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Abstract
Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging
applications. Often the simulations are based on experimental and synthetic material microstructures represented by high-
resolution 3D image data. The computational complexity of simulations operating on such voxel data is distinct. The inability
of voxelized 3Dgeometries to capture smoothmaterial interfaces accurately, alongwith the necessity for complexity reduction,
has motivated a special local coarse-graining technique called composite voxels (Kabel et al. Comput Methods Appl Mech
Eng 294: 168–188, 2015). They condense multiple fine-scale voxels into a single voxel, whose constitutive model is derived
from the laminate theory. Our contribution generalizes composite voxels towards composite boxels (ComBo) that are non-
equiaxed, a feature that can pay off for materials with a preferred direction such as pseudo-uni-directional fiber composites.
A novel image-based normal detection algorithm is devised which (i) allows for boxels in the firsts place and (ii) reduces the
error in the phase-averaged stresses by around 30% against the orientation cf. Kabel et al. (Comput Methods Appl Mech Eng
294: 168–188, 2015) even for equiaxed voxels. Further, the use of ComBo for finite strain simulations is studied in detail.
An efficient and robust implementation is proposed, featuring an essential selective back-projection algorithm preventing
physically inadmissible states. Various examples show the efficiency of ComBo against the original proposal by Kabel et al.
(ComputMethods ApplMech Eng 294: 168–188, 2015) and the proposed algorithmic enhancements for nonlinear mechanical
problems. The general usability is emphasized by examining various Fast Fourier Transform (FFT) based solvers, including
a detailed description of the Doubly-Fine Material Grid (DFMG) for finite strains. All of the studied schemes benefit from
the ComBo discretization.
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1 Introduction

1.1 Homogenization in engineering

In the last decade, the quality of micro x-ray computed
tomography (CT) images has steadily improved. Nowadays,
standard CT devices have a spatial resolution below one µm.
They produce 3D images of up to 40963 voxels. This permits
a detailed view of the microstructure’s geometry of compos-
ite materials all the way down to the limits of continuum
mechanical theories and the necessity for discrete particle
methods. The geometrical information itself is sufficient to
detect defects in components by measuring, e.g., the pore
space and the shape of the pores or by detecting the presence
of micro-cracks. In order to understand the effect of such
microscopic features, one has to solve PDEs on the high-
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resolution 3D image data. These simulations assist in the
characterization of effective mechanical behavior.

Due to the sheer size of today’s CT images, the result-
ing computational homogenization algorithms face severe
challenges related to the high computational demands. For
instance, to compute effective linear elastic properties on a
40963 CT image, the number of nodal displacement degrees
of freedom amounts to approximately 206 Billion. The solu-
tion to problems of this size using conventional simulation
methods such as the finite element (FE) method requires
huge compute clusters [1,2]. These difficulties are commonly
overcome by working with conventional FEM on a variety of
smaller subsamples of moderate size [3]. The resulting effec-
tive properties of the individual subsamples are averaged in
post-processing, cf., for instance, [4,5]. This method, how-
ever, does not exploit the available information gathered from
the specimen.

1.2 FFT-based solvers

In contrast to the conventional FEM approach, the numerical
homogenization method of Moulinec–Suquet [6,7] operates
on the voxels of a CT image directly: the set of unknowns
is formed by the strains, i.e., one tensor for each voxel in
the CT image. The solution algorithm works in place (i.e.,
matrix-free) such that, in practice, the size of the CT images
to be treated is only restricted by the size of the memory and
the affordable compute time. FFT-based schemes can handle
arbitrary heterogeneity, phase contrast [e.g., [8]], and degree
of compressibility of the materials. Generally, the number of
iterations is independent of the grid size, depending only on
the material’s contrast, i.e., the maximum of the quotient of
the largest and the smallest eigenvalue of the elastic tensor
field, and on the geometric complexity. The solution of the
linear algebraic system relies upon a Lippmann-Schwinger
fixed point formulation, enabling, by use of fast Fourier trans-
form (FFT), a fast matrix-free implementation. By changing
the discretization to finite elements [9] and finite differ-
ences [10] also infinite material contrast problems became
solvable. Recent displacement-based implementations [11]
also allowed the use of higher order integration schemes
without increasing the memory demands and with improved
computational efficiency over strain-based algorithms also
building onfinite element technology [11,12].A relationwith
Galerkin-based methods was outlined by [13] where the use
of the efficient Conjugate Gradient (CG) method was men-
tioned. Interestingly, the CG method (as well as minres and
other Krylov solvers) is completely natural in FANS, and
FFT-Q1 Hex [11,12], including straightforward implemen-
tation.

1.3 Composite voxel technique

Despite themany advances in theory and algorithmic realiza-
tion of FFT-based methods, the resolution of state-of-the-art
computed tomography poses challenges for numerics. A sin-
gle, double-precision scalar field on a 40963 voxel image as
delivered bymodern µCT scanners already occupies 512 GB
of memory. Thus, even performing linear elastic computa-
tions on such images requires either exceptionally equipped
workstations or big compute clusters. This applies evermore
so to inelastic computations, where additional history vari-
ables need to be stored, increasing the memory demand
significantly.

To enable computations on conventional desktop comput-
ers or workstations that can still take into account relevant
microstructural details of the fully resolved image, the com-
posite voxel technique was developed for linear elastic,
hyperelastic and inelastic problems [14–17]. A coarse-
graining procedure serves as the initial idea, i.e., a number
of smaller, typically 43 = 64, voxels are merged into big-
ger voxels. Each of these so-called composite voxels gets
assigned an appropriately chosenmaterial lawwhich is based
on a bi-phasic laminate. This laminate takes into account the
exact phase volume fractions and the interface normal vec-
tor N . Thereby, it can reflect themost relevantmicrostructural
features, avoid staircase phenomena intrinsic to regular voxel
discretizations and allow for a boost in accuracy in compu-
tational homogenization.

In many scenarios, the edge lengths of the voxels are dif-
ferent. This can be due to the employed imaging technique,
e.g., in serial sectioning by a focused ion beam and using
scanning electron microscopy (FIB-SEM, [18]). Another
reason for the wish to use anisotropic voxel shapes is the
presence of a preferred direction, e.g., in composites with a
preferred orientation such as long fiber reinforced materials
studied by [19]. The consideration of anisotropic composite
voxels—called boxels in the present study—leads to low-
quality normal orientations when using the original approach
suggested by [15]. Likewise, low volume fractions can dete-
riorate the quality of the normal orientation.

Another issue arises depending on the material contrast
and the local volume fraction in the composite voxels: If
the soft phase of the two-phase laminate has a small vol-
ume fraction, the deformation within this phase is severely
exaggerated. This typically leads to convergence issues of
the Newton–Raphson method, which evaluates the effective
response of the composite voxel and is normally circum-
vented by limiting the volume fractions of either constituent
to be in the range of 5· · · 95%and by resorting to simpleVoigt
averaging otherwise, ruling out the aforementioned advan-
tages of the composite voxels.
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1.4 Outline

In the current study, we target composite voxels for finite
strain homogenization problems. In Sect. 2 the homoge-
nization problem is recalled. The foundations of FFT-based
schemes are summarized in Sect. 3 including the Lippmann–
Schwinger equation and an extension of the staggered grid
approach of [10] towards improved local fields. The compos-
ite voxel technique is considered in detail in Sect. 4 including
algorithmic improvements leading to increased robustness
for finite strain problems.

1.5 Notation

The spatial average of a quantity over a domainAwith mea-
sure A = |A| is defined as

〈·〉A = 1

A

∫
A

(·) dA . (1)

In the sequel boldface lowercase letters denote vectors
(exceptions: material coordinate X , normal vector N , dis-
placement U and traction T ), boldface upper case letters
denote 2-tensors and blackboard bold uppercase letters (e.g.,
C) denote 4-tensors. The inner product contracts all indices
of two k-tensors while the usual linear mapping contracts the
last k indices of the first tensor with the following k-tensor.
The double contraction operator A : B contracts the trailing
two indices ofAwith the leading two indices of B. The outer
tensor product is denoted by ⊗, and its symmetric version is
given by ⊗s.

General vectors and matrices are denoted by single and
double underlines, respectively. Note that in the sequel, we
focus on an orthonormal basis for the tensor fields. A vector
representation for general (F ↔ F) and symmetric 2-tensors
(S ↔ S) is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F11
F12
F13
F21
...

F33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
9, S =

⎡
⎢⎢⎢⎢⎢⎢⎣

S11
S22
S33√
2S12√
2S13√
2S23

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
6. (2)

Note the different ordering and normalization factors of the
Mandel-type notation versus the commonly used Voigt nota-
tion, which is avoided due to the ambiguity of stress versus
strain-like quantities in the vector representation. The nota-
tion (2) preserves the inner product for general 2-tensors (e.g.,
F, P) and symmetric 2-tensors (e.g., S, E), i.e.,

F · P = FTP, S · E = STE . (3)

Likewise, 4-tensors are represented by 9×9 and 6×6 (in the
case of left and right sub-symmetry) matrices, respectively.

In view of spatial derivatives, the gradient (Grad (·)) and
the divergence (Div (·)) with respect to the reference config-
uration are used. In the context of an internal surfaceS , the
jump operator is given as

�u� = lim
ε→0+

u(x + εN) − u(x − εN) (x ∈ S ), (4)

where N is the normal of S pointing from the second
phase (referred to as the inclusion phase) into the first phase
(referred to as the matrix material).

2 Homogenization problem

Wefocus our attention on thefinite strainmechanics of hyper-
elastic solids. Consider a material point X of a body B0 in
the reference configuration at time t = 0. The corresponding
current position at time t ∈ [0, T ] is denoted by x in the
deformed domain B(t). The motion of the body is given by

ϕ(X, t) : B0 × R → R
d , x = ϕ(X, t), (5)

where d ∈ {2, 3} is the spatial dimension. In the sequel, the
dependence on time t is implicitly assumed but not reflected
in the arguments for brevity. The displacement field is given
by U(X) = x − X . The deformation gradient F is defined
as

F = Grad (ϕ(X)) = I + H . (6)

The volume change at amaterial point is given by thematerial
Jacobian of the deformation map,

dv

dV
= J = det F > 0, (7)

with dv the differential volume in the current configuration
and dV denoting its counterpart in the reference configura-
tion. The right Cauchy-Green tensor is given by C = FTF.
At a particular material point X with an infinitesimal area
dA with a unit normal vector N , we define the resulting trac-
tion vector T in terms of the first Piola-Kirchoff (PK1) stress
tensor P ,

T = PN. (8)

In homogenization, the constitutive response on the struc-
tural (or macroscopic) scale of a body depends strongly on
the underlying microstructure. In the following, we consider
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a periodic microstructure

� =
[
− l1

2
,
l1
2

]
×
[
− l2

2
,
l2
2

]
×
[
− l3

2
,
l3
2

]
. (9)

Separation of length scales is assumed, i.e., established
homogenizationprinciples applywithout the need for advanced
modeling techniques, e.g., based on filtering [20] or higher-
order continuum theories [21].

The objective of homogenization is the identification of
the effective, macroscopic constitutive response

P = 〈P〉� (10)

of micro-heterogeneous materials for given F = 〈F〉�. Fur-
ther, phase-averaged stresses, stress statistics, and the algo-
rithmic tangent operator can be of relevance. The effective
quantities must satisfy the Hill-Mandel macro-homogeneity
condition

P · F = 〈P〉� · 〈F〉� = 〈P(X) · F(X)〉� . (11)

Periodic fluctuation boundary conditions of the form

U(X) = (F − I)X + Ũ(X) (12)

satisfy the Hill-Mandel condition (see, e.g., [22]) and have
proven versatile and efficient. The tractions T (X±) are then
anti-periodic for point-pairs X± ∈ ∂Ω± on opposing faces
of the RVE �.

The related function space for Ũ is referred to asV# which
is a subset of the Sobolev space of weakly differentiable
functions H1(Ω):

V# =
{
Ũ ∈ H1(Ω) : Ũ(X+) = Ũ(X−),

Ũ∗(X) = Ũ(mod(X + X∗,Ω)) ∈ H1(Ω)

∀X∗ ∈ Ω)
}

, (13)

where mod is the spatial modulo operator. The homogeniza-
tion problem (HOM) on � for prescribed deformation F
reads:

find Ũ ∈ V# (14)

s.t.: Div (P) = 0 in � . (15)

3 FFT-based homogenization

The solution of (HOM) (14)-(15) can either be obtained (in
seldom cases) using analytical solution or by using discrete
numerical techniques. The most widely used methods for

computational homogenization in solid mechanics are cer-
tainly the finite element method (FEM) [e.g., FE2, [23]] and
FFT-based homogenization.

The latter was proposed byMoulinec and Suquet [6] in the
early 1990s. It is based on the Lippmann-Schwinger equa-
tion in elasticity [24,25] and avoids both time-consuming
meshing needed by conforming finite element discretiza-
tions as well as the assembly of the related linear system.
Therefore, thememory needed for solving the problem is sig-
nificantly reduced compared with other methods. By virtue
of the seminal Fast Fourier Transform algorithm [FFT, [26]],
the compute time scales with O(n log(n)) where n is the
number of unknowns, i.e., it is just slightly superlinear.

For finite strain problems, the Lippmann-Schwinger equa-
tion reads

F = F − �0 : (P − C
0 : F), (16)

with the Greens’ operator

�0(·) = Grad
(
G0Div (·)

)
, (17)

which relies on the solution operator G0 of a linear reference
problem. Lahellec, Moulinec, and Suquet [27] proposed to
solve (16) by the Newton-Raphson method and the linear
Moulinec-Suquet fixed point solver. In contrast, Eisenlohr
et al. [28] suggested using the Moulinec-Suquet fixed point
iteration on the nonlinear Lippmann-Schwinger equation for
finite strains directly. Kabel et al. [29] carried over the idea of
Vinogradov and Milton [30], and of Gélébart and Mondon-
Cancel [31] to combine the Newton-Raphson procedure with
fast linear solvers to the geometrically nonlinear case.

The present work will also make use of the nonlinear con-
jugate gradient (CG) method introduced by Schneider [32]
for small strains. Further, the FFT-accelerated solution of reg-
ular tri-linear hexahedral elements [FFT-Q1 Hex, see [12]]
and in the closely related Fourier-Accelerated Nodal Solver
[11] will be used in the sequel, for which the nonlinear CG
method has a perfectly natural interpretation with the fun-
damental solution acting as preconditioner. An overview of
alternative solution methods can be found in [33].

Regarding the discretization, wewill compare the original
discretization by Fourier polynomials of Moulinec-Suquet
[34] with the HEX8R discretization of Willot [9], and
the fully integrated HEX8 elements [12,35]. In order to
consistently evaluate material laws for the staggered grid
discretization [10,36], we apply the idea of the double fine
material grid (DFMG) to large strains. In contrast to the
regime for small strains, which can be efficiently imple-
mented for isotropically linear elastic materials by a suitable
averaging of the shear moduli, the DFMG for large deforma-
tions requires multiple evaluations of the material routines,
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regardless of the complexity of the geometrically nonlinear
material law. The technical details of the implementation can
be found in the Appendix A.

4 Composites voxels

One of the main advantages but—at the same time—a major
disadvantage of FFT-based techniques is the constraint to reg-
ularCartesiangrids:While they enable direct use of 3D image
data, they are unable to capture the material interface accu-
rately compared to interface-conforming discretizations.
This is primarily due to thebinarizednature of themicrostruc-
ture, which leads to the so-called staircase approximation of
the interface. In order to capture the microscale effects suf-
ficiently, a high grid resolution is hence needed, which–in
turn–calls for high computational cost. In order to limit or
even eliminate the staircase phenomenonwithout the need for
a (distinct) grid refinement, so-called composite voxels were
previously suggested in [15–17,37]. They enhance the exist-
ing binary discretization using special voxels with effective
material properties that depend on the phase volume fractions
and the normal orientation N of the laminate.

Consider such a composite voxel �e comprised of two
phases denoted by�e± � �e, where+ and− stand for inclu-
sion andmatrix phase, respectively. The fields corresponding
to the two phases are represented as (·)± for brevity, and
either phase is assumed to be equipped with a hyperelastic
strain energy density W±. Within �e, the material interface
is approximated by a planeS e leading to a rank-1 laminate
defined by the interface normal vector N ∈ R

d in mate-
rial configuration. The individual phase volume fractions are
given by c+ and c− where c+ + c− = 1.

In previous works, different rules of mixture have been
suggested, namely the Voigt (•V) and Reuss (•R)1 estimates
correspond to the upper and lower bounds of the mechanical
response.

Inspired by laminate theory, [38] suggests the definition of
the effective elasticity tensor of the laminate C

‖
� implicitly

through

(
P + λ

(
C

‖
� − λI

)−1
)−1

=
〈(

P + λ (C − λI)−1
)−1
〉
�e

. (18)

1 In the nonlinear kinematic regime, these correspond to the Taylor and
Sachs approximation, respectively.

Here, the fourth order tensor P depends on the normal N via

Pi jkl = 1

2

(
Niδ jk Nl + Niδ jl Nk + N jδik Nl

+ N jδil Nk

)
− Ni N j NkNl (19)

for i, j, k, l ∈ {1, . . . , d}. Note that in laminate theory, the
states in the ± phase are piece-wise constant. Hence, the
averaging translates into

〈(·)〉�e = c+ (·)+ + c− (·)−. (20)

The laminate mixing rule considers the interface orienta-
tion and introduces a parameter λ > 0 that must be larger
than the leading eigenvalue of the individual stiffness ten-
sors C±. Solving (18) for linear elastic materials involves
6 inversions of 6 × 6 matrices2 for each composite voxel
individually, i.e., at every interface-related voxel or cubature
point within an FFT-based simulation, which can lead to non-
negligible overhead. Hence, a more numerically efficient and
physics-motivated approach devoid of additional parameters
is sketched in the following that can also handle geometric
and material nonlinearities, if needed.

4.1 Hadamard jump conditions for finite strain
kinematics

Following the established laminate theory, the following
assumptions hold:

• The deformation gradient in �e+ and �e− are related by
a rank-1 jump along the normal orientation, i.e., for ã ∈
R
d ,

�F�S e = F+ − F− = ã ⊗ N . (21)

• The traction vector is continuous across the interfaceS e,
i.e.,

�T�S e = �P�S eN = 0, T+ = T− . (22)

The kinematic compatibility of the interface is character-
ized by having a continuous deformation gradient tangential
to the interface. This ensures that material point pairs remain
identical. Condition (22) ensures that the interface is in static
equilibrium.

In order to enforce (21), we chose the following param-
eterization3 of the deformation gradient tensors of the two

2 Symmetry is exploited.
3 (slightly different to that used, e.g., in [17])
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material phases

F± = F� ± 1

c±
(a ⊗ N), (23)

where a is related to ã in (21) by a scaling constant and
F� is the prescribed deformation gradient on the composite
voxel �e . The parameterization (23) preserves the volume
average F� of the deformation gradient F over the compos-
ite voxel �e according to

〈F〉�e = F� +
(
c+
c+

− c−
c−

)
a ⊗ N = F� . (24)

In the finite strain context, not only the average of F must be
preserved, but also the total volume of the deformed material
must remain constant under the rank-one perturbation:

Lemma 1 The kinematic rank-1 perturbation on thematerial
interface S e is volume preserving by construction.

Proof Suppose A is an invertible n × n matrix and u, v are
column vectors of size n. Then thematrix determinant lemma
states that

det
(
A + uvT

)
= (1 + vTA−1u) det (A) . (25)

The deformation gradient F� is regular by definition since
material inversion is not allowed. Thus, by setting A ← F�
and u ← ±a/c±, v ← N the material Jacobian J± in the
two phases can be computed using the matrix determinant
lemma

J± = det (F±) =
(
1 ± 1

c±
aTF−T

� N
)
det (F�) . (26)

Averaging J over the composite voxel �e, we obtain

〈J 〉�e = c+ J+ + c− J− = det (F�) = J� . (27)

�
To obtain the gradient jump vector a, the equilibrium of

the tractions on the interface (22) must be granted; see also
[17]:

f (a) = T+ − T−
!= 0. (28)

Examining the relative volume in �e±, additional constraints
on J± emerge:

J+
!
> 0 , J−

!
> 0 . (29)

These constraints imposed on (28) are essential to gain
robustness, see Sect. 4.2.

4.1.1 Algorithmic implementation

In the case of large strain kinematics, the system (28) is
always nonlinear with no explicit solution available, in gen-
eral. Hence, it must be solved iteratively, e.g., by using a
Newton–Raphson scheme with the Hessian

� f = d f (a)
da

=
(

∂ P+
∂F+

∂F+
∂a

− ∂ P−
∂F−

∂F−
∂a

)
N. (30)

The Hessian in index notation can be written in terms of the
2-tensors P± and F± as

(
� f
)
ik = NJ

(
1

c+
A
i JkL+ + 1

c−
A
i JkL−

)
NL , (31)

where, A± = ∂ P±
∂F±

= ∂2W±
∂F± ⊗ ∂F±

. The constitutive

tangent operatorA± can directly be obtained from the hyper-
elastic potentials W±.

Using a vector notation for F, P and the related matrix
representation A± of A±, the Hessian gets

�
f

= DT

(
A+
c+

+
A−
c−

)
D (32)

with the matrix D defined via

(a ⊗ N) → D a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0
0 N2 0
0 0 N3
N1 0 0
0 N2 0
0 0 N3
N1 0 0
0 N2 0
0 0 N3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
a1
a2
a3

]
. (33)

Note the straightforward symmetric structure of thematrix
�

f
(32). Within iteration [k], the Newton-Raphson update

reads

a[k] = a[k−1] −
(
�[k−1]

f

)−1
f (a[k−1]) . (34)

The full algorithm for the naive Newton–Raphson (NR)
update is given in Algorithm 1. Note that each iteration
requires a single d × d matrix inversion. Once convergence
is achieved, i.e., once the tractions on the interface are in
balance, the first Piola-Kirchoff stress is

P� = c+P+ + c−P− . (35)
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The unconditionally symmetric effective stiffness matrix can
be computed from

δA = A+ − A− (36)

∂P�
∂F�

= A� =
(
c+A+ + c−A+

)
− δA D �−1

f
DTδA .

(37)

Algorithm 1 Newton-Raphson (NR) algorithm solving for
gradient jumps in composite boxels
Require: F�
Ensure: T+ = T−
a ← 0 (or any admissible choice) � initialization

F± ← F� ± 1

c±
a ⊗ N

P±, A± ← material model (F±)

f ← (P+ − P−)N � compute initial residual
E� ← | f | � initial error
while E� > ε do � check convergence

a ← a − �−1
f f � naive NR-update

F± ← F� ± 1

c±
a ⊗ N � update F±

P±, A± ← material model (F±)

f ← (P+ − P−)N � update residual
E� ← | f | � update error

end while

4.2 Robust algorithm via selective back-projection

Unfortunately, a naive update of the gradient jump vector
a ← a−�−1

f f sometimes leads to physically unacceptable
iterates: the local volume within �± can get negative which
is inadmissible, i.e., contradicting the constraints (29).

Robustness can be enhanced by restricting the material
Jacobian J± in both phases to be strictly positive according
to (29). Previously, this problem was addressed in [16] by
limiting the overall step width of the NR iterations if the
constraint (29) is not met.

We choose a different approach that can improve the con-
vergence behavior by building on the matrix determinant
lemma (25). It allows for rewriting J± as

J± =
(
1 ± 1

c±
aT ·F−T

� N
)
J� > 0. (38)

We define

β±
c = ∓ c±

‖F−T
� N‖ , mβ = F−T

� N

‖F−T
� N‖ (39)

and, with help of mβ the orthogonal projectors

M‖
β = mβ ⊗ mβ, M⊥

β = I − M‖
β . (40)

The matrix determinant lemma implies that every NR iterate
a must satisfy

β+
c < aTmβ < β−

c , (41)

i.e., a condition that is trivial to check. Most importantly,mβ

is independent of the current iteration, i.e., it can be precom-
puted.

If starting from a previously admissible point a0 = a[k−1]
an inadmissible iterate a1 ← a0 + δa is detected, we com-
pute βi = ai · mβ (i ∈ {0, 1}). Obviously β0 is admissible
while β1 is not. We suggest to compute a selectively back-
projected admissible coordinate β∗ as the mid point between
the admissible β0 and the critical value βc ∈ {β+, β−} (the
value which is exceeded by β1 is taken, see Algorithm 2):

β∗ = β0 + βc

2
. (42)

Other than the approach suggested in [16] our selective back-
projection yields a different (admissible) iterate by adjusting
only the part of a contributing to J±:

a∗ = a0 + β∗ mβ = a1 + (β∗ − β1) mβ. (43)

It leaves the part of a not interacting with the volume con-
straint – that is, the part of a1 that is orthogonal to mβ –
unaltered. Only the part of a1 that is co-linear with mβ is
modified such that a valid iterate is obtained. Using the pro-
jectors (40), this is equivalent to:

M⊥
β a∗ = M⊥

β a1, M‖
β a∗ = β∗ mβ . (44)

This induces that a large part of the NR update is preserved.
No additional hyperparameters, line searches, and constitu-
tive evaluations are required.

Algorithm 2 Selective back-projection of inadmissible a1
for previously admissible a0
Require: inadmissible a1; a0; mβ, β±

c
Ensure: β+

c < aT∗mβ < β−
c

β1 ← aT1mβ , β0 ← aT0mβ � initialize
if β1 ≤ β+

c then � get critical value βc
βc = β+

c
else if β1 ≥ β−

c then
βc = β−

c
end if
β∗ ← (β0 + βc)/2 � get admissible β value
a∗ ← M⊥

β a1 + β∗ mβ � update a accordingly
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The increased robustness due to the selective back-
projection is of utmost relevance for actual finite strain
simulations, particularly in FE2 like settings. This holds a
fortiori if composite voxels with rather small phase volume
fractions go along with pronounced phase contrast and high
load increments, see Sect. 9.

As mentioned earlier, our algorithm shares similarities
with the backtracking algorithm proposed in [16]. Both
approaches use the matrix determinant lemma to check for
inadmissible iterates. The backtracking of [16] is employed
as a line search strategy to compute an optimal step size in
the admissible range, leading to scalar backtracking of a and
a damped NR method. This induces additional line search
parameters as well as additional function evaluations. Con-
trary to that, our selective back-projection algorithm requires
no extra constitutive evaluations and ensures an admissible
update unconditionally in the absence of additional hyperpa-
rameters.

5 Identification of the normal vector for
composite voxels and boxels

5.1 Existing procedures and complications

Composite voxels and boxels (non-equiaxed voxels) require
the normal vector N alongside the phase volume fractions c±.
While c+ and c− are easy to compute from averaging over the
composite voxel or boxel, identifying the normal vector N
is not without issues. It is also evident that the quality of the
normal information is critical to the performance of the com-
posite boxels. The original proposal of Kabel and colleagues
[15] uses the direction of the line connecting the barycen-
ter of the dominant of the two phases within the composite
voxel/boxel against the center of the voxel as an approxima-
tion of the normal vector, see Fig. 1. A trivial computation
shows that this is equivalent to having the normal defined via
the connecting line of the barycenters:

Ñ = c− − c+
|c− − c+| . (45)

In the present work, the normal is assumed to point out of
the inclusion phase (indexed by +).

The approach (45) has several advantages to it: The imple-
mentation is rather trivial, the computation is rapid, and it
is easy to guarantee that the normal N points from phase 1
(denoted inclusion phase in the sequel) into phase 0 (denoted
matrix phase in the sequel). However, the use of the barycen-
ters c± for the normal detection is not without issues, as can
be seen from the examples shown in Fig. 1. At low volume
fractions, the normal direction will depend only on the posi-
tion of the phase rather than on the actual interface (compare

(c) and (d) in Fig. 1), and the method does not work for
boxels that differ from equiaxed composite voxels by hav-
ing (sometimes pronounced) aspect ratios, see Fig. 2. This
occurs if the number of voxels inside the composite boxel
varies along the different edges (with fine-scale voxels being
equiaxed, e.g., Fig. 2, top). For instance, this can be useful in
order to reduce the resolution in pseudo-unidirectional fiber
reinforced materials; see Sect. 6.5 for examples.

In order to allow for an improved normal computation
over (45), the authors suggest a novel strategy that can be
broken down into two steps:

N.1 compute an indicator for the interface between the phases
using a discrete Laplacian resulting in discrete weights
on the fine grid;

N.2 within composite boxels that contain a material interface
define the normal vector via a minimization problem.

The individual steps are described below. A free python
implementation is available via an open access software
accessible via GitHub ( [39]), including the option to pro-
cess HDF5 files easily [40] (see also the documentation and
tutorial given in the repository’s Jupyter notebook).

5.2 Interface indication via a discrete Laplacian

In the following, the Laplace filter commonly used in image
processing is introduced. It can be employed for edge detec-
tion. For simplicity, the Laplace stencil is defined by building
on a first-order finite difference gradient operator along each
coordinate axis. Therefore, the 3D stencil illustrated in Fig. 3
is utilized.

In 1D for grid spacing h > 0, the derivative at position
xi and the second derivative (gathered from the subsequent
application of the first derivative) read

∂ f (xi−1)

∂x
≈ f ′

i−1 = fi − fi−1

h
, (46)

∂ f (xi )

∂x
≈ f ′

i = fi+1 − fi
h

, (47)

∂ f 2(xi )

∂x2
≈ 1

h
( f ′

i − f ′
i−1)

= 1

h2
( fi−1 − 2 fi + fi+1) . (48)

Setting f j = f (x j ) to value 1, if the inclusion phase is
found at x j and to 0 otherwise, the Laplacian will be 0, if
and only if all pixel values within the stencil are identical.
Therefore, only point triples hostingmore than one phasewill
lead to a nonzero Laplacian. Further, pixels with positive and
negative valueswill be found,which represent inside and out-
side voxels related to the interface, respectively. For 2D and
3D boxels, the stencil is composed of uniaxial Laplace sten-
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(a) (b) (c) (d)

Fig. 1 Normal direction following [15]: Ñ from (45) is the direction between the barycenters of the phases for different examples

cils along the coordinate axes, using the respective h value
corresponding to the fine-scale boxel dimension along the
respective direction (hx , hy, hz), see also Fig. 3. The Laplace
stencil will be weighted by the boxel volume. Thereby, the
scalar factor will get a neat physical interpretation:

ri = r(li ) = l j lk
li

(i �= j, i �= k, j �= k). (49)

The ratio ri expresses the ratio of the area of the boxel face
with normal direction ei divided by the boxel dimension
along direction ei . After application of the stencil S to the
image, the absolute value is taken to gain the discrete weights

wi jk = |S ∗ χ |i jk
(i ∈ {1, n1}, j ∈ {1, n2}, k ∈ {1, n3}) . (50)

The convolution is carried out in the Fourier domain, which
automatically enforces periodic boundary conditions for the
normal detection of inclusions crossing the edges of the
computational domain. Of course, also a direct computation
would be feasible at a comparable compute cost. Theweights
are now processed for each composite boxel attributed with
multiplematerial phases, i.e., with volume fraction 0 < c− <

1. On each of these boxels, a weighted least squares problem
is set up in order to identify the normal orientation. Therefore,
on the boxel �B the second moment tensor

M =
∑

{i, j,k}∈�B

wi jkxi jk ⊗ xi jk ∈ Sym+(R3) (51)

is computed, where xi jk denotes the coordinates of the voxel
with discrete coordinates (i, j, k)4. Next, the eigenvector
matching the smallest eigenvalue of M is used as the ini-
tial normal N . In a second step, the direction of the normal
N is identified. Therefore, the vector connecting the barycen-
ters of the material phase within the boxels Ñ given by (45)

4 It is assumed that xi jk is relative to the barycenter of ��.

Fig. 2 Normal direction Ñ from (45) following [15] for a 2D boxel
(16×6 fine-scale grid, equiaxed fine scale); the true normal N0 is pro-
vided for comparison

of the original approach [15] is considered to identify the
proper sign of the proposed N :

N ←
{

N if Ñ · N > 0
−N else.

(52)

Thereby, the normal is guaranteed to point out of the+ phase.
The example shown earlier in Fig. 2 has been used with

our approach, see Fig. 4. The interface voxels are shown in
red with darker tones denoting increased weights. Note the
good correlation of the analytically defined normal N0 used
to generate the discrete image and the normal reconstructed
using the proposed procedure. The collinearity of the two
vectors is N0 · N = 0.99998, where the interface detection
was effected using matching padding for the analytical nor-
mal. This compares against N0 · Ñ = 0.7761 for the normal
shown in Fig. 2 obtained from (45).

Another comparison is shown in Fig. 5. Here an input
image consisting of 2563 voxels containing a centered sphere
of radius r = 0.4 L (with L denoting the edge length of
the cube) is coarsened using composite voxels of size 323,
i.e., the information is compressed by a factor 323=32768
yielding a coarse scale resolution of just 83. For each com-
posite voxel the normal is computed using either the approach
from (45) [15] (Fig. 5a) and the approach presented in this
Section (Fig. 5b). In this visualization, the actual facets are
reconstructed from the normal and the volume fraction c+.
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Fig. 3 3D stencil used for the Laplacian (here h1 = h2 = h3 = 1 for
simplicity)

Fig. 4 Normal vector for the same example as in Fig. 2 but using the
proposed algorithm; interface voxels are red; cS is the barycenter of the
interface

By the metric of vision, the normals of the old approach
graphs are less regular. Obviously, the facets reconstructed
from these are also not leading to an accurate approximation
of the curved surface of the sphere (e.g., gaps/overlaps). Our
procedure leads to visually more accurate normals. This is
confirmed by the planar facet reconstruction that is almost
entirely devoid of gaps and overlaps.

Next, we have repeated the previous comparison by
scaling down from 2563 to 8×16×32, i.e., introducing non-
equiaxed composite boxels of size 32×16×8. The top views
of the concurrent approaches for the normal computation
are compared in Fig. 5. The difference when using boxels
is massive, with large gaps showing in Fig. 5c for the old
method,while basically nogaps andminimal overlap is found
in Fig. 5d for the improved normal identification. The results
from Figs. 4 and 5 are consistent. They emphasize the rele-
vance of using a dedicated scheme for normal identification.
This is evermore so true in the presence of small volume
fractions and/or non-equiaxed boxels.

6 Numerical examples

6.1 Material models and loading conditions

In this section, we will focus on the key aspects and novelties
of the proposed composite boxel approach for mechanical
applications at finite strains. We assume that the materials
obey a compressible Neo-Hookean material model

W = 1

2
λ(ln J )2 − μ ln J + 1

2
μ(tr(C) − 3). (53)

The Young’s modulus E± and the Poisson ratios ν± for the
inclusion and the matrix phase are denoted by the respec-
tive subscripts. We have deliberately chosen a rather distinct
contrast by setting the synthetic parameters

E+ = 10 GPa, ν+ = 0.3

E− = 1 GPa, ν− = 0.0. (54)

Note that Young’s modulus has a distinct contrast of 10,
exceeding that of literally all practical metal matrix com-
posites, while the difference in the Poisson ratio is also
pronounced5. Elevated contrast in the Poisson ratio is usually
detrimental to the convergence of FFT-based schemes as it
alters the collinearity of the stiffness of the contained phases,
see [11] for a convergence study.

The macroscopic deformation gradient F imposed on the
RVE in the homogenization problem (HOM) is chosen to be
50% pure shear in component Fxy

F =
⎛
⎝1 1/2 0
0 1 0
0 0 1

⎞
⎠ . (55)

The authors also emphasize the arbitrary selection of the
materialmodels (trying to trigger elevatedmaterial contrasts)
and of the imposed kinematic loading. In view of repro-
ducibility, we have opted for a simple unambiguous model
and a substantial loading consideringmultiscale applications.

6.2 Spherical inclusion

Note that all of the following examples are truly 3D, although
some slice views could lead to the misinterpretation of a 2D
problem.

First, we look at a benchmark problem with a spherical
inclusion of radius R = 0.4 embedded in a 3D matrix. We
aim to identify the impact of a more accurate identification
(Sect. 5) for both equiaxed and non-equiaxed composite box-
els. The influence on the phase averages is also studied. We

5 This is equivalent to a contrast of 25 in the bulk modulus K and a
contrast of 7.69 in the shear modulus G.
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(a) (b) (c) (d)

Fig. 5 (Top view) Comparison of the established normal computation [15] a, c and the proposed approach b, d with composite boxels of size
32 × 32 × 32 and 32 × 16 × 8 respectively. Input image of size 2563

start from a fine-scale microstructure of 2563 voxels which is
down-scaled to a resolution of 323 voxels (downscale factor
512). The coarsened discretization comprises 2624 (∼ 8%)
composite voxels. In each composite voxel, the normal ori-
entation N and the local phase volume fractions c± are
computed via Sect. 5 and using the established method of
[15]. The homogenization problem is then solved via Fourier-
Accelerated Nodal Solvers (FANS, [11]) using the 8-noded
hexahedral finite elements. The convergence criterion is a
relative tolerance of 10-10 with respect to the l∞-norm of the
nodal force residual vector.

In Fig. 6, the converged solution is shown at the center
slice Z = 0. We employ a post-processing procedure that
gathers individual field data for each phase and visualizes it
using the planar interface with orientation N .

It is obvious that this leads to a much smoother solution
close to the interface, even within the individual phases. To
our knowledge, a comparable visualization has not been used
in previous studies. Further, we have visualized the tractions
in the deformed configuration (Fig. 6c), which are unavail-
able in both non-conforming discretizations as well as in
usual conforming FE discretizations.

Regarding the accuracy of the effective stress tensor P
and the phase averages P±, a study was performed which
compares the 2563 reference solution using the procedure
suggested in [9] for five different ComBo discretizations
using reduced integration CG-FANS [11] (FANS HEX8R)
and using the normals from (45) matching previous studies
as well as the improved normals from Sect. 5. The results
are summarized in Table 1. Note that the average stress only
reflects part of the actual accuracy of the solver as it neglects
local field fluctuations, which are examined in the following
examples, see Sect. 6.3. It can be noted that the errors in P
of all composite discretizations are below 1.15% for the nor-
mals of [15] and 0.78% for the normals suggested in Sect. 5,
respectively, i.e., the improved normals reduce the error in

Table 1 Comparing averaged 1st Piola-Kirchoff stresses in the spher-
ical inclusion problem (Sect. 6.2): different resolutions, normals
obtained via [15] and Sect. 5, with errors against a reference solution
(2563) based on [9]; ComBo solutions are obtained using FANS with
reduced integration [11]; bold highlights better result (old normals vs.
proposed normals); Error defined as the relative Frobenius norm w.r.t
reference solution

Resolution Downscale Normals via [15] Normals via Sect. 5

Error (%) Error (%)

P P− P+ P P− P+

8 × 8 × 8 32768 1.145 0.263 3.537 0.771 0.177 2.361

16 × 16 × 16 4096 0.160 0.042 0.501 0.053 0.028 0.172

8 × 16 × 32 4096 1.586 0.282 4.609 0.177 0.064 0.584

32 × 32 × 32 512 0.072 0.019 0.219 0.070 0.018 0.212

16 × 32 × 64 512 0.801 0.156 2.335 0.100 0.019 0.262

all averaged stresses by approximately 30% for equiaxed
composite voxels and up to 1000% for the non-equiaxed
composite boxels. Remarkably, these improvements come at
no additional computational expense, but they owe only to
the more accurate orientation information.

6.3 Composite boxels and local solution field quality

The straightforward implementation of composite boxels
into various FFT-based schemes makes them truly versatile.
Here, we present some of the most popular methods used in
tandem with composite boxels. Most importantly, the com-
posite boxel method can be used to replace any call to a
constitutivemodel, independent of the discretizationmethod.

In Fig. 7, we consider a random polyhedral inclusion sur-
rounded by thematrixmaterial. Thefine-scalemicrostructure
is generated at a resolution of 2563. The ComBo discretiza-
tion is 323 with normals gained from Sect. 5, yielding a 512
times smaller problem. We further go on to compare the full
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(a) (b) (c)

Fig. 6 Composite Boxel (ComBo) solution using CG-FANS [11] with full integration for the spherical inclusion example of Sect. 6.2: spatial
configuration at slice Z = 0

field solutions for the EXY component of theGreen-Lagrange
strain at the center slice (Z = 0) for various popular FFT-
based solution strategies. A reference solution is computed
on the original fine-scale problem (without any composite
boxels).

The solution using FANS with full integration (8 Gauss
points per element) finite elements (HEX8) is shown next to
the reference. It exhibits no staircasing and no artifacts even
close to the interface. The solution quantitatively captures
the behavior well in the interior of the phases and near the
phase boundaries compared to the reference solution, even
for this coarse discretization. Stereotypical of the fully inte-
grated HEX8 elements, the response is a tad stiffer, which is
reflected in the phase-wise averages, Table 2. The solution
obtained by the staggered grid approach, despite its advan-
tages in an algorithmic sense, lacks symmetry in the physical
location of the strain components in each voxel. Hence, only
an interpolated measure can be obtained at the boxel cen-
ter for visualization. This ambiguity, unfortunately, leads to
poor results close to the material interface despite the use
of the ComBo discretization, which is also reflected in the
homogenized quantities. This issue can partially be over-
come by the proposed double-fine material grid (DFMG, see
AppendixA) approach at the cost of extramaterial law evalu-
ations compared to the original staggered grid approach. The
DFMG approach also interpolates the field quantities to the
boxel center, which causes blurring/smoothing everywhere,
including the material boundaries: local solution field accu-
racy is sacrificed, althoughDFMGoutperforms the staggered
grid approach, and it preserves existing symmetries. FANS
HEX8R, i.e., with reduced integration (1 Gauss point per ele-
ment), is numerically similar to the HEX8R discretization
by Willot [9], as shown by [10]. The FANS HEX8R solution
suffers from hourglassing, but the amplitude of the hourglass
modes is greatly diminished in the presence of composite

Table 2 Comparing averaged 1st Piola-Kirchoff stresses in the Poly-
hedron problem (323) (Sect. 6.3): different FFT based methods: with
errors against a reference solution (2563) based on [9]; Error defined as
the relative Frobenius norm w.r.t reference solution

Error (%)

Method P P− P+

Staggered Grid 1.219 0.202 16.993

DFMG 0.661 0.103 9.147

FANS HEX8 0.142 0.024 1.947

Willot 0.065 0.011 0.903

FANS HEX8R 0.049 0.008 0.675

Moulinec-Suquet 0.026 0.005 0.349

boxels compared to when no composite boxels are in use.
The convergence behavior of FANSHEX8R is very much on
parwith FANSwith fully integratedHEX8 elements. Finally,
we also employ the originalMoulinec-Suquet scheme,which
has been extensively studied in the literature. It suffers from
spurious oscillations, although predicting the homogenized
quantities very well.

6.4 Selective back-projection in practice

The selective back-projection introduced in Sect. 4.2 is inves-
tigated for the polyhedral microstructure of the previous
Sect. 6.3. First, we demonstrate the influence it has on the
convergence of the NR scheme inside of a single critical
voxel, see Fig. 8.

The traction balance residual vs. material Jacobian of
phase − is plotted in a particular case when back-projection
is employed. In the case discussed, the volume fraction of the
inclusion phase + is 99.625%. The Newton-Raphson algo-
rithm 1 starts with an admissible initial guess (at k = 0),
but the naive NR-update would push the iterate a[1] to the
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Fig. 7 Solutions for the Green-Lagrange strain EXY obtained by different FFT-based schemes for the polyhedral inclusion problem (Resolution:
323) and comparison against reference solution (Resolution: 5123) at slice Z = 0

Fig. 8 Convergence behavior of the Newton–Raphson algorithm with
back-projection

inadmissible domain, which is highlighted in red in Fig. 8.
The solid blue line tracks the continuous intermediate resid-
ual between the current iterate a[k] and the subsequent iterate
a[k+1] along a line search parameter. Note that if either one
of J± tends to 0, the residual tends to ∞, which is character-

istic of log based hyperelastic strain energies [41]. It is also
noteworthy that, although the solution lies in between a[0]
and a[1] in this plot, the continuous residual does not go to
zero anywhere. This is due to the projection onto the J− axis
(corresponding to the β axis modulo scaling) which cannot
account for incorrect components M⊥

β a
[k] – i.e., a mere line

search cannot suffice, in general. Using the selective back-
projection algorithm 2 yields a valid iterate a[1]. From there
on, the NR algorithm 1 converges to a physically feasible
solution within six iterations up to machine precision, and in
practice, one could stop after just four iterations. Each iter-
ation of our NR algorithm equates to a single evaluation of
the constitutive law for either phase, independent of whether
selective back-projection is needed.

Despite striking similarities with the algorithm proposed
in [16], we developed our scheme independently since we
observed that it was needed during the simulations.While the
authors of [16] state that “The projection and backtracking
steps occur only rarely”, we would like to emphasize that
a single inadmissible iterate can break the entire simulation
(e.g. leading to negative J± used in log-energies). Further, we
have investigated the percentage of the composite boxels that
require selective back-projection as a function of the loading
for the polyhedral inclusion, see Fig. 9.

123



204 Computational Mechanics (2023) 71:191–212

Fig. 9 Percentage of boxels (Problem c.f. Sect. 6.3) with failed naive
N-R updates for mixed displacement gradient loading conditions

It turns out that our algorithm is needed in a majority
of the composite voxels under certain loading conditions.
This becomes critical in actual two-scale simulations, where
spuriously high loadings are frequently observed in isolated
points, especially in the compression regime.

Ona side note,wewould like to emphasize that in our tests,
the old normal direction cf. [15] further increased the number
of failed iterates. Hence, using the normal detection from
Sect. 5 alongside Algorithm 2 improves on the robustness in
both regards.

6.5 Short fiber reinforcedmicrostructures

In this Section, we investigate fiber-reinforced composites
with global fiber directional affinity to show the effective-
ness of non-equiaxed composite boxels in certain use cases.
We consider the twomicrostructures shown in Fig. 10a and b
referred to as [FPR-1] and [FRP-2] respectively. Microstruc-
ture [FRP-1] is a fibrous microstructure with almost aligned
fiberswith afiber volume fraction of∼ 4%primarily oriented
along the X -axis. This problem is down-scaled to varied
equiaxed and non-equiaxed resolutions starting from a fine-
scale image comprising 5043 voxels tabulated in Table 3.
Similarly, themicrostructure [FRP-2] hosts 150 fibers almost
aligned along the X -axis with a fiber volume fraction of
∼ 15%. The fibers have a length of 120μm, a diameter of
12μm, and a minimum fiber distance is about 2μm. This
problem is down-scaled to varied equiaxed and non-equiaxed
resolutions starting from a fine-scale image comprising 2403

voxels tabulated in Table 4.
The overall homogenized first Piola-Kirchoff stress and

its phase-wise counterparts are compared towards a reference
solution computed without the use of composite boxels and
using the FFT solver proposed in [9]while the coarse-grained
models are solved using FANS HEX8R.

Figure 10c and d show that theComBodiscretization leads
to reasonable local stress fields despite the use of massively
anisotropic grids. Thereby, the resolution of the simulation
can adapt to the aspect ratio of the fibers, allowing for dis-
tinct computational gains while, at the same time, the lateral
resolution can remain sufficiently fine to gain (a) accurate ori-
entation data (Sect. 5) and (b) to separate individual fibers.
Both can be achieved without growing the number of degrees
of freedom. For instance, [FRP-1] is resolved 3.5 times
coarser along the fiber axis, yielding a speed-up and mem-
ory savings in the same order against an equiaxed grid. For
[FRP-2] several ComBodiscretizations are compared against
a reference solution regarding P, P± in Table 3. The overall
accuracy was better than 1% with improvements indepen-
dent of the boxel aspect ratio as the number of boxels grows.
The accuracy within the inclusion phase is impressive, given
that the fibers make up only ∼ 4% of the material. Simi-
lar trends are observed in Table 4 for the [FRP-2] problem,
where the use of non-equiaxed boxels becomes vital in the
need to resolve very small fiber distances.Much coarser non-
equiaxed resolutions still perform better than corresponding
equiaxed resolutions outlining the need to resolve the lat-
eral plane of the fibers properly. It can also be observed that
modest improvements are seen when the resolution along the
fibers is increased, while much more substantial improve-
ments are observed when the fiber lateral plane is refined.

We also extract the Von-Mises Cauchy stress: overall and
phase-wise histograms for the [FRP-2] problem as shown in
Fig. 11, in order to judge the quality of the full field solution.
The stress distributions for the equiaxed 483 (Downscale :
125) and the non-equiaxed 30 × 60 × 60 (Downscale: 128)
is compared against a reference solution 2403. Although by
the metric of vision, we can observe a better agreement with
the non-equiaxed resolution against the reference solution,
the corresponding cumulative squared deviations of the dis-
tributions from the reference stress histogram are plotted,
which unequivocally states that the non-equiaxed resolution
has lower error across the board and thus captures the over-all
field solution better.

7 Résumé

7.1 Summary

We present an extension of the composite voxel/boxel
(anisotropic voxel) approach of [15] towards finite strain
hyperelasticity for FFT-based homogenization schemes sim-
ilar to [16]. The foundations of FFT-based homogenization
are recalled in Sect. 3, and a detailed description of the
doubly-fine material grid which can rule out some issues
of the staggered grid approach [10] regarding the local field
accuracy, is outlined in Appendix A.

123



Computational Mechanics (2023) 71:191–212 205

(a) (b)

(c) (d)

Fig. 10 Fiber-reinforced composites: [FRP-1] ∼ 4% fiber volume fraction (a) [FRP-2] ∼ 16% fiber volume fraction (b); simulation results using
FANS HEX8R with ComBo discretization 18×63×63 for [FRP-1] and 30×60×60 for [FRP-2] are shown in (c) and (d)

Table 3 Comparing averaged 1st Piola-Kirchoff stresses in the [FRP-1]
problem (Sect. 6.5): different equiaxed and non-equiaxed ComBo res-
olutions, with errors against a reference solution (5043) based on [9];

ComBo solutions are obtained using FANS with reduced integration
[11]; Bold highlights better result (equiaxed vs. boxels): Error defined
as the relative Frobenius norm w.r.t reference solution

Equiaxed voxels Non-equiaxed boxels

Res Error (%) Downscale Error (%) Res Aspect ratio

P P− P+ P P− P+

213 0.894 0.148 13.916 13824 12348 0.654 0.110 10.205 18 × 242 4 : 3 : 3
243 0.570 0.097 8.913 9261 9072 0.461 0.080 7.219 18 × 282 14 : 9 : 9
283 0.351 0.061 5.503 5832 5488 0.298 0.051 4.662 18 × 362 4 : 2 : 2
363 0.189 0.033 2.975 2744 3024 0.168 0.030 2.650 24 × 422 7 : 4 : 4
423 0.119 0.021 1.871 1728 1792 0.075 0.017 1.222 18 × 632 7 : 2 : 2
633 0.035 0.007 0.555 512 504 0.036 0.006 0.564 36 × 842 7 : 3 : 3
843 0.037 0.006 0.579 216 224 0.049 0.007 0.744 36 × 1262 7 : 2 : 2
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Table 4 Comparing averaged
1st Piola-Kirchoff stresses in the
[FRP-2] problem (Sect. 6.5):
different equiaxed and
non-equiaxed ComBo
resolutions, with errors against a
reference solution (2403) based
on [9]; ComBo solutions are
obtained using FANS with
reduced integration [11]; the
italic highlights better results
than the corresponding equiaxed
voxels resolution: Error defined
as the relative Frobenius norm
w.r.t reference solution

Equiaxed voxels Non-equiaxed boxels

Res Error (%) Downscale Error (%) Res Aspect ratio

P P− P+ P P− P+

300 0.870 0.186 3.759 20 × 482 12 : 5 : 5
250 0.783 0.169 3.392 24 × 482 2 : 1 : 1

403 1.110 0.234 4.806 216 200 0.726 0.157 3.149 30 × 482 8 : 5 : 5
192 0.375 0.081 1.586 20 × 602 3 : 1 : 1
160 0.299 0.070 1.283 24 × 602 5 : 2 : 2

483 0.688 0.146 2.982 125 128 0.238 0.059 1.041 30 × 602 2 : 1 : 1
108 0.254 0.039 0.973 20 × 802 4 : 1 : 1
96 0.228 0.055 1.004 40 × 602 3 : 2 : 2

603 0.221 0.048 0.961 64 72 0.111 0.027 0.451 30 × 802 8 : 3 : 3

The detailed algorithmic treatment of the composite vox-
els/boxels in Sect. 4 yields low-, i.e.,d-dimensional nonlinear
equations to be solved with explicit Hessians being pro-
vided for infinitesimal and finite strain problems; see also
the cheat sheet in Appendix 5. The algorithmic tangent oper-
ator of the composite voxels is provided too, and it has a
sleek representationwith a simplistic implementation. A cru-
cial ingredient in composite boxel finite strain simulations
is the back-projection scheme described in Algorithm 2. It
ensures the admissibility of the deformation in either of the
laminate phases at negligible computational overhead but
much-increased robustness.

When examining composite voxels and boxels, some
issues with the normal detection [15] were found. In Sect. 5,
an improved algorithm for normal identification is suggested,
which leads to considerable improvements in the lami-
nate orientation within the composite voxels. The proposed
algorithm can also process composite boxels (ComBo) char-
acterized by non-equiaxed coarsening,whichwas impossible
using the approach by [15]. The procedure was shown to
yield accurate normals for different microstructures. An
open-source python implementation with examples can be
accessed through the GitHub repository [39]. It also features
3D tools for visualization and a tutorial demonstrating the
usage.

In Sect. 6 a variety of different microstructures are sim-
ulated using different FFT-based solvers, different normal
detection procedures, and using different coarse-grained res-
olutions. The results demonstrate that the local fields using
theComBodiscretization are closelymatching full resolution
solutions. FANS HEX8 and HEX8R [11,12] were found to
yield the smoothest representation of the local fields. Despite
the tendency of HEX8 to overestimate the stresses, this dis-
cretization has the smoothest stress fields. Moreover, the
suggested normal detection was shown to provide notably
improved accuracy on the overall stress response as well
as for the phase-wise averaged stresses (see Tables 1, 2, 3

and 4). The improvement for actual boxels was even more
notable. Further, the stress statistics for equiaxed and non-
equiaxed resolutions with similar downscale factors hint at
the improved quality of the local stresses for the same down-
scale factor. Additionally, the normals were shown to deliver
convergence of the effective stresses that depends mainly
on the number of DOF, i.e., the overall amount of coarse-
graining, see Tables 3 and 4. Computational savings of
2000 and beyond at errors around 1% in the phase-averaged
stresses are observed.

7.2 Discussion

First up, the authors are thoroughly convinced that composite
boxels have proven to be a valuable addition to many estab-
lished FFT-based homogenization schemes. They allow for
impressive computational savings in CPU time and memory
(factor 2000 and beyond) at a modest—if any—sacrifice in
accuracy. The accuracy was further improved by using the
novel strategy for the normal detection from Sect. 5. It leads
to a reduction of approximately 30% in the relative errors
of the effective stress P and its phase-wise counterparts P±
even for relatively smooth and simple microstructures. In the
case of anisotropic boxels, more distinct improvements in
the error were found. Surprisingly, in the presence of com-
posite boxels, the number of DOF of the system seems to
be the primary influence factor regarding the accuracy of
the simulation even when pronounced boxel anisotropy is
considered. A key advantage of non-equiaxed boxels is that
pseudo-unidirectional fiber separation can be granted with-
out growing the number of degrees of freedomof the problem
while retaining accuracy.

We think that this can leverage the simulations in cer-
tain fields, e.g., for discontinuous short fiber composites with
pronounced aspect ratios (e.g., 20 and beyond) and pseudo
unidirectional fiber orientation. We are also convinced that
making the source code for the normals freely available [39]
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Fig. 11 Normalized weighted distribution of the Von-Mises Cauchy
stress (top) and the squared cumulative error (bottom) of the distribution
w.r.t a reference (2403) solution

could help in rendering composite boxels an attractive choice
in academia and industry. In the future, we are confident
that more refined comparisons of the actual solution fields of
ComBo and high-resolution simulations will lead to further
insights regarding the accuracy and overall efficiency.

By the introduction of the doubly-fine material grid for
the staggered grid discretization [10], considerable improve-
ments with respect to the quality of the local fields were
observed. However, these come at the expense of a distinct
rise in the number of constitutive evaluations and little gain
regarding the overall homogenized response. Therefore, this
method is probably best suited when local solution fields
are sought-after. In this regard, FANS [11], or the equiva-
lent FFT-Q1 Hex [12] show the most confidence-inspiring
results: local fields are smooth and match the reference solu-
tion closely; hour-glassing is less distinct (HEX8R) or absent
(HEX8) than in the almost identical discretization of [9]. It
is important to state that the use of the ComBo discretization
comes without issues.

The application of composite voxels/boxels in finite
strain homogenization problems revealed that particular
care should be taken in view of considering physical
constraints: The selective back-projection algorithm (Algo-
rithm 2) demonstrates that robustness can be gained and
(sometimes unrecognized) physically questionable iterates
might occur in practice. We are confident that the presented
algorithm is a leap forward. Despite this improvement, the
realizable loading can still be limited, particularly when the
phase volume fractions within the composite boxels tend
towards 0 or 1 and the contrast in stiffness is pronounced.This
can imply that the deformation gradient can approach critical
states not just in the laminate but on the overall ComBo voxel
(denoted F�). Finding further refinements to the simulation
scheme could further boost robustness, giving rise to future
research topics.

An important message is also given by demonstrating the
usefulness of ComBo discretizations for a rich set of differ-
ent discretizations: FANS HEX8(R)/FFT-Q1 Hex [11,12],
DFMG, staggered grid [10] the rotated grid scheme ofWillot
[9], and the classicalMoulinec–Suquet scheme [6,7] were all
used with success and building on the same implementation.
The authors would like to emphasize that the approach is,
however not limited to FFT-based schemes: regular Finite
Element and Finite Difference schemes could use them too,
yielding potential benefits without the intrusiveness of, e.g.,
the extended finite element method (X-FEM, e.g., [42]).

Related to the recent progress reported by [43], the exten-
sion of our framework for interface mechanics in the small
and finite strain setting is a promising route. Major bene-
fits due to the improved normal orientations from Sect. 5
are expected: Both, the local solution fields as well as the
(thereby influence) interfacial tractions are assumed to gain
in accuracy.

Last, an equivalent to composite boxels for materials with
more than two phases is urgently needed, e.g., in order to
deal with polycrystals.
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Supplementary information

The normal detection algorithm is available from [39].
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Appendix A A finite difference discretization
on a staggered grid

In the sequel, we describe the consistent formulation of the
staggered grid discretization [10] for the geometrically non-
linear case [36]. Similar to the small strain case, the diagonal
and off-diagonal components of the deformation gradient are
located at different positions; compare Fig. 12. It is shown
that ignoring this leads to unsatisfactory results, which can
be significantly improved by using a doubly-fine material
grid (DFMG). In contrast to the linear elastic small strain
regime, however, the DFMG needs an increased number of
evaluations of the nonlinear material law.

Fix positive integers n1, n2, n3 and consider a regular peri-
odic grid consisting of n = n1n2n3 cells, each a translate of
[0, h1] × [0, h2] × [0, h3] with h j = l j

n j
( j = 1, 2, 3). Let

i+, j+ and k+ denote the location of the staggered grid coor-
dinates, i.e.,a+ = a+ 1

2 fora = i, j, k. For the (i, j, k)-cell
the coordinates of the displacement vector (U1, U2, U3) are
located at the cell face centers, i.e., U1[i, j, k] is located
at the coordinate (ih1, j+h2, k+h3), U2[i, j, k] lives
at (i+h1, jh2, k+h3) and U3[i, j, k] is associated to

(a)

(b)

Fig. 12 Placement of the strain and displacement variables in 2D: a
Location of strain and displacement variables. b The variables’ grid
(gray box) and the doubly fine material grid (orange box)

(i+h1, j+h2, kh3). The situation is displayed in Fig. 12a,
where we have restricted ourselves to the 2D case for clarity.

The diagonal components FaA[i, j, k] (a, A ∈ {1, 2, 3})
of the deformation gradient F are positioned on the cell cen-
ters (i+h1, j+h2, k+h3), whereas the off-diagonal strains
F23, F32[i, j, k], F13, F31[i, j, k] and F12, F21[i, j, k],
are locatedon the corresponding edgemidpoints (i+h1, jh2, kh3),
(ih1, j+h2, kh3) and (ih1, j, (k+h3). For visualization,
we again refer to Fig. 12a.

Displacements and gradients are connected by central dif-
ference formulae, where periodicity is understood implicitly.
More precisely, introduce forward and backward difference
operators on a scalar discrete field φ : Vn → R by the for-
mulae

D±
j φ[I ] = ±φ[I ± e j ] − φ[I ]

h j
(A1)
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for I ∈ Vn = {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1} ×
{0, 1, . . . , n3 − 1}. Then we introduce the gradient operator

Grad (U) =
⎡
⎣ D+

1 U1 D−
2 U1 D−

3 U1

D−
1 U2 D+

2 U2 D−
3 U2

D−
1 U3 D−

2 U3 D+
3 U3

⎤
⎦ (A2)

giving rise to the deformation gradient F = I + Grad (U)

associated to a periodic displacement field

U = (U1,U2,U3) : Vn → R
3,

Similarly, there is a divergence operator, turning P : Vn →
R
3×3 into

Div P =
⎡
⎣ D−

1 P11 + D+
2 P21 + D+

3 P31
D+
1 P12 + D−

2 P22 + D+
3 P32

D+
1 P13 + D+

2 P23 + D−
3 P33

⎤
⎦ . (A3)

The stress variable PaB is located on the same position as the
corresponding FaB .

The constitutive law P(F) is defined piecewise on the
regular voxel grid. For a typical material cell, shaded in gray
in Fig. 12b, it is not clear how to apply the material law for
off-diagonal strains, as the function P(F) may be defined
differently along the corresponding edge.

We circumvent these problems by utilizing a doubly-fine
grid, i.e., a grid with half the spacing of the original grid. Fig-
ure 12b illustrates this concept—a typical doubly fine cell is
shaded in orange.We interpret the deformation gradients and
stresses as living on this doubly-fine grid. For every deforma-
tion gradient component Fi J and every doubly-fine cell there
is precisely one Fi J -value, as specified in Fig. 12a, located
on the boundary of the cell. We associate this value to the
doubly-fine cell. Thus, a particular value Fi J is distributed
to the 4 (in 2D) or 8 (in 3D) adjacent doubly-fine cells, com-
pare Fig. 13 for an illustration. The stress components are
distributed similarly to the deformation gradients, i.e., the
staggering of Fig. 13, is also present for the stresses.

With this assignment, to any doubly-fine grid cell all 4
(in 2D) or 9 (in 3D) deformation gradient components are
associated. The discretization just outlined directly carries
over to three space dimensions easily. The variable placement
in this case is shown in Fig. 14.

We suppose that the constitutive material law is given on
the original grid, i.e., each cell is associatedwith onematerial.
We will elaborate on the implementation of the material law.
By averaging over the combination of adjacent doubly-fine
voxels, the material law can be written as

Pab[ξ ] = 1

8

∑
l∈L

(
Pab
l [ξ ]

(
Fab
l [ξ ]

))
ab

, (A4)

(a)

(b)

Fig. 13 Placement of deformation gradient variableswithin the doubly-
fine material grid: a Location of F11 (shaded in orange). b Location of
F12 (shaded in orange). The variables’ grid is depicted by the dashed
black lines

with

ξ = [i, j, k] (A5)

L = {l = [l1, l2, l3] with l1, l2, l3 ∈ {0, 1}} (A6)

and

Paa
l [ξ ] = P[ξ ], a ∈ {1, 2, 3},

Pab
l [ξ ] = Pba

l [ξ ] = P[ξ + l+a,+b], a < b
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Fig. 14 Placement of the deformation gradients and displacement vari-
ables in 3D

for

l±1,±2 = l±2,±1 = [±l1,±l2, 0]
l±1,±3 = l±3,±1 = [±l1, 0,±l3]
l±2,±3 = l±3,±2 = [0,±l2,±l3]

as well as

Faa
l [ξ ] =

⎛
⎜⎝

F11[ξ ] F+1,+2
12,l [ξ ] F+1,+3

13,l [ξ ]
F+2,+1
21,l [ξ ] F22[ξ ] F+2,+3

23,l [ξ ]
F+3,+1
31,l [ξ ] F+3,+2

32,l [ξ ] F33[ξ ]

⎞
⎟⎠ ,

F12
l [ξ ] =

⎛
⎜⎝
F−1,−2
11,l [ξ ] F12[ξ ] F−2,+3

13,l [ξ ]
F21[ξ ] F−1,−2

22,l [ξ ] F−1,+3
23,l [ξ ]

F−2,+3
31,l [ξ ] F−1,+3

32,l [ξ ] F−1,−2
33,l [ξ ]

⎞
⎟⎠ ,

F21
l [ξ ] = F12

l [ξ ],

F13
l [ξ ] =

⎛
⎜⎝
F−1,−3
11,l [ξ ] F+2,−3

12,l [ξ ] F13[ξ ]
F+2,−3
21,l [ξ ] F−1,−3

22,l [ξ ] F−1,+2
23,l [ξ ]

F31[ξ ] F−1,+2
32,l [ξ ] F−1,−3

33,l [ξ ]

⎞
⎟⎠ ,

F31
l [ξ ] = F13

l [ξ ],

F23
l [ξ ] =

⎛
⎜⎝
F−2,−3
11,l [ξ ] F+1,−3

12,l [ξ ] F+1,−2
13,l [ξ ]

F+1,−3
21,l [ξ ] F−2,−3

22,l [ξ ] F23[ξ ]
F+1,−2
31,l [ξ ] F32[ξ ] F−2,−3

33,l [ξ ]

⎞
⎟⎠ ,

F32
l [ξ ] = F23

l [ξ ],

where

F±a,±b
cd,l [ξ ] = Fcd [ξ + l±a,±b], a �= b.
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