
FFT BASED ALGORITHM FOR POLYNOMIAL PLUS-MINUS
FACTORIZATION

Martin Hromčı́k, Michael Šebek

Centre for Applied Cybernetics
Czech Technical University, Prague, Czech Republic

e-mail: m.hromcik@c-a-k.cz, m.sebek@c-a-k.cz

Keywords: Polynomial design methods, numerical algo-
rithms.

Abstract

In this report a new algorithm is presented for the plus/minus
factorization of a scalar discrete-time polynomial. The method
is based on the discrete Fourier transform theory (DFT) and
its relationship to the Z-transform. Involving DFT computa-
tional techniques, namely the famous fast Fourier transform
routine (FFT), brings high computational efficiency and reli-
ability. The effectiveness of the proposed algorithm is demon-
strated by a particular practical application. Namely the prob-
lem of computing an H2-optimal inverse dynamic filter to an
audio equipment is considered as it was proposed by M. Ster-
nad and colleagues in [16] to improve behavior of moderate
quality loudspeakers. Involved spectral factorization can be
converted into plus-minus factorization in a special case which
in turn is resolved by our new method.

1 Introduction

This paper describes a new method for the plus-minus factor-
ization of a discrete-time polynomial. Given a polynomial in
the z variable,

p(z) = p0 + p1z + p2z
2 + � � �+ pnz

n;

without any roots on the unit circle, its plus/minus factorization
is defined as

p(z) = p+(z)p�(z) (1)

where p+(z) has all roots inside and p�(z) outside the unit
disc. Clearly, the scalar plus/minus factorization is unique up
to a scaling factor.

Polynomial plus/minus factorization has many applications in
control and signal processing problems. For instance, effi-
cient algebraic design methods for time-optimal controllers [7],
quadratically optimal filters for mobile phones [14, 15], and l 1
optimal regulators [3], to name just a few, all recall the +/- fac-
torization as a crucial computational step.

2 Existing Methods

From the computational point of view, nevertheless, the task is
not well treated. There are two quite natural methods.

One of them is based on direct computation of roots. Using
standard methods for polynomial roots evaluation, see [5, 18]
for instance, one can separate the stable and unstable roots of
p(s) directly and construct the plus and minus parts from re-
lated first order factors or, alternatively, emply a more efficient
recursive procedure based on the matrix eigenvalue theory [18].

Alternative algorithm relies on polynomial spectral factoriza-
tion and gratest polynomial divisor computation. If q(z) is
the spectral factor of the symmetric product p(z)p(z�1) then
the greatest common divisor of p(z) and q(z) is obviously the
plus factor of p(z). The minus factor can be derived similarly
from p(z�1) and q(z�1). As opposed to the previous approach
based on direct roots computation which typically makes prob-
lems for higher degrees and/or roots multiplicities, this proce-
dure relies on numerically reliable algorithms for polynomial
spectral factorization [11, 2]. Unfortunately, the polynomial
greatest common divisor computation is much more sensitive.
As a result, both these techniques do not work properly for high
degrees (say over 50).

In this report we will introduce a completely new approach to
the problem, inspired by our work on efficient algorithms for
polynomial spectral factorization, see [2]. It is based on the
DFT theory and provides both a fruitful view on the relation
between DFT and theZ-transform theory, and a powerful com-
putational tool in the form of the fast Fourier transform algo-
rithm.

3 Discrete Fourier Transform

If p = [p0; p1; : : : ; pN] is a vector of complex numbers, then its
direct DFT is given by the vector y = [y0; y1; : : : ; yN], where

yk =

NX

i=0

pie
�j

2�k
N+1

i (2)

The vector y is called the image of vector p. Conversely, if
y = [y0; y1; : : : ; yN] is given, then its inverse DFT recovers
the original vector p = [p0; p1; : : : ; pN], where

pi =
1

N + 1

NX

k=0

yke
j
2�i
N+1

k (3)

DFT is of great interest in various engineering fields. For its
relationship to Fourier series of sampled signals, DFT is fre-
quently used in signal processing. One of the experimental

identification methods employs DFT as well [9]. The close re-
lationship of DFT to interpolation is also well known and was
used recently to solve some tasks of the polynomial control
theory [12] and to treat robustness analysis problems of certain
kind [13].

For numerical computation of DFT, the efficient recursive FFT
algorithm was developed by Cooley and Tukey in 1965 [4]. If
the length of the input is a power of two, a faster version of
FFT (sometimes called radix-2 FFT) can be employed [4]. In
general, the FFT routine features a highly beneficial compu-
tational complexity and involvesO(N log(N)) multiplications
and additions for a vector of length N .

Thanks to the importance of DFT mentioned above, the FFT
algorithms are naturally available as built-in functions of many
computing packages (MATLABTM, MATHEMATICATM etc.).
This is another good reason for employing the procedure pro-
posed in this paper.

4 Plus-minus Factorization and DFT

4.1 Theory

Given a polynomial

p(z) = p0 + p1z + � � �+ pdz
d ;

nonzero for jzj = 1, we first apply a direct degree shift to arrive
at a two-sided polynomial

~p(z) = p0z
�Æ + � � �+ pdz

d�Æ;

where Æ is the number of roots of p(z) lying inside the unit
circle. Now, instead of solving equation (1), we look for
~p+(z) = ~p+0 + ~p+1 z

�1 + � � � + ~p+
Æ
z�Æ and ~p�(z) = ~p�0 +

~p�1 z + � � �+ ~p�
d�Æ

zd�Æ such that

~p(z) = ~p+(z)~p�(z) (4)

Relation between the pairs ~p+; ~p� and p+; p� are obvious.

In order to solve the equation (4), logarithm is applied. As
~p(z); ~p+(z) and ~p�(z) are all analytic and nonzero in 1� " <

jzj < 1 + " the logarithms exist. Let us denote them as
ln ~p(z) = n(z); ln ~p+(z) = x+(z); ln ~p�(z) = x�(z): Here
n(z), obtained from the given ~p(z), is a Laurent infinite power
series

n(z) = � � �+ n1z + n0 + n
�1z

�1 + � � � :

It can be directly decomposed,

n(z) = x+(z) + x�(z�1)

with power series

x+(z) = x+0 + x+1 z
�1 + � � � =

n0

2
+ n

�1z
�1 + � � � ;

x�(z) = x�0 + x�1 z + � � � =
n0

2
+ n1z + � � � (5)

analytic for 1� " < jzj and 1 + " > jzj respectively.

At this time the necessity of the degree shift yielding the
two-sided polynomial ~p can be explained. According to the
Cauchy’s theorem of argument [6], the curve p(z) for jzj = 1
encircles the origin in the complex plane as many times as is the
number of roots of p(z) lying in the complex unit disc. Hence
the logarithms cannot be applied directly as its imaginary part,
reading the phase of p(z), would not be continuous. An easy
solution to avoid this situation is to move the desired number of
roots of p(z) from infinity to zero by performing proper degree
shift.

Once x+(z) and x�(z) are computed, the plus/minus factors
~p+; ~p� are recovered as

~p+ = ex
+(z) = ~p+0 +~p+1 z

�1+� � � ; ~p� = ex
�(z) = ~p�0 +~p�1 z+� � � :

Since x+(z) is analytic in 1 � " < jzj, so is ~p+(z) and hence
it can be expanded according to (3). Moreover, as a result of
exponential function, ~p+(z) is nonzero in 1� " < jzj. In other
words, it has all its zeros inside the unit disc and is therefore
Schur stable. Note also that ~p+(z) has to be a (finite) polyno-
mial of degree d (due to the uniqueness of the solution to the
problem which is known to be a polynomial) though n(z) is an
infinite power series. Similar reasoning proves the ~p� factor
desired properties.

4.2 Numerical Algorithm

Numerical implementation follows the ideas considered above.
A polynomial p(z) is represented by its coefficients pi; i =
0 : : : r or, equivalently, by function values Pk in the Fourier in-
terpolating points gk; k = �R : : : 0 : : : R, where R � d; g =

ej
2�

2R+1 . Accordingly, a power series can be approximated by a
finite set of its coefficients or by its values in a finite number of
interpolation points on the unit circle. Some operations of the
procedure, namely the decomposition of n(z) into x+(z) and
x�(z), are performed in the time domain (operations on coef-
ficients), while the others (evaluation of logarithmic and expo-
nential functions) are executed in the frequency domain (opera-
tions with values over jzj = 1). Mutual conversion between the
two domains is mediated by the shifted discrete Fourier trans-
form operator defined as

Xk =

RX

i=�R

xig
�ki; xi =

1

2R+ 1

RX

k=�R

Xkg
ki ;

which approximates the Z-transform by dealing with �R �

i � +R instead of infinite �1 < i < +1, and with z =
gk; � R � k � +R instead of continuum z = ej�; � � �

� � +�.

The accuracy of results depends on the number of interpolation
points 2R + 1 involved in the computation. This number can
be considered as a simple tuning knob of the computational
process.

Resulting numerical routine looks then as follows:

Algorithm 1: Scalar discrete-time plus-minus
factorization.

Input: Scalar polynomial
p(z) = p0 + p1z + � � �+ pdz

d, nonzero for jzj = 1.

Output: Polynomials p+(z) and p�(z), the plus and minus
factors of p(z).

Step 1 - Choice of the number of interpolation points.
Decide about the number R. R approximately 10 to 50
times larger than d is recommended up to our practical
experience.

Step 2 - Degree shift.
Find out the number Æ of zeros of p(z) inside the unit disc.
A modification of well known Schur stability criterion can
be employed, see [10] for instance.

Having Æ at hand, construct a two-sided polynomial ~p(z)
as

~p(z) = p(z)z�Æ = p0z
�Æ + � � �+ pdz

d�Æ =

~p
�Æz

�Æ + � � �+ ~p0 + � � �+ ~pd�Æz
d�Æ

Step 3 - Direct FFT (I):
Using the FFT algorithm, perform direct DFT, defined by
(2), on the vector

p = [~p0; ~p1; : : : ; ~pd�Æ; 0; 0; : : : ; 0; ~p�Æ; : : : ; ~p�1| {z }
2R+1

]

In this way, the set P = [P0; P1; : : : ; P2R] of the values
of ~p(z) at the Fourier points is obtained.

Step 4 - Logarithmization:
Compute the logarithms Ni = ln(Pi) of all particular
Pi’s and form the vector N = [N0; N1; : : : ; N2R] of
them. Ni’s thus obtained are the values of the function
n(z) = ln(~p(z)) at related Fourier points on the unit com-
plex circle.

Step 5 - Inverse FFT (I):
To get the vector n = [n0; n1; : : : ; nR; n�R; : : : ; n�1],
containing the coefficients of the two-sided polynomial
n(z) = n

�Rz
�R+� � �+n

�1z
�1+n0+n1z+� � �+nRz

R

approximating the power series of ln(m(z)) for the given
R, perform inverse DFT, defined by (3), on the vector N
using the FFT algorithm.

Step 6 - Decomposition:
Take the ”causal part” x+ of n:
x
+ = [n0=2; n1; : : : ; nR]. Similarly, construct x� as
x
� = [n0=2; n�1; : : : ; n�R].

Step 7 - Direct FFT (II):
Evaluate x+(z) = n0=2 + n1z

�1 + : : : + nRz
�R at the

Fourier points by applying direct FFT on the set x+ and
get X+ = [X+

0 ; : : : ; X
+
R
]. Proceed with x�(z) in obvi-

ous way.

Step 8 - Exponential function:
To get the plus/minus factors, the exponential functions
~p+(z) = ex

+(z) and ~p�(z) = ex
�(z) remain to be evalu-

ated. First we compute the values of ~p+(z) and ~p�(z) at

the Fourier points: ~P
+

= [eX
+

0 ; : : : ; eX
+

R]. Similar steps
apply for the minus part.

Step 9 - Inverse FFT (II):
Finally, the coefficients ~p+ = [~p+0 ; : : : ; ~p

+
R
] of ~p+(z) are

recovered by inverse FFT performed on the vector ~P
+

.
The resulting approximation to the plus factor ~p+(z) then
equals ~p+(z) = ~p+0 + ~p+

�1z
�1 + � � � + ~p+

�Æ
z�Æ: Proceed

with the minus part accordingly.

Step 10 - Finalization:
Convert the plus-minus factors ~p+(z) and ~p�(z) of ~p(z)
into the desired factors of p(z) using the following formu-
las

p� = ~p�; p+ = ~p+?;

where the star stands for discrete-time conjugate,
z ! z�1. �

Note that one obtains R coefficients of ~p+ and ~p� in the step
9. However, p+(z) being the plus factor of p(z) is known to
be of degree Æ only and only the first Æ + 1 coefficients of
~p+(z) should be significant as a result while the remaining ones
should be negligible. As the number R increases, these values
theoretically converge to zero indeed since the formulas of DFT
become better approximations to the Z-transform definitions.

5 Radix-2 Modification of the Algorithm

The basic version of the routine proposed above is based on the
shifted dicrete Fourier transform. This modification of DFT
appears useful during the derivation of the Algorithm 1 due to
its more transparent relationship to the spectral theory. It can
be easily transformed to the standard DFT as it is defined in
the section 3, simply by reordering related vector entries (see
the steps 2 and 4 of Algorithm 1). However, 2R + 1 interpo-
lation points are used for the FFT algorithm and unfortunately
this number is always odd and cannot equal any power of two.
Therefore the radix-2 fast version of the FFT routine cannot
be addressed. Nevertheless, this slight drawback can be easily
avoided if the periodicity of direct and inverse DFT formulas is
taken into account. Basically, one can construct the initial set
as

[~p0; ~p1; : : : ; ~pd�Æ; 0; 0; : : : ; 0; ~p�Æ; : : : ; ~p�1| {z }
2R

]

which has a power-of-two entries in total. The Algorithm 1 re-
mains valid also in this case with 2R + 1 replaced by 2R and
R + 1 by 2R�1 respectively, up to one point: in the Step 6,
the decomposition reads x+ = [n0=2; n1; : : : ; nR=2] instead
of x+ = [n0=2; n1; : : : ; nR]. This minor modification of the
proposed method further increases its efficiency since the pow-
erful radix-2 FFT can be called.

6 Computational Complexity

Thanks to the fact that the fast Fourier transform algorithm is
extensively used during the computation, the overall routine
features an expedient computational complexity.

Provided that the above modifications of the computational
procedure are considered, namely if the resulting number of
interpolation points is taken as a power of two, the fast radix-2
FFT can be employed. In this case, (R log2R)=2 multiplica-
tions and R log2R additions are needed to evaluate either di-
rect or inverse DFT of a vector of length R [4]. Let us suppose
in addition that computing the logarithm or exponential of a
scalar constant takes at most k multiplications and l additions.
Then the particular steps of the modified Algorithm 1 involve
(R log2R)=2 multiplications and R log2R additions (Steps 3,
5, 7, 9), and kR multiplications and lR additions (Steps 4, 8)
respectively. Hence the overall procedure consumes

4
R logR

2
+ 2kR = 2R logR+ 2lR

complex multiplications, and

4R logR+ 2lR

complex additions. By inspecting the above formulas one
can see that asymptotically the proposed method features
O(R logR) complex multiplications and additions.

7 Upgrading Loudspeakers Dynamics

An original approach has been published by Sternad et al. in
[16] how to improve performance of an audio equipment at
low additional costs. The authors use the LQG optimal feed-
forward compensator technique to receive an inverse dynamic
filter for a moderate quality loudspeaker. By attaching a signal
processor implementing this filter prior to the loudspeaker, the
dynamical imperfections of the original device are eliminated
and the overall equipment behaves as an aparatus of a much
higher class. To learn more about this research and to get some
working examples, visit [17].

Inverse system Hi-fi system

Figure 1: Pre-filter compensation scheme (adopted from [16]).

Unlike their predecessors, the authors try to modify the sound
over the whole range of frequencies. Such a complex compen-
sation fully employs the increasing performance of signal hard-
ware dedicated to CD-quality audio signals, and at the same
time calls for fast and reliable factorization solvers [16]. We
believe our new algorithm will significantly contribute to this
goal.

The loudspeaker dynamics is considered in the form of an ARX

model

y(t) = z�k
B(z)

A(z)
u(t):

Since the impulse response is rather long for a high sampling
frequency (CD-quality standard of 44 kHz was used), both the
numerator and denominator of the model are of high orders,
say one to five hundred.

The model has an unstable inverse in general since some of its
zeros may lie outside the unit disc. Hence a stable approxima-
tion has to be calculated to be used in the feedforward structure.
The authors recall the LQG theory and seek for a compensating
filter

u(t) =
Q(z)

P (z)
w(t)

such that the criterion J = Ejy(t) � w(t � d)j2 + �ju(t)j2 is
minimized.

For broadband audio signals, the optimal filter is given in the
form

u(t) =
Q1(z)A(z)

�(z)
w(t)

where � results from the spectral factorization

��� = BB� + �AA�

and Q1 is the solution of a subsequent Diophantine equation

zk�dB�(z) = r��(z)Q1(z
�1) + zL�(z);

see [16].

-w(t) Q(q�1)
P (q�1)

Compensator

-u(t)
q
�k B(q

�1)
A(q�1)

Model of loudspeaker

-y(t)

-
q
�d

Delay
6

?j�
�

+

-e(t)

Figure 2: Optimal filtering problem setup (adopted from [16]).

As for the spectral factor computation, the authors employ the
Newton-Raphson iterative scheme [11] in the cited work [16].
According to their results and our experience, this method has
been probably the best available procedure for scalar polyno-
mial spectral factorization so far [16, 8]. This method works
quite well also for high degrees of involved polynomials in con-
trast to the straightforward way of computing and distributing
the roots of BB� + �AA�.

Let us perform a benchmark experiment to compare the exist-
ing approach and our newly proposed algorithm for particu-
lar numerical data kindly provided by Mikael Sternad and col-
leagues from the University of Uppsala. Up to now, two models
of the loudspeakers dynamics have been sent to us for testing
purposes and the results related to the more complex one are
presented in the following.

The data in concern are given as follows. The numerator
B(z) = B0 + B1z

�1 + � � � + B250z
�250 is an unstable

polynomial of degree 250, A(z) is stable of degree 90, and
k = 160. Taking � = 0, the spectral factorization of m(z) =
B(z)B�(z) = m250z

�250 + : : :+m0 + : : : +m250z
250 is to

be performed. In this special case, the spectral factor x(z) of
m(z) can be effectively constructed as

x(z) = B+(z)
�
B�(z)

�
�

z�k

whereB+; B� are the plus and minus factors ofB respectively
and k is the degree of B�.

All presented experiments were realized on a PC computer with
Pentium III/1.2GHz processor and 512 MB RAM, under MS
Windows 2000 in MATLAB version 6.1.

Results of this experiment for various values of the parameters
N are summarized and related in the following table. Namely,
the computational time and accuracy of results are of interest.
To obtain the former characteristic, the MATLAB abilities were
employed (the built-in functions tic/toc). The computa-
tional error is defined here as the largest coefficient of the ex-
pression B+B�

� B, evaluated in the MATLAB workspace,
divided by the largest coefficient of B (all in absolute value).

Time [s] Accuracy

FFT(14) 0.23 sec 6:28 � 10�3

FFT(15) 0.45 sec 2:52 � 10�8

FFT(16) 0.89 sec 4:65 � 10�11

FFT(17) 1.75 sec 2:40 � 10�12

TABLE 1: Accuracy and efficiency of compared algorithms.

These tests prove the power of the new algorithm in such tough
examples. Neither of the two procedures described in para-
graph 2 can factor this large polynomial. Direct roots evalua-
tion method, based on the standard MATLAB function roots,
gives totally meaningless results (accuracy of 1043) while the
routine based on spectral factorization fails due to numerical
problems with greatest common polynomial divisor evaluation
(Polynomial Toolbox function rdiv was used [8]).

8 Further Research

The success in modifying a selected numerical procedure, orig-
inally developed for polynomial spectral factorization, to han-
dle the unsymmetric plus-minus decomposition suggests that
other well known spectral factorization routines might work
well in the non-symmetric context as well. Actually, we
achieved some results of this kind recently and plan to incorpo-
rate them in the final camera-ready version of our contribution.

Unfortunately, the described approach cannot be directly ex-
tended to the matrix case - the product of two matrices does not
commute in general and since ~P+(z) ~P�(z) 6= ~P�(z) ~P+(z),
one cannot write ln ~P (z) = ln(~P+(z)) + ln(~P�(z)) and per-
form the decomposition. Clearly, in combination with tech-
niques for the Smith form of a polynomial matrix [7, 8], the

proposed routine can be used to factor particular entries of an
equivalent diagonal matrix. Unfortunately, from the computa-
tional point of view it is not particularly useful as the Smith
form transformation is known to be numerically fragile [8].

A modification for continuous time polynomials is under re-
search too. However, the suggested approach does not seem to
be as fruitful for continuous time systems as it is in the discrete
time case. The reason is that the relation between the Laplace
transform, replacing the role of Z-transform in the continuous
time domain, and the DFT is not so close. The idea of a di-
rect bilinear transform converting the s variable to z cannot be
recommended for numerical reasons.

9 Conclusion

A new method for the discrete-time plus-minus factorization
problem in the scalar case has been proposed. The new method
relies on numerically stable and efficient FFT algorithm. Be-
sides its good numerical properties, the derivation of the routine
also provides an interesting look into the related mathematics,
combining the results of the theory of functions of complex
variable, the theory of sampled signals, and the discrete Fourier
transform techniques. The suggested method is employed in a
practical application of improving the quality of a hi-fi system.

Acknowledgements

The work of M. Hromčı́k and M. Šebek has been supported by
the Ministry of Education of the Czech Republic under contract
No. LN00B096.

References

[1] Kučera V., Analysis and Design of Discrete Linear Con-
trol Systems, Academia Prague (1991).

[2] M. Hromcik, J. Jezek, M. Sebek, New Algorithm
for Spectral Factorization and its Practical Applica-
tion, Proceedings of the European Control Conference
ECC’2001, Porto, Portugal, September 1-5, 2001.

[3] Z. Hurak, M. Sebek, Algebraic Approach to l-1 Optimal
Control, to appear.

[4] Bini D., Pan V., Polynomial and Matrix Computations,
Volume 1: Fundamental algorithms, Birkhäuser, Boston
(1994).

[5] Higham N. J., Accuracy and Stability of Numerical Al-
gorithms, S.I.A.M., Philadelphia (1996).

[6] Needham T., Visual Complex Analysis, Oxford Univer-
sity Press, 1997.

[7] Kučera V., Analysis and Design of Discrete Linear Con-
trol Systems, Academia Prague (1991).

[8] Kwakernaak H., Šebek M., PolyX Home Page,
http://www.polyx.cz/,
http://www.polyx.com/.

[9] Ljung L., System Identification: Theory for the User,
Prentice-Hall Information and Systems Sciences Series.
Englewood Cliffs, Prentice-Hall (1987).

[10] Barnett S., Polynomials and Linear Control. Marcel
Dekker, New York and Basel (1983).

[11] Ježek J. and Kučera V., Efficient Algorithm for Matrix
Spectral Factorization,Automatica, vol. 29, pp. 663-669,
1985.

[12] Hromčı́k M., Šebek M., Numerical and Symbolic Com-
putation of Polynomial Matrix Determinant,

[13] Hromčı́k M., Šebek M, Fast Fourier Transform and Ro-
bustness Analysis with Respect to Parametric Uncertain-
ties, Proceedings of the 3rd IFAC Symposium on Robust
Control Design ROCOND 2000, Prague, CZ, June 21-
23, 2000.

[14] M. Sternad and A. Ahleén, Robust Filtering and Feed-
forward Control Based on Probabilistic Descriptions of
Model Errors, Automatica, 29, pp. 661-679.

[15] K. Ohrn, A. Ahleén and M. Sternad, A Probabilistic Ap-
proach to Multivariable Robust Filtering and Open-loop
Control, IEEE Transactions on Automatic Control, 40,
pp. 405-417.

[16] M. Sternad, M. Johansson, J. Rutstrom, Inversion of
Loudspeaker Dynamics by Polynomial LQ Feedforward
Control, Proceedings of the 3rd IFAC Symposium on
Robust Control Design ROCOND 2000, Prague, CZ,
June 21-23, 2000.

[17] University of Uppsala, Signals and Systems De-
partment, Adaptive Signal Processing, Course
Homepage 2000, http://www.signal.uu.se/Courses/
CourseDirs/AdaptSignTF/Adapt00.html

[18] The Mathworks, Using MATLAB 5.3, The Matrhworks,
1999.

