and Figure 2.5 shows the field as a result of an interpolation 

on the amplitude and phase of the input data. Figures 2.8 and 2.g show the same 

relationship for the q, =go· scan. Figure 2.6 and Figure 2.7 show the amplitude and phase 

parts of this same Hx field. Again, the difference in the figures is the method of interpolation. 

Figures 2.10 and 2.11 show this relationship in the q, = go· scan. Similar results were found 

for the Hy fields in both scan planes. 

Some observations to be made are that the interpolation routine does an excellent 

job of matching the measured data in the region of the inner rings for all quantities of interest, 

regardless of the field representation that is interpolated. However, it is seen that the match 

begins to deteriorate towards the outermost rings. This error is most pronounced by the 

phase plots. The explanation for this is fairly simple; the data is densely packed in the inner 

rings, so the interpolation chooses between points which are very closely spaced in rand¢. 

The closer the points are to each other, the more accurate the interpolation can be. Another 

reason for the high accuracy in the innermost region is that the fields are strong, and the 

phase is fairly uniform. For the outermost rings, the properties which helped in the case of 

the inner rings both vanish; the spacing becomes large and the fields are much lower. In 

particular, the phase past the edge of the reflector begins to change very rapidly as a 

function of distance. In this case the edge of the reflector is at 20.661... It seems that while 

both representations of the output data can be useful, the amplitude and particularly the 

phase give a better feel for the reason a deviation from the measured data exists. 

The question about which field representation is most appropriate to interpolate by 

may be addressed. By careful study of the graphs one sees that both methods agree with 

each other to the resolution of the graph, but that the results of the interpolation from the 

polar representation show a few anomalies at various points. If studied carefully, these 

anomalies may be understood. Notice that they occur in the amplitude of the real and 
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imaginary parts of the field, interpolated from the polar representations, such as in Figure 

2.5, and that they seem to be of the proper magnitude but of the negative sign. Notice also 

that they do not seem to appear in the plots of the amplitude of the field, such as in Figure 

2.7, but that they do exist in the phase plots of these same figures. Careful inspection of 

these figures indicates that the phase anomaly is 180". The conclusion is that there may be 

an ambiguity in defining the phase of the field, given the Cartesian representation, as is done 

in the interpolation routine. This is done because the data which is given to the routine is in 

the Cartesian format from the previous software which supplied the data from the JPL near

field test facility. If the data was not converted to the Cartesian form prior to the interpolation 

routine, then the results may not show these anomalies. For this reason it is felt that the 

anomalies should be of no concern, and that the results show for all practical purposes that 

the interpolation is independent of the input format of the fields. The patterns generated 

from this data were compared during the development of Chapter 3 and there was no 

discernible effect. 

Computing Requirements 

The various interpolation computer runs were timed for a simple simulated 15 ring 

case with 31 scans, and with the Viking 63 ring data and 129 scans. The interpolation 

algorithm is independent of all factors except the number of scans, and that dependency is a 

linear one, so the two data points given above should be enough to define a relationship 

between the required CPU time and the number of scans. This relationship is shown in 

Figure 2.12. In this figure is a line representing the CPU time requirement and one 

representing the overall run time. As was stated at the beginning of this chapter, the 

execution time is subject to decrease if the storage technique is changed from direct access 

files to virtual memory. If the virtual memory feature is used then the data which is on the disk 

file will be stored in a special area of the core and require special programming techniques; 

however, the execution time would be much faster due to the decreased data access time. 
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This would cause a downward shift in the overall run time line. This is one of the areas open 

for further investigation. 

Conclusions Regarding Interpolation 

In this chapter, the various algorithms for the interpolation of the plane-polar data to a 

rectangular coordinate system were discussed and one was selected. This algorithm is the 

4-point bivariate Lagrange interpolation. It was applied to both a set of simulated data which 

was of uniform amplitude with phase quadrature, and to a set of data which was measured at 

the JPL plane-polar facility. The application of this algorithm shows promise as an all purpose 

algorithm for antenna measurements as was suggested by Ngai, and Profera [1984]. The 

accuracy of the data was shown to be very good for the inner region of the measurement 

plane, and to decrease slightly as the distance from the center of the coordinate system 

increased. This phenomenon was explained as due to the amount of data available in each 

region. It seems not to matter whether the complex data interpolated is in the Cartesian 

format or the polar format, given the 1/2 A. spacing, but that there may be an ambiguity in the 

definition of the phase of the polar form when calculated from the Cartesian form. This phase 

ambiguity may be the result of the discontinuity of the function at ±180" which is only a 

problem in the software and which may be easily overcome. For this reason, and because 

the data is given originally as real and imaginary, the data reduction on the near-field data by 

the FFTs will be done on the results of the interpolation on the real and imaginary parts of the 

field. 
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Chapter 3 

CALCULATION OF THE FAR-FIELD ANTENNA PARAMETERS 

Background and Far-Field Formulations 

Once the measured plane-polar near-field data is available, and it has been 

interpolated onto a rectangular coordinate system as described in Chapter 2, the processing 

to calculate the far-field quantities can begin. The primary interest is to calculate the 

normalized co-polarized and cross-polarized components of the electric far field. These 

fields values are complex and are usually expressed in polar form as magnitude and phase. 

In this chapter, the formulations representing these fields are shown and the techniques 

used to calculate them demonstrated. The basis for the far field calculations comes from the 

techniques described by Rahmat-Samii, Galindo-lsrael, and Mittra [1980]. This reference is 

the basis for the Jacobi-Bessel formulation and will be heavily cited in this chapter, therefore, 

in order to maintain continuity in the text, it will be referred to as the near-field reference. 

It can be shown by application of the Lorentz reciprocity theorem that the output 

voltage of the near field measurement probe is proportional to the antenna electric and 

magnetic fields, Ea and Ha. The near-field reference has taken this result and shown that 

the relation between the motion of the probe in the measurement plane and the antenna is a 

convolution expression of the probe fields and the antenna fields Ea and Ha. Furthermore, 

the near-field reference defines an apparent induced current in the scan plane, CimfP'') , and a 

radiation equation which is in the form of a Fourier transform. This integral is given by: 

(3.1) 

00 00 

-00-00 

where the e and q, dependence is found in the exponent of the kernel. The probe is an 

open-ended waveguide and can be modeled as a loop which measures the magnetic field, 
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H. The near-field reference shows that the g-m('?') term in Equation 3.1 is related to the 

measured near-field data by the relation 2~ x H where ~ is the unit normal in the scan 

plane. In general, the probe may be any type, as long as the user knows the quantities which 

are being measured. The q-m('P') term in Equation 3.1 will be modified accordingly to account 

for both the H and the E fields. Figure 3.1 shows the coordinate system which defines the 

various terms in this equation. Specifically, the primed variables refer to the source or 

antenna coordinates, and the unprimed refer to the far field or observation coordinates. 

In the Jacobi-Bessel technique, Equation 3.1 is rewritten in such a manner that the 

integrand may be expanded into a series which is integrable in closed form. The coefficients 

of this series are themselves integrals, however, they are easier to integrate numerically than 

the highly oscillatory Fourier transform. The Jacobi-Bessel technique is unique in that the 

coefficients of this expansion are independent of the observation angles in the far field, 

thus, once they are calculated the radiation integral becomes a simple summation of a 

polynomial equation for any far field point. This is very efficient because Equation 3.1 must 

be calculated for every far field point desired. 

While the Jacobi-Bessel technique reduces the radiation integral into a series and 

then evaluates this series for each far field point, this thesis took a more direct approach; 

integration of Equation 3.1 via the FFT. Equation 3.1 is a Fourier transform, however, it does 

not resemble the form of Equation B-8 in Appendix B, which is the form that the FFT 

algorithm used in this thesis will integrate efficiently. Therefore, we must be able to write 

Equation 3.1 in the form shown in the appendix in order to apply the FFT and to understand 

the results. To do this we use Figure 3.1 and see that, 
(3.2) 

1 
r = 

111 
= ( xx + YY + z z 11111 

= sin( e) c os( ~) x + sin( e) sin(~) y + cos( e) z 

and that, 
(3.3) 

p' = X. X + y' y + z . i 
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thus, 

r . p'= x'sin( e) cos(~) + y'sin( e) sin(~) 

Now, one may define transform variables u and v, as 

u = sin( e) cos(~) 

v= sin( e) sin(~) 

and using k = 21t1A., Equation 3.1 may be written as 

00 00 

T(u,v) = f f Cfm(i'') ei2n(x;_u + y~v) dx'dy' 

-oo-oo 

where x 'A and y 'A are the positions in the measurement plane in terms of A.. 

(3.4) 

(3.5) 

(3.6) 

At this time, it is worthwhile to point out that the approach taken by Kerns at NBS 

[1950,1960,1981], Paris, Leach and Joy [1973,1978]. and Joy, Leach, Rodrique, and Paris 

[1978] at the Georgia Institute of Technology , utilize the plane-wave spectrum to describe 

the relationship between the near-field and the far-field quantities instead of the convolution 

approach as in the near field reference. These authors begin with the Lorentz reciprocity 

theorem, then assume negligible multiple reflections between the probe and antenna under 

test, and use only the first term of the plane wave spectrum. It should be recognized that the 

results obtained by that technique are the same as shown above. 

Calculation of the Electric Fjeld Quantities 

A typical far-field pattern is generated by selecting a constant «!> and calculating many 

points along a by repeated integration of Equation 3.1. The FFT algorithm takes an entire set 

of discrete values of the measured near field data, Cim('P') , as its input and returns an entire 

set of values for T(u,v) at discrete values of u and v. This means that once the FFT of the 

near-field data has been calculated, the result may be stored or used immediately to calculate 

a particular pattern. This set of far-field FFT points is along constant lines of a grid system 

which is shown in Figure 3.2. The coordinate system is in u-v space and not directly in terms 
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of 9-¢ space. The relationship between these variables is given in Equation 3.5. It is 

apparent from this equation that the relationship between these two spaces is non-linear. In 

other words, the typical far-field pattern cannot be calculated by directly looking up the values 

of T(u,v); for a particular choice of 111. the locus of points of varying e does not necessarily lie at 

the known points of T(u,v). When this happens an interpolation must be applied. The 

interpolation used is the sine · sine type in 2 dimensions, which is described in Appendix 8, 

and has the property of reproducing the exact value of the field at the point in question if the 

1/2 A. sampling requirement is satisfied. This sampling requirement is discussed in 

Appendix B. 

In order to calculate the far field of the antenna pattern, the field must be related to 

the integral in Equation 3.1. This relationship is derived in the near-field reference by a 

convolution of the antenna fields and the probe patterns[Equation 2.19-2.20] and is 

repeated here for reference: 
(3.7a &b) 

where the term .1 is given by 
(3.8) 

In these equations, the T x and T y are complex and are the results of applying the sine ·sine 

interpolation to the FFT of the Hx and Hy fields. The actual integration is performed on the 

x andy components of the currents Cim("p'), which are proportional to 2~ x H x and 2~ x H 

y· The superscript v in the equations represents one of the probe orientations, and the 
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second orientation is represented as a -rt/2 factor in q> for the v orientation. These details are 

discussed in the near field reference. Once the orthogonal components of the far-field 

pattern are known, the total field may be calculated by combining them in the following way: 

(3.9) 

Antenna Parameters of Interest 

Once these basic electric field quantities are known, many other parameters may be 

calculated using the proper combinations of the basic quantities. The following are the 

parameters which were calculated in this thesis once the total electric field was known: 

1) Gain 

2) Amplitude and phase patterns 

3) Polarization Properties 

a) Axial Ratio 

b) Titt Angle 

c) Sense of Rotation 

The software which was generated for this thesis to calculate the radiation patterns 

relied heavily on the routines which were written for the Jacobi-Bessel algorithm. The test 

antenna amplitude and phase patterns were calculated from Equation 3.9 using a 

combination of new and existing software. Also, the existing software had the capability of 

calculating the polarization parameters which are suggested above. The polarization 

parameters are important in communications because they define the amount of power 

which is transferred between the antenna and an electromagnetic field. These parameters 

are defined as follows: 

Axial Ratio: 

The ratio of the semi-minor axis to the semi-major axis of the polarization 

ellipse. In the software, this was calculated from the magnitude of the 

complex circular polarization ratio. In particular: 
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AR = 1(1 - ICPRI ) I ( 1 + !CPR! )I 

where 

CPR = (Eae + iEa!ll ) I (Eae - iEa!ll) 

It is recognized that this quantity is the reciprocal of the definition accepted 

as the IEEE standard [1983], however, it is used in several of the earlier texts 

and in the Jacobi-Bessel software, so this definition is retained in order to 

make a comparison to the Jacobi-Bessel technique. In terms of dB, the 

value has the same magnitude but is negative instead of positive. 

Tilt Angle: 

The tilt angle is defined as the angle from the x-axis to the semi-major axis of 

the polarization ellipse, measured towards they-axis. In the software, this is 

calculated from the information of the phase of the complex circular 

polarization ratio. In particular: 

TA = -112 Phase(CPR). 

Sense of Rotation: 

The sense of rotation may be obtained from the sign of the axial ratio prior to 

the final absolute magnitude operation; however, in these programs the 

fields are calculated and the right- and left-circular components of the fields 

are plotted. The sense becomes apparent when these plots are inspected. 

The gain is an important parameter in any antenna system. It may be measured by 

one of several techniques which are described in the literature. Among these techniques, 

the method of gain by comparison is employed in the JPL near-field facility [Rahmat-Samii 

and Gatti, 1985]. Other techniques include the insertion loss method described by Newell 

[1985], an application of the three antenna method, and other methods described in the 

literature [Newell, Baird, and Wacker, 1973]. It should be pointed out that while the three 

antenna method is theoretically possible for near-field measurements, it requires the probe 

to be one of the antennas characterized in the near field with the antenna under test acting 
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as the probe. This is a difficult procedure and has not yet been done in a near-field 

configuration. 

The important parameter which is used from the near-field calculations for the gain 

measurement is the value of the far-field peak field. In order to verify that the software used 

in this thesis may recover the correct gain, this peak field may be compared to the value 

generated by the Jacobi-Bessel technique. 

Results of Calculations using the FFT 

Given the formulations described in the previous sections, a complete set of 

software routines were written to calculate the co-polarized and cross-polarized fields in the 

standard 9-1)> coordinate system, and the polarization properties of a measured data set. The 

Viking antenna test data described in the previous chapter was then used to validate the 

software and techniques. The Viking HGA data is useful since the comparisons between the 

patterns from direct far-field measurements and from near~field measurements using the 

Jacobi-Bessel technique have been made many times at JPL and are well documented 

[Rahmat-Samii, and Gatti, 1985]. The patterns for this antenna are calculated for angles in e 

from -1 o· to + 1 o· for I)> = o· using the FFT and the Jacobi-Bessel techniques. These results 

are given in Figures 3.3-3.5. In these figures the size of the FFT used was 128x128, which 

was required to meet the 1 /21.. sampling requirement and to use the entire set of 63 rings. A 

comparison is made to the results of the same calculations on the same data set by the 

Jacobi-Be~sel algorithm, using 1 0 coefficients in both the n and m indices of the summation. 

In Figures 3.3-3.5, the results of the Jacobi-Bessel algorithm converge between 

e = ±5". This convergence was verified by a systematic variation of the number of 

coefficients used to calculate the patterns until the patterns no longer changed for e ~ 5". 

For larger angular regions more coefficients would be needed. For the FFT results, no check 

of convergence was required since the fields are sampled at separations less than 1/2 1.. and 

are therefore correct to the angle e0 as defined in Figure 3.6 [Newell, 1985]. This figure 

shows the maximum angle to which the far-field results will be accurate even though the emax 
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from the FFT may be larger depending on the Llx and Lly [See Appendix B for these 

relationships]. For the Viking test data, the distances Lx = 64A., Dx = 41.321.. and d = 63.41 A. ; 

therefore, the maximum value of e for which reasonable results may be expected is e0 = 

10.14". Similar results are found for the q, = 45" and go· pattern cuts. 

The maximum far-field electric field strength is calculated by both the FFT and the 

Jacobi-Bessel algorithms. The value calculated for this parameter is a function of the setting 

of the receiver and the signal to the computer which measured the data in the near-field 

facility. As such, this value is only relative and it suffices to say that the values calculated by 

each technique were the same to within 0.03 dB. This result indicates that the normalization 

parameters which were derived for the FFT output are correct, and the FFT technique will be 

accurate in a gain measurement. Also notice that the comparison gain measurement may be 

done by using a mix of both techniques with the proper results being calculated since the 

same field is calculated in both techniques. 

Often, the overall pattern of an antenna in the forward radiating region is of interest to 

an antenna engineer. This pattern can be plotted in 2 dimensions as a contour plot or in 3 

dimensions as a surface plot. The integral T(u,v) contains useful information about the 

sidelobe levels, sidelobe locations, beamwidths, etc., without transforming to the e--4> space; 

therefore, the resultant FFT output may be immediately used to present useful information. 

Computer Resources 

The computer resources used to produce the pattern results may be used to 

indicate a level of computational efficiency. Table 3.1 summarizes the total computer 

execution times required for both the Jacobi-Bessel technique and the FFT technique. In 

this table, the total run time is given for the calculation of the q, = o· and q, = 45" cuts of the 

Viking data set so that one may see the effects to the speed of the FFT technique of 

calculating patterns off the principal planes . Recall that the sinc·sinc interpolation as 

described in Appendix B is used for the FFT technique, and that the points are along the 

main grid line v = 0 for the q, = o· cut; therefore, the interpolation is a single summation of the . 
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points along the grid line. For the q, = 45· cut, the points are not necessarily along main grid 

lines, so the interpolation will be a double summation of all the data at each one of these 

points. In the case of the Jacobi-Bessel technique, the time required to create a pattern cut 

is independent of the angle q, , and only dependent on the number of coefficients in the 

polynomial used. There is a non-recurring time expenditure in Table 3.1. In particular, the 

time to calculate the FFT in one case, and the time to calculate the coefficients in the other. 

This should be accounted for if one is interested in estimating the run times for repeated 

pattern calculations at cuts other than discussed. Figure 3.7 illustrates the execution time 

for a pattern calculation of 101 points for q>=o· and cp=45" as a function of the size of the FFT. 

Also shown in this figure is the time required to calculate a pattern of 101 points using the 

Jacobi-Bessel technique for n=m= 1 0 coefficients. 

Table 3.1 Total Execution Times to Calculate Field Patterns lmin:sec) 

FFT Jacobi-Bessel 

Reformat Data 0:1.17 X 

Interpolate Data to Grid System 8:21 X 

Calculate FFT [T(u,v)] 0:40 X 

Calculate Coefficients 1 0 x 1 0 X 14:15 

Create Pattern q, = o· for 1 01 points 0:17 0:19 

Create Pattern 9 = 45• for 1 01 points 3:26 0:19 

Total Time 12:48 14:50 

Conclusions 

An important conclusion from this chapter is that the FFT technique will rapidly 

produce the final far-field pattern results for those patterns which will lie on main grid lines. 

The two normal cuts for q, = o· and q, = go· lie along the v = 0 and u = 0 grid lines respectively. 

If one is interested in a quick look at the patterns of a test antenna, and the amount of data is 

small, then the FFT technique is a viable way to proceed. There is a drawback to the FFT 

technique. If one wants to calculate many cuts, to calculate directivity from the patterns for 
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instance, then a significant amount of CPU time will be required since many of the points will 

not lie along grid lines. For this case the Jacobi-Bessel technique will be faster since the 

fields are calculated at any point at the same speed. However-, if one is interested in seeing 

an overall pattern, then the direct FFT output may be used for 2- and 3-dimensional plots and 

results rapidly generated. Some time will be required to estimate the optimum number of 

coefficients to use for the Jacobi-Bessel technique to converge. This does not need to be 

done in the case of the FFT technique if the 1/2 A. requirement is met. Each case is special in 

that the sinc·sinc interpolation is very sensitive to the number of grid lines in the 2 

dimensional FFT. A little analysis and reference to Table 3.1 and Figure 3.7 would be 

necessary to estimate the execution time required for each case before any 

recommendation is made as to the best algorithm to use. 
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Chapter4 

PARABOLIC REFLECTOR SURFACE DIAGNOSIS FROM NEAR-FIELD MEASUREMENTS 

Introduction 

Parabolic reflector antennas are widely used in microwave communications, radio 

science, and radar applications. Each of these applications has specific requirements; 

however, one common requirement is that the reflector surface be of a good quality 

measured in terms of its deviation from a paraboloid as a function of wavelength. Surface 

distortions of a parabolic reflector antenna can cause a loss in the expected performance of 

the antenna system, unless those distortions are part of the design, as in dual reflector 

shaping. 

Often, the designer of an antenna system believes that all aspects of an efficient 

design have been considered, only to find that the hardware does not achieve the expected 

performance. The cause does not always lie in the design, nor in the measurement of the 

antenna parameters; it could be fabrication errors, assembly errors or even the mishandling 

of an antenna at any time. When an expensive antenna system does not meet performance 

specifications, it is usually the responsibility of the designer and test engineer to discover 

why. To assist in the diagnosis of the problem, near-field measurements may prove useful. 

In this chapter, the measurement of the surface distortions will be discussed, and a 

technique presented whereby the measured phase data is used to aid in the distortion 

measurements for parabolic reflector antennas. 

Surface Diagnosis Formulation 

The amplitude and phase of the antenna under test is normally measured in near

field scanning techniques. Therefore, it is easy to look at the raw amplitude and phase data 

via surface plots or contour plots to obtain some knowledge about any gross errors in the 

antenna system. One would expect, for example, to observe the shadowing effects of the 

feed and feed support structure of a parabolic reflector antenna in both the amplitude and 
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phase of the raw data. However, if one is interested in more detailed information regarding 

the reflector, this near-field data must be manipulated. 

A microwave holographic technique has been recently given by Bennett, Anderson, 

Mcinnes and Whitaker [1976] that applies a Fourier transform relationship to relate the 

measured far-field data to the currents on the surface of a parabolic reflector. Rahmat-Samii 

[1984] has described a technique whereby an iterative approach is used to describe the 

surface distortions which may exist. This paper is the basis for the following discussions. 

Rahmat-Samii derives an integral equation given by 
(4.1) 

00 00 

T( u, v) = I I J(x', y') 0ikz' 0ik( ux' + vy') dx'dy' 

-oo-oo 

where the u and v are the same quantities as previously defined in Equation 3.5, T(u,v) is the 

same as defined in Equation 3.6, and k = 2rc/'A.. The various parameters in this equation are 

illustrated in Figure 4.1. As in Chapter 3, the primed coordinates relate to the source or 

measured near-field quantities, and the unprimed coordinates relate to the observation or 

far-field quantities. 

Equation 4.1 is the leading term of a Taylor series which describes the entire far-field 

pattern. Subsequent terms in this series are significant only for wide angle observations and 

laterally displaced feeds. In this equation, the J(x', y') is referenced in the scan plane and is 

related to the currents on the surface of the reflector by way of the surface projection 

Jacobian transformation [Rahmat-Samii and Galindo-lsrael, 1980]. Since phase is of most 

interest for this application, further discussion of each quantity in Equation 4.1 will be 

omitted. 

To show how to apply this to the analysis of the surface errors of reflectors, Rahmat

Samii expresses J(x', y') eikz' as: 
(4.2) 

J(x', y') eikz' = IJ(x', y')l e-ikr'eikz' 
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where the phase center is referenced to the origin of the coordinate system in Figure 4.1. 

With reference to Figure 4.2, a purely geometrical analysis will show that the exponent in 

Equation 4.2 may be expressed as 
(4.3) 

e·ikr'eikz' = eik(-2F + 2e cos~) 

from which the total distortion phase error is defined as 
(4.4) 

a = k2e: cos~ = 41t(e:JA.) cos~ = 41t£~ cos~ 

For a parabolic reflector it can be shown that the cos~ term is given by 

(4.5) 

Thus, the integral in Equation 4.1 may be written as 
(4.6) 

00 00 

T( u, v) = .-j2k F I I (J(x; y')l ei5 eik( ux' + v{) dx' dy' 

-oo-oo 

In Equation 4.6, the constant phase term e·i2kF resulted from using the origin of the 

coordinate system as the phase reference. Since it is a constant value for all x-y, it may be 

accounted for when looking at the phase results. If the Fourier transform operation is 

expressed by F{g(x)}, then one can write Equation 4.6 as 

T(u,v) = e·i2kF F{ IJ(x,y)l ei5} 

By applying an inverse Fourier transform, B may be written as 

B = 2kF phase[F-1{T(u,v)}] 

from which ~(x, y) can be found to be 

~(x, y) = 1/41t [1 + (x2 + y2)/4F2]112 phase[ei2kff-1{T(u,v)] 

(4.7) 

(4.8) 

(4.9) 

Equation 4.9 is the basis for the measurement of the surface deviation from a perfect 

parabolic shape; that is, the equation was developed assuming that the initial shape was a 

paraboloid. Therefore, with the far-field parameter T(u,v) referenced to the focal plane 

known, the inverse Fourier transform may be calculated and the error as a function of 

wavelength may be calculated. A second assumption for the development of Equation 4.9 
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was that the phase distribution at the focal plane was uniform. If it is not, a correction factor 

would have to be included to account for this condition. 

The phase of the inverse Fourier transform of T(u,v) in Equation 4.9, referenced in 

the focal plane, may have not only the error due to a non-uniform phase over the focal plane. 

It may also have a linear error due to lateral displacement of the feed and a quadradic error 

due to defocus of the feed. These errors can be calculated in a least-squared sense and 

eliminated from the data to produce only those phase errors due to the surface deviation. 

Implementation 

Near-field data can be applied to the calculation of the surface deviation if one 

observes that the output of the FFT algorithm, which was developed in the previous chapter, 

yields T(u,v), as described both in Equation 3.6 and Equation 4.6, with the exception of a 

phase constant. This resulted from the particular selection of integration variables u and v as 

described in Equation 3.5. This means that no special changes have to be made to the FFT 

in order to apply it to the surface diagnosis problem. 

In order to apply the measured near-field data to the diagnostic problem the data 

must be referenced at the focal plane, not the scan plane which is located a distance z0 

above the focal plane as shown in Figure 3.1. This is accomplished by calculating the far-field 

quantity T(u,v) as in Chapter 3, and then multiplying by a factor of eikzocos(e). The inverse 

Fourier transform may then be calculated by the IFFT routine. The phase of the IFFT output 

is then used in Equation 4.9 to calculate the surface deviation. 

There are two considerations in calculating the IFFT of the T(u,v). The first is that the 

value of e is not known directly for the calculation of eikzocos(e); instead, u and v are given. 

The value of e must be calculated from a knowledge of u and v. This is not a straightforward 

task for (u,v) outside the unit circle and also because the relationship between (u,v) and (e.¢) 

is nonlinear. The second consideration is that the T(u,v) calculated from a direct application 

of the FFT does not include any compensation for the probe. The probe compensation can 

be included once the values of e and ¢ are known. 
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The first of the considerations is to find (e,q,) given (u,v). It is shown in Appendix B 

that the range of the variables u and v are related to the .1x and l!!y by an inverse relationship: 

Umax = 1/2!1x and Vmax = 1/211y. Therefore, if the 1/2 A. sampling requirement is maintained 

for .1x and l!!y, the values of Umax and Vmax are unity. From Equation 3.5 it is seen that 

(4.1 0) 

which indicates that when 
(4.11) 

(u2 + v2) 112 ~ 1 

the value of e is a complex number and that the factor eikzocos(e) will have a decaying 

component that approaches zero. It can be shown that the complex value of e in this case is 

pure imaginary, so that the entire factor will approach zero. Thus, one could assume zeroes 

for values of the T(u,v) when u and v satisfy Equation 4,11, and when u and v do not satisfy 

Equation 4.11, the calculation of e and q, become easier for the computer implementation. 

For values of u and v which lie within the unit circle, the values of e and q, may be derived from 

Equation 3.5 as 

e = sin-1 [(u2 + v2) 112] 

q, = tan-1 (v/u) 

o ~ e ~ro'2 
-ro'2 ~ q, ~ m'2 

The steps to follow in calculating the surface error are therefore: 

1 - Interpolate the data from a polar to a cartesian coordinate system. 

2 - Perform the FFT on the interpolated data. 

3 - Perform the phase shift by multiplying by eikzocos(9). 

4- Perform the probe compensation calculations to achieve the true T(u,v). 

5- Perform the IFFT on the T(u,v). 

(4.i2) 

6- Find the least-squared quadradic, linear and the constant offset phase errors. 

7- Calculate the~ of the data. 

Test Case Results 

The theory and implementation techniques discussed in the previous sections were 

tested on special cases of near-field data. In order to verify the software, a set of near-field 

54 



data from a parabolic reflector with a known distortion is desirable. Because of the lack of any 

measured near-field data with a known distortion, a test file of uniform amplitude and phase 

was chosen. This test file is similar to the ones used in previous chapters to verify operation 

of the interpolation and far-field parameter software. In addition, the type of distortions which 

are simulated are similar to the displaced panel tests which are used by Rahmat-Samii [1985] 

in the algorithm verification for distortions on large reflectors. The expected value of 

distortion to be calculated for a test file of this type would be uniformly equal to zero. This 

simple experiment was performed and the results indicated the expected value of zero. 

The next case which could be of any use would be one in which the phase of the 

uniform test field was perturbed a known amount in the scan aperture. If the scan aperture is 

not located far from the feed aperture, the expected phase difference due to the surface of 

the reflector would be 1/2 that in the aperture: 1/2 for each direction of a round trip path from 

point p' to p to q as shown in figure 4.2. A test file of uniform amplitude and phase as 

described by Equation 2.1 which consisted of data on 63 rings was created. The phase of 

this uniform data, 'lf, between rings 7.25A.::;; r::;; 9.75A. was shifted by 'V = 30" for 30" ::;; q, ::;; so·, 

and by 'V = so· for 280" ::;; q, ::;; 290" . It was then interpolated to a cartesian coordinate system 

which consisted of 129x129 scans spaced 1/2A. apart. The value of distance from the scan 

plane to the focal plane was chosen to be z0 = IJ4 and the probe was an ideal dipole. This is 

illustrated in Figure 4.3. The results are shown in Figures 4.4 through 4.7 as contour plots of 

phase-vs-location in the xy-plane. 

The phase of the Hx and Hy fields as generated are shown in Figure 4.4. This figure 

shows the constant contours of the phase for 'V = 0.5rad and 'V = 0.8 rad for the Hx field, and 

constant contours of the phase for 'V = -1.2rad and 'V = -O.S rad for the Hy field. The contours 

are reasonable since the phase of the Hx was shifted from 'V = orad to 'V = 0.52rad in one 

location, and from 'V =orad to 'V = 1.05rad in the other location. For the Hy field, the phase 

was increased from 'V = -rc/2 to values of 'V = -rc/2 +0.52 and 'V = -rc/2 + 1.05. 
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Figure 4.5 shows the resultant phase of the field upon return from the IFFT routine 

after the eikzocos(8) and probe compensation factors have been applied. The results match 

the input to the FFT and are as expected, given the small value of aperture separation, z0. 

Figure 4.S shows the resultant phase after the quadradic, linear, and constant phase 

errors have been eliminated. At this point, the phase contours of each plot are identical due 

to the removal of the constant phase difference. 

Figure 4.7 shows the final result of the surface deviation as afunction of the 

wavelength. The f...= 0.04 and A.= 0.08 contours are shown. These values correspond to 

phase errors on the reflector surface of 14.4· and 28.8·, which are approximately equal to the 

1/2 factor of the phase difference in the aperture as discussed in above. 

For all of the figures, a double contour is seen at the 280. ~ q, ~ 290· location. This is 

due to the fact that both the \If = 3o· and \If = so· phase difference both appear at that 

location. Only the \If= 30· phase difference appears at the 30· ~ q, ~so· location. This is one 

reason that the different values of phase change were chosen. 

Conclusions 

Since a set of controlled test data which consists of real measurements and which 

used a feed of known illumination pattern is not available, the ability to completely verify that 

the software implementation is correct was not possible. However, the test runs using the 

perturbed phase uniform amplitude data demonstrated a good degree of confidence that 

the technique will recover the assumed distortions on the surface of the reflector. Using this 

technique, the antenna designer may better understand the various ways in which the 

reflector may be distorted: by feed support strut loads, temperature gradients, assembly 

techniques, mishandling, and others. Thus, the use of near-field data may prove to be a 

useful diagnostic tool for the future. 
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Figure 4.1 The Coordinate System Used to Define the Far-Field Quantity T(u,v) 
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Figure 4.2 The Description of the Surface Error of a Parabolic Reflector 
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Figure 4.3 Illustration of the Test Case Showing the Constant Distortions in the Phase, 
the Maximum Distance of the Measurement and the Square Window 

Which is Viewed in the Figures 4.4 to 4. 7 
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Chapter 5 

THESIS CONCLUSIONS 

The primary purpose of this thesis was to utilize the FFT in the calculation of the far

field patterns of an antenna which was measured on a plane-polar near-field antenna range. 

This capability would be in addition to the use of the Jacobi-Bessel technique which is 

specifically designed for the plane-polar coordinate system. The discussions of the different 

ways in which the near-field data could be measured were presented in Chapter 1. The 

planar measurement techniques were discussed in more detail, and in particular the plane

polar technique was defined. The planar near-field facility at the JPL is only capable of 

measuring data in the plane-polar format, thus, the data which exists from previous 

measurements of the Viking high gain antenna may be used to compare the results of the 

calculations by both the FFT and the Jacobi-Bessel techniques. 

Interpolation Results 

In order to use the FFT algorithm in calculating the far-field of the antenna under test, 

the measured data has to lay on grid lines of a rectangular coordinate system. The data 

obtained from the actual near-field measurements is in polar form on concentric rings. An 

interpolation was developed in Chapter 2 which was capable of defining the complex field 

values on the rectangular coordinate system given the field values on the polar coordinate 

system. The interpolation which was chosen was the 4-point bivariate Lagrange technique. 

This technique was chosen on the basis of simplicity, efficiency, speed, and accuracy. The 

interpolation was applied to an actual set of near-field data of the Viking high gain antenna. In 

addition, the interpolation was performed on the data in the Cartesian form of the complex 

field value and the polar form of the complex field value. The interpolation was checked by 

comparisons of the data as measured from the polar coordinate system to the interpolated 

value in the rectangular coordinate system. These comparisons were carried out for the 

principal plane cuts of the coordinate system, namely the x-axis (q>=O") and the y-axis ( q>=90"). 
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It was demonstrated that either representation of the data was acceptable for purposes of the 

interpolation; however, since the Cartesian form is linear in the interpolated variables, and the 

polar form could cause ambiguities in the phase of 180", the Cartesian form was 

recommended as the desirable form to interpolate. Finally, the CPU and total run times of the 

interpolation on the UNIVAC were given, and suggestions made as to a technique whereby 

the total time could be reduced, namely the use o'f virtual memory features of the ASCII 

FORTRAN compiler. 

Calculation of the Far-Field Parameters 

Chapter 3 developed the equations which were necessary to use the FFT in the 

calculation of the radiation integral which resulted from the convolution of the probe with the 

antenna under test. The transform variables u and v were defined, and their relationship to 

the FFT output were given. In particular, these variables are the ones which are useful for the 

calculation of the far-field quantities from the near-field data. It was shown that the input to 

the FFT was the near-field data whichc lay on the rectangular grid, and that the positions on 

the grid were in terms of the wavelength. The electric far-field co- and cross-polarized pattern 

was then defined, and its use in calculating other quantities such as the polarization 

properties of the antenna were shown. A comparison of the far-field patterns of the Viking 

HGA as calculated by the FFT and the Jacobi-Bessel techniques was made. The results 

indicated that the FFT technique could reproduce the results for which the Jacobi-Bessel 

technique converged. The Jacobi-Bessel technique has been proven to reproduce the far

field results of the antenna under test in the past. In fact, the Jacobi-Bessel technique 

converged to an angle which was less than the maximum possible angle as shown in Figure 

3.6, given the edge of the data for the coefficients n=m=10. More coefficients would allow 

convergence up to this angle. Since the FFT technique matched the Jacobi-Bessel 

technique in the region of the convergence of the Jacobi-Bessel polynomial, it may be 

assumed that the FFT technique will therefore reproduce the actual far field to the maximum 
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possible angle as defined in Figure 3.6, assuming that the sampling criteria was observed in 

the measurement. Also this accuracy is achieved without the need for an iteration to 

determine the region of convergence. 

The FFT routine will provide accurate results along the principal plane cuts very 

rapidly, however, for any off principal plane cuts, the routine requires a much greater time to 

yield results. This is because of the interpolation used to find the field value at a point which 

does not lie on the grid system. For these cuts the Jacobi-Bessel technique will require the 

same amount of computer time as the principal plane cuts. The total time required to 

calculate the far-field pattern for the principal plane and the cp = 45" cuts were calculated for 

both the FFT and the Jacobi-Bessel technique for the Viking HGA. The total time favored 

the FFT technique by 2 minutes. For this antenna the principal plane cuts are more rapidly 

calculated by the FFT technique. For larger antennas this would not necessarily be true. In 

fact, if the FFT size is 256x256, the time to calculate the field pattern alone will increase by a 

factor of 4. The interpolation time would also increase by this factor. 

Diagnosis 

The ability to use the near-field data to calculate the surface distortions of a parabolic 

reflector antenna was discussed in Chapter 4. The equations which are useful in this 

calculation were shown and the use of the FFT was illustrated. By properly defining the 

transform variables u and v, as shown in Chapter 3, the FFT algorithm previously developed 

could be used with no change. A series of steps were detailed which could be followed to 

calculate the surface distortions. These steps were then integrated into a FORTRAN 

program and tested on a hypothetical set of near-field data. The phase of the test data was 

perturbed slightly and the effects of the perturbation were calculated at the surface of a 

hypothetical reflector. The effects which were calculated were as predicted, given the phase 

distortion in the measurement plane. A good degree of confidence was shown that this 

technique would be useful in determining the various ways in which the reflector may be 

distorted. 
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Summary 

To summarize, this thesis has demonstrated that the use of the FFT to the calculate 

the far-field parameters of an antenna from a plane-polar near-field measurement is feasible. 

The interpolation from the polar coordinate system to the rectangular coordinate system may 

be done in a reasonable amount of computer time. This number represents 256 scans 

spaced 1/2 A. apart and centered about the rectangular coordinate system. The results of the 

far-field patterns agree well with techniques which have been previously proven accurate. In 

addition, the use of the near-field data in calculating the surface distortions of parabolic 

reflector antennas has been demonstrated. 
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Appendix A 

THE BIVARIATE LAGRANGE INTERPOLATION 

lnteroolation Requirements 

The basic problem of the interpolation required is that if one is given a set of data 

(xi·Yi.zi), it is desired to find a smooth curve z = F(x,y) which passes through the data. A 

typical interpolation algorithm has the following characteristics [Ferziger, 1981]: 

1. F(Xj.Yj) = Zj 

2. Easy evaluation 

3. Easy to integrate & differentiate 

4. Linear in the adjustable parameters 

Two interpolation techniques are often considered: the Lagrange and the cubic 

spline. The cubic spline has some advantages over the Lagrange interpolation. The cubic 

spline is more accurate as more points are used, i.e., in higher orders, and its first two 

derivatives are continuous. However, this technique is more difficult to implement at the end 

points where the definition of the end condition will affect the results. Ngai and Profera 

[1984] have suggested that the Lagrange interpolation is useful and sufficiently accurate in 

the various aspects of antenna calculations. The Lagrange interpolation will be discussed in 

detail and its applications to this thesis shown. 

1-Djmensionalloterpolatjon 

Begin by considering the 1-dimensional case where there are only ordered pairs of 

data (xi,Yi) and we desire f(xi) = Yi· The interpolation formula is 

(A1) 

f(x) = an-1xn-1 + an-2xn-2 + ... + a1x + ao 

We desire the coefficients, ai, of this equation. One could use the data points, and the 

definition: 
(A2) 
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to arrive at a set of n-1 equations in n-1 unknowns. The solution to this matrix is easy; 

however for n>5 the system often becomes ill conditioned [Kreyszig, 1979]. Instead, note 

that from Equation A 1 that the ai are linear combinations of the Yi· The general expression for 

a linear equation in x of degree n-1 is: 

n 

f(x) = L lk (x) yk 

k= 1 

Substitution of this into Equation A2 yields 

4<(Xj) = 1 i = k 

=0 i:;tk 

i = 1,2,··· n 

(A3) 

(A4) 

In this equation, the choice of k is arbitrary, so it must hold for all k. Therefore Lk(xj) is 

a polynomial that is zero for all xi, i :;t k, and is unity for xi, i = k, and one can write the Lk(xj) as a 

multiple of the n-1 factors of its zeroes, 
(AS) 

where the Ck is a constant. This constant is determined by the requirement that the Lk(xk) = 

1 as given by Equation A4. Therefore, one can write Ck as 

(A6) 

and finally the polynomial may be expressed as, 
(A?) 

The interpolation formula defined by Equations A3 and A7 comprises the n-point 

Lagrange interpolation. This formula is guaranteed to pass smoothly through the data points 

given. It seems obvious that the higher the order of interpolation, i.e., the more points used, 

the more time consuming the algorithm becomes. In the limiting case where 2 points are 

used, the interpolation is linear. For this case, the Lagrange polynomials are: 

L1 (x) = (x-x2) I (x1-x2) 

L2(x) = (x-x1) I (x2- x1) 

(AS) 
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and the interpolation formula is 
(A9) 

2-Dimensionallnteroolation 

The natural extension to the 1-dimensional Lagrange formula is the 2-dimensional 

formula. In this case, the data consists bf ordered triplets (xi.Yi.zi)· For this thesis the xi and Yi 

are the positions of the field quantity in the r,$ plane at constant values of r and $, and the zi is 

a complex number representing the value of the field quantity at that point. The formula for 

the bivariate Lagrange interpolation can be written in a form similar to Equation A3 as shown 

by Ngai and Profera [1984] and Abramowitz and Stegun [1964]. This form is: 
(A10) 

M N 
f(x,y) = L L xm i(X) y .(y) f(xj,Y,·) 

, n,1 
m=l n= 1 

where 
(A 11) 

m(~) Xm ,.(X) = I1 X X 
, k=1 r k 

k<~i 

n 
y .(y) = I1 ( y-yk ) 

n,( k=1 Y.-yk 
k<~ j I 

i = 1,2, ... ,m i = 1,2, ... ,n 

If N=M=2, then the bivariate linear Lagrange interpolation results. The formula which 

results from this choice of N and M is given below, where the indices are illustrated in Figure 

A1. 

(A12) 
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Figure A 1. The Coordinate System Used for the Bivariate Lagrange Interpolation 



Appendix B 

FFT ALGORITHMS USED IN ANTENNA CALCULATIONS 

FFT Algorithms 

The one dimensional Continuous Fourier Transform (CFT) is typically defined in 

electromagnetic theory by: 

(81) 
00 

F[u) = J ei2nux f[x) dx 

-00 

The integration of this equation may become tedious because of the oscillatory 

nature of the kernel. One of the techniques is the use of the Discrete Fourier Transform 

(OFT) which is given by: 
(82) 

N/2-1 
F(m~u) = ~x L f(n~x) ei2nnmiN -NI2 :s:m :s:N/2 

n=-N/2 

where f(nilx) and F(milu) are sampled versions of the continuous functions f(x) and F(u). 

Notice in this definition that the number of sample points of F(u) is equal to the number of 

sample points of f(x). By using the OFT representation of the CFT one may use the efficient 

Fast Fourier Transform (FFT) algorithm [Cooley and Tukey, 1965] for the computation of the 

CFT. 

For the FFT to be applied, the function f(x) must be band limited to a given range, 

i.e., 
(83) 

f(x)=O IXI>a 

It can be shown that F(u) will not be strictly limited to any band in u, but that if f(x) is 

smooth enough, the magnitude IF(u)l will be essentially contained in a band [a.,a.]. These 

relationships are shown in Figure 81. 
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In order to apply the FFT algorithm to the function f(x), this function must be 

appropriately sampled. Let the number of samples beN, and let f(x) be sampled at intervals 

of rue over a range [-T/2, T/2] such that 
(84) 

This is shown in figure 82. Since the sampling indices n and m in equation 82 take on values 

between -N/2 and N/2 - 1 , Equation 84 can be used to show the relationship between the 

parameters x and u [Ransom, 1972, p4] · 

Table 81. The Relationship Between the FFT Parameters x and u 

Sampling Range 

Sampling Interval 

FFT Implementations 

.u. 

1/Ax 

1/T 

FFT implementations of Equation 82 may be found in many literature discussions. 

However, most of these discussions deal with digital processing of signals which are causal, 

i.e., which do not exist for negative values of the parameter x. In this case, the function g(x) 

which is shown in Figure 81 would appear as given in figure 83. The Fourier transform of 

g(x), denoted G(u), will have a magnitude which is equal to the magnitude of F(u); however, 

the phase of G(u) will not equal the phase of F(u). This means that if one were to use any FFT 

which is designed for causal systems to solve the Equation 81 where the f(x) is not causal, 

incorrect phase results would be calculated. This is the situation in antenna theory where the 

aperture distribution is the function f(x) and is in the range [-a,a]. To utilize these FFTs, one 

would have to perform a phase shift of the output data. The phase shift is done in the 

following manner: given a sequence 

f(nAx) : n = -N/2, -N/2+1, ... , N/2-1 

f( -N/2) = -T/2 and F(N/2) = T/2 

(85) 
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If this sequence is shifted to the right by N/2 ill<, a causal sequence results as given in figure 

83. The Fourier transform of this sequence is [Oppenheim and Schafer, 1975, p92] 

so that 

F{g(nillc)} = F{f(nill< - N/2 ill<)} 

= e-jom F{n&)} 

F{f(nill<)} = eimN/2 F{g(nill<)} 

(86) 

(87) 

and to correct for the phase error one would use the exponential factor at each point where 

the digital frequency, ro, is given by ro = uill<. The FFT algorithm used in this thesis is from 

Ransom [1972] and already accounts for this shift on the output so that the user does not 

have to. 

An interesting point to note is that in most communication and digital signal 

processing applications, the definition of the CFT includes a negative sign in the exponent 

of the kernel of Equation 81 instead of a positive sign. This definition poses no problem 

since the OFT and its inverse, lOFT, have a very similar form with the exception fo the sign of 

the exponent and a constant factor. As such the FFT may be used in evaluation of the lOFT 

as well as the OFT. Therefore, if the FFT implementation used is based on a definition which 

is different than the one of interest, the user may just choose to perform a synthesis instead 

of an analysis. Again, the algorithm used in this thesis allows for this difference in definitions. 

The 2-0imensjonal CfT 

The CFT as shown in Equation 81 is a 1-dimensional transform. In the work done in 

this thesis, the transforms are 2-dimensional in nature. In this case the CFT is given by: 

(88) 

00 00 

F( ) II t( ) 
j21t(X u + yv) d d 

u,v = . x,y e x y 

-oo-oo 

It can be shown that the associated 2-dimensional OFT is given by: 

(89) 
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Nu /2-1 

F(pAu,qAv} = AxAy L 
n=-Nu/2 

Nv/2 -1 

L f(nAx, mAy) ei2n:(np/Nu+ mqiNv} 

m=-N /2 v 

-Nu/2 ~ p ~ Nu /2 

-Nv/2 ~ q ~ Nv/2 

It can also be shown that the evaluation of this equation may be accomplished by a 

repeated application of the FFT. First the transform of the columns of the data in the x-y 

plane is performed, then a transformation of the rows. For this situation the 1-dimensional 

FFT may be applied by using a second subroutine which performs a bookkeeping function. 

One such subroutine is used in the evaluation of the 2-dimensional CFTs which occur in this 

thesis. The parameters in Equations 88 and 89 are very similar to those of Equation 81 and 

82. In fact all of the relationships defined previously for the sample spacing and sample 

interval will hold in the 2-dimensional case as well. 

Interpolation 

The output of the FFT routine will be the sampled version of the CFT as given by 

Equation 82. This means that for an input function the CFT is calculated at different discrete 

values of u and that Equation 81 does not have to be calculated repeatedly for each u of 

interest. Unfortunately, the values of u for which the CFT is calculated may not be the ones 

in which one is interested. The solution to this problem is the use of an interpolation 

algorithm. All of the references for this appendix discuss one such interpolation. It is given in 

2 dimensions by: 

Nu /2- 1 

F(u,v} = L 
n=-Nu/2 

Nv/2-1 

L F(nAu, mAv) sinc[n(u/Au - n)] sinc[n('t'\'Av- m)] 

m=-Nvl2 

(810) 

where the interpolation will be valid for any u-v combination as long as the function f(x,y) is 

band limited as described by Equation 83. 
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It becomes obvious that as the number of samples in each direction increase, the 

interpolation will become slower since a double summation of all the points is being 

evaluated and there will be an evaluation of a trigonometric function at each step. 

Fortunately, there is a way to move the evaluation of the sine term outside the summation. 

Also, careful study of the equation will show that a complete double summation is not 

required when the point in question lays on a major grid line defined by the locations of the 

known values. In addition, if the point in question is on a given point from the FFT, no 

summation occurs as would be expected from a good interpolation formula. These principles 

are shown below. Note that: 
(811) 

sine[ n( u/ Au - n)] = _s_in...:.[-:-n~(u_IA_u_--=-n..:.:.)]_ = (-1)nsin(nu/Au) 
n(u/Au - n) n(u/Au - n) 

This relationship will hold for both of the sine terms in Equation 81 0 and so each sine 

term may be calculated outside the summation and thus be evaluated only one time. By 

carrying out this manipulation Equation 810 may be rewritten as: 
(812) 

N u /2 - 1 Nv /2 - 1 

F(u,v) = ~sin(nu/Au) sin(nVI'Av) L L (-1)n+m F(n!u, m.h.v) 

n n=-N /2 m=-N /2 (u/!u- n)(VI'!v- m) 
u v 

Careful inspecti<>n of Equation 812 will show that u/~u =nand v/~v = m represent 

points along given grid lines in the array. When this occurs the associated sine term 

becomes unity and the associated summation disappears. The resulting equations to be 

used when this occurs are: 

Nu /2-1 

F(u, v) =+sin(nu/Au) L (-1)n 

n=-N 12 u 

F(nAu, v) 

(u/Au - n) 

Nv/2- 1 
F(u v) =-1- sin(nVI'Av) "V (-1)m F(u, m.h.v) 

' n L (VI'!v- m) 
m=-N /2 v 

(813) 

; VI'Av=m 

; u/!u = n 
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Sampling Criteria 

Equation 82 represents one period of a periodic function of the variable u. If the 

index m were allowed to go beyond the limits given in Equation 82 the function could be as 

shown in Figure 84. This figure shows a OFT and its neighboring periods. These 

neighboring periods have the same shape and form of the principle OFT and are called 

aliases. The separation between the aliases is 1/Ax and the OFT will be essentially zero past 

u =ex. When the sampling in f(x) is too large the 1/Ax becomes smaller and the aliases near 

the desired OFT will begin to overlap causing distortion as shown in Figure 85. Obviously, in 

order to minimize this distortion selection of Ax should be made to satisfy 

ex= 1/2Ax 

Ax= 1/2ex 

(814) 

where ex is the highest (spatial) frequency of the OFT. For an antenna application, the 

maximum spatial frequency is ex = 1 where the aperture distribution is normalized to the 

wavelength A. and the typical u-v parameters are being used (Chapter 3). It can be seen that 

for the aliases of the antenna pattern to remain in imaginary space, the sampling interval in 

the aperture distribution must remain less than 1/21... 
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Figure 81. A Continuous Function f(x) Limited in Range to [-a,a] and its 

Continuous Fourier Transform, Essentially 8andlimited to [-a, a] 
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Figure 82. Sampled Versions of the Continuous Functions f(x) and F(u) 
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Figure 83. A Causal Function g(x) and its Sampled Version g(Mx) 
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Figure 84. A Fourier Transform and its Neighboring Aliases 
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