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Computational contact mechanics seeks for numerical solutions to contact area,

pressure, deformation, and stresses, as well as flash temperature, in response to

the interaction of two bodies. The materials of the bodies may be homogeneous

or inhomogeneous, isotropic or anisotropic, layered or functionally graded, elastic,

elastoplastic, or viscoelastic, and the physical interactions may be subjected to a single

field or multiple fields. The contact geometry can be cylindrical, point (circular or elliptical),

or nominally flat-to-flat. With reasonable simplifications, the mathematical nature of the

relationship between a surface excitation and a body response for an elastic contact

problem is either in the form of a convolution or correlation, making it possible to formulate

and solve the contact problem by means of an efficient Fourier-transform algorithm.

Green’s function inside such a convolution or correlation form is the fundamental solution

to an elementary problem, and if explicitly available, it can be integrated over a region,

or an element, to obtain influence coefficients (ICs). Either the problem itself or Green’s

functions/ICs can be transformed into a space-related frequency domain, via a Fourier

transform algorithm, to formulate a frequency-domain solution for contact problems.

This approach converts the original tedious integration operation into multiplication

accompanied by Fourier and inverse Fourier transforms, and thus a great computational

efficiency is achieved. The conversion between ICs and frequency-response functions

facilitate the solutions to problems with no explicit space-domain Green’s function.

This paper summarizes different algorithms involving the fast Fourier transform (FFT),

developed for different contact problems, error control, as well as solutions to the

problems involving different contact geometries, different types of materials, and different

physical issues. The related works suggest that (i) a proper FFT algorithm should be used

for each of the cylindrical, point, and nominally flat-flat contact problems, and then (ii)

the FFT-based algorithms are accurate and efficient. In most cases, the ICs from the 0-

order shape function can be applied to achieve satisfactory accuracy and efficiency if (i)

is guaranteed.

Keywords: contact of materials, fast fourier transform, FFT algorithms, contact pressure, contact stress, tribology

INTRODUCTION

Contact of materials is a common engineering phenomenon, and the solution to a contact problem,
in terms of pressure, deformations, and stresses, as well as flash temperature, is usually among first
steps in the design and analysis of an engineering system or a functional device. A contact problem
is solved first for the information of the contacting interface, such as contact pressure, surface
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interaction, contact area, and interfacial friction, followed by
a boundary-value solution process for the stresses in each
contacting body. At least two sets of convolutions, each for a
group of excitations and Green’s functions, are involved, i.e.,
displacements and stresses, in response to surface tractions, and
the former are calculated first (Conry and Seireg, 1971; Kalker
and van Randen, 1972; Kalker, 1986; Polonsky and Keer, 1999).
When solving the contact of bodies involving an inclusion-
containing material, the mathematical correlation between an
eigenstrain and a Green’s function appears (Liu et al., 2012). In
most cases, the convolution nature makes it possible to formulate
and solve a contact problem by means of an efficient fast Fourier
transform (FFT) algorithm (Ju and Farris, 1996; Stanley andKato,
1997; Ai and Sawamiphakdi, 1999; Hu et al., 1999; Polonsky and
Keer, 1999, 2000; Liu et al., 2000; Liu and Wang, 2002). We will
discuss and summarize the theories, algorithms, and numerical
methods of FFT-based contact modeling approaches.

If the contact body can be treated as a mathematically “semi-
infinite” medium, or a half-space material, analytical influence
coefficients (ICs), or frequency-response functions (FRFs), may
be derived for certain problems. Normally such a simplification
can be made if deformations are small and the radii of curvature
of contact bodies are sufficiently larger than the effective contact
size of these two bodies. In the case of the macroscopic contact
of two spheres, or two cylinders, of the same size and material,
if the contact radius, or half width, a, is 10% of the radius of
the contact body, the maximum error from using the z-direction
deformation to replace the radial deformation at the contact
edge is within 0.5%. However, stresses need more attention. Two
contact problems, (1) two steel spheres of the same radius and
(2) their equivalent sphere and a half space, are analyzed using
the finite-element method (FEM) without considering plasticity.
Figure 1 shows maximum relative errors of the von Mises stress
along the central axis, due to ignoring curvature, as a function
of a/Re. The error is about 7% when a/Re reaching 10%, and this
situation is beyond the “small elastic deformation” assumption.
In the elastic range, using steels as an example, the maximum
error of the von Mises stress is <3% if the half-space solution
is pursued. Similar small errors due to the use of the half-
space assumption in the elastic range have also been reported by
Londhe et al. (2018), in the comparison of the results from the
FEM and Hertz formulas for different types of contacts.

In a contact simulation, the computational complexity of
evaluating a convolution via direct summation of the products
of ICs and surface traction is on the order of O(N2), where N
is the mesh number. If N is large and the convolution has to
be repeatedly calculated in an iteration process, the computation
burden is very heavy. The works by Ju and Farris (1996), Nogi
and Kato (1997), Stanley and Kato (1997), Ai and Sawamiphakdi
(1999), Hu et al. (1999), Polonsky and Keer (2000), and Liu et al.
(2000) are in a chain of studies to apply the FFT to evaluate the
convolutions for elastic deformation and stresses efficiently in
the field of contact mechanics and tribology. Several papers have
reviewed such efforts of solving tribology problems via the FFT
and analyzed the sources of errors (Liu et al., 2000; Wang et al.,
2003; Liu S. et al., 2007; Wang and Zhu, 2019). Although most
of the effort is on solving non-conformal contact problems, the

FIGURE 1 | Maximum errors of the von Mises stress, σVM, along the z axis, or

the central axis in the depth direction, by using the half-space approach to

solve the problem of contact of two equal spheres, without considering

plasticity, calculated with the FEM; a is the half contact width, Re is the

equivalent radii of the contact bodies, and 1/Re = 1/R1 + 1/R2.

FFTmethods suit for certain conformal-contact problems as well
if they involve a convolution and have ICs obtained analytically
or numerically. Actually, the circular nature of a cylindrical
structure fits the circular convolution theorem perfectly. Liu and
Chen (2012) and Liu (2013) reported an FFT-based conformal-
contact model for two-dimensional (2D) problems. Wang and
Jin (2004) conducted the fluid-film lubrication analysis for
artificial joints, which requires the determination of the elastic
deformation of the bearing surface of both the acetabular cup
and the femoral head. They used FFT along with the spherical
distance and numerical ICs from an FEM calculation.

The FFT methods greatly help reduce the computation
burden. For example, for a three-dimensional (3D) point-contact
problems, the FFT operation is on the order of O(12Nlog2 [4N]),
to be discussed in detail later. Its ratio to the operation needed for
calculating the convolution is 12Nlog2 (4N)/N2 = 12log2(4N)/N
= 0.00024, if N is 1024∗1024. This is a significant saving of
computational time. The key issues to be addressed are (1) how
should the Fourier transform (FT) method be properly used to
solve contact problems? (2) Can one solution algorithm be used
for all problems?

Theoretically, the Fourier transform can be used for infinite-
domain and the Fourier series for periodic problems, but most
contact problems do not satisfy these conditions. For example,
a point-contact problem has its pressure only on a small region
of contacting surfaces. If the FFT is directly used to solve
such a problem, the results near the borders have notable
errors. In order to reduce the periodicity error, Ju and Farris
(1996) substantially extended the domain, Ai and Sawamiphakdi
(1999) decomposed the total pressure into a smooth portion
and a zero-mean fluctuating portion, and Polonsky and Keer
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(2000) developed a hybrid algorithm by adding a special
correction procedure. Each of these brings in a certain accuracy
improvement while introducing new complications. We have
investigated the theories of contact mechanics and signal
analyses, and realized that proper convolution theorems should
be considered in solving different contact problems of non-
conformal and conformal configurations (Figure 2) (Liu et al.,
2000; Liu and Wang, 2002; Liu S. et al., 2007; Liu and Hua, 2009;
Liu and Chen, 2012), as summarized by Wang and Zhu (2019,
Chapter 4).

In this paper, we will discuss the basic issues of the
FFT methods for contact analyses from the convolution
theorems and the tree of the Fourier-transform algorithms
for solving different contact problems, such as (1) the
algorithm of discrete-convolution and fast-Fourier-transform
(DC-FFT), with double domain extension in each dimension,
for non-periodic problems, and the discrete-convolution and
fast-Fourier-transform algorithm (DC-FFT) without domain
extension for journal bearing problems, (2) the algorithm
of continuous-convolution and Fourier-transform (CC-FT) for

periodic (or infinite) contact problems, (3) the algorithm
of discrete convolution with duplicated padding and FFT
(DCD-FFT), that of discrete-continuous convolutions and FFT
(DC-CC-FFT), and that of the discrete convolution with IC
summation and FFT (DCS-FFT) for 3D line-contact problems
that are periodic (or infinite) in one direction but non-periodic
in the other direction, (4) the algorithm of discrete-correlation
and FFT (DCR-FFT) for inclusion problems, (5) the FRF-IC
conversion method, as well as the applications of them to solve
the contact problems involving layered materials, anisotropic
elastic materials, and viscoelastic polymers, or those subjected to
multifields, and (6) a non-uniform DCS-FFT method, recently
developed by Sun et al. (2020), for solve large-scale contact
problems. Most of the contents in this paper are based on the
works by Liu et al. (2000, 2002), Liu and Wang (2002), Boucly
et al. (2005), Chen et al. (2008), Liu and Hua (2009), Yu et al.
(2014, 2016), Zhang X. et al. (2017, 2018), Zhang and Wang
(2019), Sun (2020), Sun et al. (2020), Zhang et al. (2020a,b),
and Chapter 4 in the book by Wang and Zhu (2019). Table 1
summarizes the FFF-based approaches and their applications.

FIGURE 2 | Different types of contact problems solved by using a FFT-based method. (A) Line contact, (B) point contact, (C) nominally flat-flat contact, (D) contact

involving an inhomogeneous material, (E) contact involving a layered material or other anisotropic materials, and (F) conformal contact of 2D journal bearings or

rollers. Note that all surfaces can be smooth or rough.
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TABLE 1 | FFT methods for contact analyses.

Name and references Algorithm and method Problem to solve

DC-FFT (Liu et al., 2000; Liu, 2001)

(Liu and Chen, 2012; Liu, 2013)

Discrete-convolution and FFT Point-contact problems

Cylindrical contact problems, counterformal

and conformal

CC-FT (Ju and Farris, 1996; Liu, 2001; Liu

et al., 2002)

DCSS-FFT (Sun, 2020)

Continuous-convolution and FFT Nominally flat-flat contact problems

DCD-FFT (Chen et al., 2008)

DC-CC-FFT (Liu et al., 2006)

DCS-FFT (Liu and Hua, 2009; Sun et al., 2020)

Discrete convolution with duplicated padding

and FFT

Discrete-convolution, continuous-convolution

and FFT

Discrete convolution with IC summation

and FFT

3D line-contact problems

DCR-FFT (Liu and Wang, 2005) Discrete-convolution-correlation and

fast-Fourier-transform

Materials with residual strains, inclusions and/or

inhomogeneities, contact plasticity problems

IC conversion (Liu et al., 2000; Liu, 2001; Liu

and Wang, 2002; Liu S. et al., 2007)

FRFs known, which can be transformed to ICs,

followed by the DC-FFT algorithm or other

proper ones

Layered, viscoelastic, transversely isotropic

materials, coupled-stress problems, multifield

contact problems

Non-uniform DCS-FFT (Sun et al., 2020) Implementation of DCS-FFT, or others, to

segments of different mesh densities

Large-scale problems, 3D line-contact problem

considering defect, crown, and edge effects

SFFT (Wang and Jin, 2004) Discrete-convolution and FFT Sphere-cup contact problems

It should be mentioned that the pressure and contact area that
satisfy the Kuhn-Tucker type complementary conditions can
be solved with different methods, and the conjugate gradient
method (CGM) (Polonsky and Keer, 1999; Jin et al., 2013) is
currently the widely accepted one.

In the following, the elastic field means the distributions of
stresses and displacements, and the target domain means the
physical domain, on which a physical contact problem is defined.
The algorithms and methods will be explained mainly through
deformation calculations; details of the FFT-based computations
of stresses, flash temperature, and other physical fields can be
found in the reports by Liu (2001), Liu and Wang (2002), Chen
et al. (2008), Zhang X. et al. (2018), andWang and Zhu (2019), as
well as those mentioned in the previous paragraph.

CONVOLUTION, FREQUENCY RESPONSE
FUNCTION, AND INFLUENCE
COEFFICIENTS

Convolution and ICs
Let’s use the pressure-displacement relationships, such as the
Flamant and Boussinesq equations (Johnson, 1987), as examples.
Here, an excitation at ξ , or (ξ , η), and a response at x, or (x, y),
are related to each other through a Green’s function defined with
the distance between the two, which is either |x − ξ | or RI =√

(x − ξ)2 +
(
y − η

)2
.

The surface normal displacement of a cylinder in a line
contact, uz(x), due to pressure p(x) on surface region Sx is

uz(x) = − 4

πE′

∫

Sx

ln |x− ξ |p(ξ )dξ = C

∫

Sx

G(x− ξ )p(ξ )dξ (1)

where C = −4/(πE′), E’ is the effective Young’s modulus and the
corresponding Green’s function is C ln |x|. The integral kernel, G,
is defined as

G(x) = ln |x| (2)

In numerical modeling, the equation above can be discretized
and re-written as the summation of the products of influence
coefficients D(k, i), or Di,j, and nodal pressures pi.

uz(xk) = C

Np∑

i = 1

D(k, i)pi = C

Np∑

i= 1

Dk,ipi, (k = 1, 2, 3, ...Nd)(3)

where Np, Nd are the total numbers of nodes for pressure and
deformation, respectively.

A shape function, Ys, may be used to distribute pressure,
or other excitations, around a nodal point, and the commonly
used shape functions are 0-order, 1st-order, and 2nd-order
polynomials. Detailed expressions and use of these shape
functions can be found in the book by Wang and Zhu (2019).

The ICs are from the elementary integration of Green’s
function and shape function Ys, implying unit nodal pressure, or
from G and shape function Ys without including coefficient C.
The latter is used here. In general,

D(k, i) =
xu=xi+11−xk∫

xl=xi−12−xk

G(xk − ξi)Ys(ξi)dξ =
{
f (xu)− f (xl)

}
(4)

where f is the integration result, and xu and xl are the upper and
lower boundaries of the element integration at xi, with 11 and
12 marking the element size.
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If the zero-order shape function is used, the influence
coefficient expression becomes

D(k, i) =
(
xi+1/2 − xk

) (
ln |xi+1/2 − xk|

)
−

(
xi−1/2 − xk

) (
ln |xi−1/2 − xk|

)

+ (xi−1/2 − xi+1/2) (5)

Note that here the influence coefficients, D, depend only on
the geometric factors of the grid. When a uniform grid is used
with the constant mesh spacing xi+1-xi = xi-xi−1 = 21, the
above becomes

D(k, i) = (xi + 1 − xk)
(
ln |xi + 1 − xk|

)
− (xi − 1 − xk)

(
ln |xi − 1 − xk|

)

−21 (6)

For point-contact problems, surface normal displacement
uz(x, y) due to pressure p(x, y) on surface area � is,

uz(x, y) = 2

πE′

∫∫

�

p(ξ , η)√
(x− ξ )2 + (y− η)2

dξdη

= C

∫∫

�

p(ξ , η)√
(x− ξ )2 + (y− η)2

dξdη (7)

where C = 2
πE′ , G is from Green’s function, defined as

G = 1√
x2+y2

.

Likewise, the equation above can be re-written as the

summation of the products of influence coefficients Dk,l
i,j and

nodal pressures pi,j. The ICs are from the elementary integration
of Green’s function and a shape function, Ys, or G and shape
function Ys without including the material properties, and the
latter is used here.

uz(xk, yl) = C

Npx∑

i = 1

Npy∑

j = 1

Dk,l
i,j pi,j (k = 1, 2 . . .Ndx, l = 1, 2 . . .Ndy)

(8)

where Ndx, Ndy are the total numbers of nodes for deformation
in the x, y directions, andNpx,Npy are the total numbers of nodes
for pressure in the x, y directions, respectively.

Dk,l
i,j =

xu∫

xl

yu∫

yl

G(xk, yl, ξi, ηj)Ys(ξi, ηj)dξdη (9)

Or D =
∑

Elemental−contribution

{
f (xu, yu)+ f (xl, yl)− f (xu, yl)− f (xl , yu)

}

(10)

where f is the integration result, and (xu, yu) (xl, yl) are the upper
and lower boundaries of the element integration.

If the zero-order shape function is
used, the influence coefficient expression is
(Love, 1929),

Dk,l
i,j = (xk − xi + a) ln




(
yl − yj + b

)
+

√(
yl − yj + b

)2 + (xk − xi + a)2

(
yl − yj − b

)
+

√(
yl − yj − b

)2 + (xk − xi + a)2




+
(
yl − yj + b

)
ln


 (xk − xi + a) +

√(
yl − yj + b

)2 + (xk − xi + a)2

(xk − xi − a) +
√(

yl − yj + b
)2 + (xk − xi − a)2


 (11)

+ (xk − xi − a) ln




(
yl − yj − b

)
+

√(
yl − yj − b

)2 + (xk − xi − a)2

(
yl − yj + b

)
+

√(
yl − yj + b

)2 + (xk − xi − a)2




+
(
yl − yj − b

)
ln


 (xk − xi − a) +

√(
yl − yj − b

)2 + (xk − xi − a)2

(xk − xi + a) +
√(

yl − yj − b
)2 + (xk − xi + a)2




Replacing xk−i = xk−xi and yl−j = yl−yj leads to the following.

Dk,l
i,j =

(
xk−i + a

)
ln




(
yl−j + b

)
+

√(
yl−j + b

)2 +
(
xk−i + a

)2

(
yl−j − b

)
+

√(
yl−j − b

)2 +
(
xk−i + a

)2




+
(
yl−j + b

)
ln




(
xk−i + a

)
+

√(
yl−j + b

)2 +
(
xk−i + a

)2

(
xk−i − a

)
+

√(
yl−j + b

)2 +
(
xk−i − a

)2


 (12)

+
(
xk−i − a

)
ln




(
yl−j − b

)
+

√(
yl−j − b

)2 +
(
xk−i − a

)2

(
yl−j + b

)
+

√(
yl−j + b

)2 +
(
xk−i − a

)2




+
(
yl−j − b

)
ln




(
xk−i − a

)
+

√(
yl−j − b

)2 +
(
xk−i − a

)2

(
xk−i + a

)
+

√(
yl−j − b

)2 +
(
xk−i + a

)2




where a and b are the half length of the rectangular
integration element.

Frequency Response Functions and ICs
The Fourier transform can be applied to the IC matrix, D,
Equation (4), to obtain,

D̃ = G̃ · Ỹs (13)

and G̃ = D̃/Ỹs (14)

where G̃ is the frequency response function excluding the elastic
parameter, C. These two equations show how to obtain one from
the other.

If discrete Fourier transform D̂ has already been obtained
from a set of known ICs via the FFT, G̃ can be solved from G̃ =
D̃/Ỹs once Fourier series coefficients D̃ can be obtained from
D̂. Based on the sampling theorem, the one-dimensional (1D)
relationship between the FT (∼) and discrete Fourier transform
(DFT) (∧) of the ICs, sampled with mesh interval 21, can be
obtained as

D̂i =
1

21

∞∑

r=−∞
D̃

(
2π i

n · 21 − 2πr

21

)
= 1

21

∞∑

r=−∞
D̃

(
π i

n1
− πr

1

)

(i = 0, 1, 2 · · · , n− 1) (15)
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An aliasing control parameter, AL, can be introduced instead of
summation for r from –∞ to ∞, in order to satisfy a required
accuracy while saving computation time.

D̂i =
1

21

AL∑

r=−AL

D̃

(
2π i

n · 21 − 2πr

21

)
= 1

21

AL∑

r=−AL

D̃

(
π i

n1
− πr

1

)

(i = 0, 1, 2 · · · , n− 1) (16)

The above can be simplified if the sampling frequency is
sufficiently high, or the datum interval is sufficiently small.

D̂i ≈
1

21
D̃

(
2π i

n · 21

)
= 1

21
D̃

(
π i

n1

)
(i = 0, 1, 2 · · · , n− 1)

(17)

The above becomes exact if and only if ms > 2mmax (Morrison,
1994) with ±mmax as the band limit (or mmax as the highest
frequency component), beyond which there is no Fourier
transform results (Walker, 1996). Then, only the term at r = 0
is needed.

Likewise, the 2D relationship between the FT (∼) and DFT (∧)
of the ICs is

ˆ̂Di,j =
1

1x1y

rx=AL∑

rx=−AL

ry=AL∑

ry=−AL

˜̃D( 2π

nx1x
i− 2π

1y
ry,

2π

ny1y
j− 2π

1y
rx)

(i = 0, 1, 2 · · · , nx − 1, j = 0, 1, 2 · · · , ny − 1) (18)

where1x and1y are the mesh intervals in the x and y directions,
and1x = 1y = 21 if the meshes are uniform in both directions.

This means two operations. (1) Upon knowing D̃ from D̂
via Equations (17) or (18) with a properly chosen discretization
interval, 21 < 2π/ωmax, we can solve G̃ using the
equation below.

G̃i = G̃

(
2π i

n · 21

)
= D̃

(
2π i

n · 21

)
/Ỹ

(
2π i

n · 21

)

≈ 21 · D̂i/Ỹs

(
2π i

n · 21

)

= 21 · D̂i/Ỹs

(
π i

n1

)
(i = 0, 1, 2 · · · , n− 1) (19)

(2) Upon knowing G̃, we can get D̂ from D̃ using Equations
(13) and (17), or (18). In many cases where the solutions
to frequency response functions are more convenient
than those to Green’s functions, and this operation can
be utilized to convert the FRFs to the discrete Fourier
transformed ICs.

CONVOLUTION THEOREMS

Equations (1) and (7) are both convolutions, which can be solved
efficiently via Fourier transform followed by inverse Fourier
transform. However, because the pressure may be in a discrete
form, i.e., rough-surface contact pressure, and its application

domain may be in different sizes, i.e., finite or infinite, accurate
solutions to these equations, and others in the same nature,
require the use of different convolution theorems. The following
explains these theorems with 1D datum series for convenience.

Continuous Linear Convolution
If a set of continuous functions of t, f and G, follows
the convolution in Equation (20), resulting in O, then the
Fourier transform of the convolution results, Õ(ω), satisfies
Equation (21), which convert the integration in Equation (20) to
multiplication of continuous Fourier transforms of f and G.

O(t) =
∫ ∞

−∞
G(t − τ )f (τ )dτ ≡ G(t) ∗ f (t) (20)

Õ(ω) = G̃(ω)f̃ (ω) (21)

where O is accounted as the response of the continuous linear
convolution, and symbol “∗” is the convolution operator; Õ(ω),

G̃(ω), f̃ (ω) are Fourier transformed results of O, G, and f, with ω

for frequency corresponding to the domain of variable t. The tilde
(̃), means a 1D Fourier transform. For contact problems, f can be
the excitation force, such as pressure, if it is a continuous function
defined in the entire domain, and G is Green’s function, both are
function of space variable x. Then, frequency ω is corresponding
to the space domain.

Periodic Convolution
If Dp(i) and fp(i) are periodic functions with period N, the

product of their discrete Fourier series (DFS) coefficients,
⌣

Dp(m)

and
⌣

f p(m), with m for the frequency, is
⌣

Op that can be expressed

as (Oppenheim et al., 1999),

⌣

Op(m) =
⌣

Dp(m)
⌣

f p(m) (22)

The periodic sequence, Op, with the same period, N, is the
periodic convolution analyzed in one period, N, shown below.

(
Op

)
j
=

N−1∑

r=0

(
Dp

)
j−r

(
fp

)
r

0 ≤ j ≤ N − 1 (23)

For contact problems, Dp(i) and fp(i) are Dp(xi) and fp(xi). Here,
the subscript can be negative.

Cyclic (Circular) Convolution
Based on Oppenheim et al. (1999), ifDc(i) and fc(i) are sequences

of finite length N, and their DFT results are D̂c(m) and f̂c(m),
withm for the frequency, then their term-by-term product is Ôc,
expressed as

Ôc(m) = D̂c(m)f̂c(m) (24)
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The finite sequence Oc is actually the circular convolution
analyzed in length N, shown below.

(Oc)j =
N−1∑

r=0

(Dc)j−r

(
fc
)
r

0 ≤ j ≤ N − 1 (25)

Or (Oc)j =
N−1∑

r=0

(Dc)j−r+NH(r−j)

(
fc
)
r

0 ≤ j ≤ N − 1 (26)

where H(r-j) is the Heaviside unit step function, which is 1 when
r-j is positive, or 0 otherwise. The termNH(r-j) contributes to the
subscript numbering only when the step function is not zero to
avoid negative subscript. Here, subscript -r reverses the sequence
of the D series and subscript j shifts it in a circular fashion. More
details has been given by Liu et al. (2000).

This means that the Fourier transform operation in Equation
(24) is valid only when the convolution of Dc(i) and fc(i) is in the
form given in Equations (25) or (26). Although Equations (23)
and (25) are for different events, they are expressed in the same
form and lead to the same results in one period (Oppenheim
et al., 1999).

The cyclic (circular) convolution is for series of finite lengths,
and the circular fashion of the D series make it suitable for
problems with either periodic features (e.g., nominally flat
contact with a special IC treatment) or a circular configuration
(e.g., cylindrical and journal bearing problems). Liu and Chen
(2012) and Liu (2013) reported an FFT-based conformal-
contact model for 2D problems with two concentric cylindrical
interfaces, Figure 1F, for which we can directly apply the cyclic
convolution theorem and 1D FFT operations to obtain the
shaft deformation. However, for problems without the periodic
features, such as counterformal line/point contact problems,
special measures are needed tomake theD series in such a needed
circular fashion so that the cyclic convolution can be properly
performed. The ICs and the pressure series can be properly
handled based on the characteristics of the problems, e.g., Liu S.
et al. (2000, 2007), Liu and Wang (2002), and Chen et al. (2008),
so that they fit the need for the circular-convolution analyses.
Because the FFT is a collection of algorithms for fast execution
of DFT, the cyclic convolution of the two datum series (Equation
26) should also satisfy Equation (24) when the DFT is replaced by
the FFT.

FFT ALGORITHMS FOR CONTACT
MECHANICS

Cyclic Convolution and the DC-FFT
Algorithm for Non-periodic Contact
Problems
Consider the general line-contact displacement problem shown
in Equation (3), subjected to a Hertzian pressure, or any localized
pressure in a certain distribution, where influence coefficient
D(k, i) means uz/C at node k caused by a unit pressure at node
i, on a uniform grid of mesh spacing 21. This is a problem
of the convolution of two series of finite lengths; it is not
infinite, nor periodic. Therefore, the cyclic convolution theorem,

Equation (26), should be applied in order to solve it with the
Fourier transform method, for which the IC matrix has to be
a cyclic matrix. This section explains how such a matrix is
constructed from the original IC matrix via wrap-around order,
and how this problem is solved properly and efficiently via the
FFT. The wrap-around order requires one-to-one extension of
the target domain on which the physical problem is defined,
and the pressure on the extended domain should be set to
zero (zero padding).

It should be mentioned that if such a problem were solved
with the continuous convolution theorem, Equation (22), via
FRF and Fourier transform of pressure in the finite target
domain, a noticeable error would appear at the borders because
it periodizes the problem mathematically. Ju and Farris (1996)
depressed this error by five times domain extension. The
analysis by Liu et al. (2000) indicated that a complete error
removal would require 16 times domain extension, as if the
problem were infinite. Error analyses will be discussed in
a later section.

Because influence coefficient D(k, i) only depends on the grid
geometry, or, more specifically, the distance between points k
and i, for a given uniform grid, it relies solely on

∣∣k− i
∣∣ no

matter what k or i is. We can define Xk−i as the non-dimensional
distance (normalized by a characteristic length, a) from Xk to
Xi, or Xk−i= Xk to Xi, then the IC component can be expressed
as Dk−i. Subscript k-i marks each element in the IC matrix.
Obviously here for Equation (3),Xk−i = –Xi−k„ andDk−i =Di−k,
or Dj = D−j. Using X̄k−i = Xk−i/1̄, 1̄ = 1/a, Equation (3) can
be expressed as follows in a non-dimensional form,

uz(Xk)

aphC
=

∑

i

1̄
[
(1− X̄k−i) ln

∣∣1− X̄k−i

∣∣ + (1+ X̄k−i) ln
∣∣1+ X̄k−i

∣∣]

+
[
2(ln 1̄ + ln a− 1)

]
P(Xi) (27)

For example, if a and ph are the Hertzian contact half width and
maximum pressure, P(X) =

√
1− X2, and the Hertzian pressure

distribution is then p = P ph, and if the problem is digitized with
Np = Nd = N = 5 nodes, k − i = [−4, 4], the non-dimensional
matrix-form displacement for Equation (3), U, becomes,

−uz(Xk)

aphC
=




D0 D−1 D−2 D−3

D1 D0 D−1 D−2

D2 D1 D0 D−1

D3

D4

D2

D3

D1

D2

D0

D1

D−4

D−3

D−2

D−1

D0







P0
P1
P2
P3
P4




=




U0

U1

U2

U3

U4




= U (28)

The solution requires 5× 5, or NxN, multiplication operations.
The IC matrix above is a Toeplitz matrix, or a diagonal-

constant matrix. This matrix has to be converted to a cyclic
one in order to utilize the cyclic convolution theorem (Liu
and Wang, 2002). This can be done with the operation of the
wrap-around order (Bracewell, 1978; Brigham, 1988; Press et al.,
1992) by adding the reversed first column without the first
element, which is [D4,D3,D2,D1], to the end of the first row,
[D0,D−1,D−2,D−3,D−4]. Then, the extended first row becomes

[
D0 D−1 D−2 D−3 D−4 D4 D3 D2 D1

]
(29)
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The total number of the extended series is Nc= 2N−1 = 9. By
using the Heaviside step function notation, j–r+NcH(r–j), with
H(r−j) =1 for r-j >0, Equation (29) becomes Equation (30).
Series Dc in Equation (26) can be written as [< D >]Nc=2N−1to
show the cyclic nature by < > and the size information by the
subscript.We can also use

[
D

]
2N−1

to express this extended wrap-
aroundmatrix. A short vertical bar is used to separate the original
and extended terms for clarity.

[< D >]Nc = 2N−1 =
[
D0 D8 D7 D6 D5 | D4 D3 D2 D1

]

= [D |EX ]2N−1 (30)

where EX means the extended components.
The nodal pressure vector is also extended by zero padding

as follows

[P]Nc=2N−1 =
[
P0 P1 P2 P3 P4 | 0 0 0 0

]
= [P |EX ]2N−1

(31)

Then Equation (3) becomes

−uz(Xk)

aphC
=

N−1∑

i=0

(Dc)k−i+NcH(i−k)pi ⇔ [< D >]Nc = 2N−1 ∗ [P]Nc = 2N−1

= IDFT

([
< D̂ >

]
Nc = 2N−1

◦
[
P̂
]
Nc = 2N−1

)

= IFFT

([
< D̂ >

]
Nc = 2N−1

◦
[
P̂
]
Nc = 2N−1

)
(32)

where “◦” means the operation of term-by-term type complex
multiplication. Note that the equal sign with arrows indicates that
the vector at the right-hand side contains exactly that at the left-
hand side, but the former has extra useless terms in the extension.
This is the expression for the discrete convolution (cyclic
convolution) and fast Fourier transform (DC-FFT) algorithm,
named by Liu et al. (2000), for the deformation calculation.
Similar expressions can be obtained for stress calculations (Liu,
2001; Liu and Wang, 2002). Because the FFT operation of an
N-number series is in the order of Nlog2N, the operation of
Equation (32) is in the order of 3Nclog2Nc, much smaller than
that of the direct summation (DS) operation, which is N×N,
especially when N is large, as shown earlier in Introduction.
Wang and Zhu (2019) offer a detailed numerical example, which
shows that the direct summation, Equation (28), and the DFT-
IDFT operation of the DC-FFT algorithm, Equation (32), lead to
the same results in the analyzed accuracy.

In order to show the cyclic nature of this operation, the fully
extended matrix, or the cyclic matrix, is completely constructed
from [< D >]Nc = 2N−1 by circulating the last element in one row

to the first position in the next row, given below.




D0 D−1 D−2 D−3 D−4

D1 D0 D−1 D−2 D−3

D2 D1 D0 D−1 D−2

D3 D2 D1 D0 D−1

D4 D3 D2 D1 D0

D4 D3 D2 D1

D−4 D4 D3 D2

D−3 D−4 D4 D3

D−2 D−3 D−4 D4

D−1 D−2 D−3 D−4

EX EX




=




D0 D8 D7 D6 D5

D1 D0 D8 D7 D6

D2 D1 D0 D8 D7

D3 D2 D1 D0 D8

D4 D3 D2 D1 D0

D4 D3 D2 D1

D5 D4 D3 D2

D6 D5 D4 D3

D7 D6 D5 D4

D8 D7 D6 D5

EX EX




=
[
IC EX

EX EX

]
(33)

Only the top portion of the matrix is written out because they
are related to the physical target domain of the original problem
in the matrix operation. When using the DC-FFT algorithm,
only the first row is needed, and only the first N rows of the
IFFT results are the needed solutions while the others should
be discarded.

IC wrap around order and pressure zero padding, shown
in Figure 3, are two important operations for the DC-FFT
algorithm to utilize the cyclic convolution and solve contact
mechanics problems. Different implementation variations can be
made; however, these two operations are necessary. The wrap-
around order for deformation calculation can be done by shifting
the negative side or flip those between 1∼N-1. Caution should
be paid for stress analyses because the shear-stress ICs are anti-
symmetric. Sometimes, ICs also need zero padding, which should
be done at node N where the IC is the smallest.

FIGURE 3 | 1D IC wrap around order and pressure zero padding for 2D

line-contact problems.
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Analogous to the line-contact problem discussed above, the
IC matrix for a 3D point-contact problem can be constructed
by extending the original physical domain in the two lateral
directions, as shown in Figure 4A. Equation (9) becomes the
following for a 3D contact problem, where a is a reference
length, which could be the Hertzian radius of a spherical contact,
and ph a reference pressure, which could be the maximum
Hertzian pressure.

U = −uz(Xk,Xl)

aphC
⇔ [< D >](2Nx)(2Ny) ∗ [P](2Nx)(2Ny)

= IFFT

([
< D̂ >

]
(2Nx)(2Ny)

[
P̂
]
(2Nx)(2Ny)

)
(34)

where Npx = Ndx = Nx and Npy = Ndy = Ny are the numbers of
nodes in the x and y directions, respectively.

The extended circular convolution IC matrix is

[< D >](2Nx)(2Ny) =
[〈

D

EX

∣∣∣∣
EX

EX

〉]

(2Nx)(2Ny)

(35)

where D on the right-hand side means the ICs corresponding to
the physical domain.

It should be emphasized that two domains are involved, which
are (1) the target domain, or the physical domain where the
contact problem is defined, and (2) the extended domain, or the
computation domain. At the end of the calculation, only the data
for the target domain should be retained for the results. It is
worth mentioning that the total lengths of P and D here are the
minimum requirements; longer series than these should work,
simply at a higher cost of computational efficiency. With these
in mind, we can construct certain variations to implement this
extension in order to apply the circular convolution for different
situations, which are not discussed here.

The solution process involves IC matrix calculation, IC wrap-
around order, pressure zero padding, and the FFT–IFFT. Its
procedure is detailed as follow (Liu et al., 2000).

1) Calculate the influence coefficient matrix, [D]2Nx×2Ny
, from

–Nx to Nx − 1 in the x direction and –Ny to Ny − 1 in the
y direction;

2) Apply the wrap-around order and zero padding to convert
the IC matrix into a cyclic matrix, [< D >]2Nx×2Ny

in

the calculation domain, marked as
[
1 : 2Nx, 1 : 2Ny

]
(or[

0 : 2Nx− 1, 0 : 2Ny− 1
]
), in the x and y directions, as shown

in Figure 4B, and then apply the two-dimensional FFT to

obtain the Fourier transformed IC matrix,
[
< ̂̂D >

]
;

3) Input pressure, conduct zero padding to convert pressure

[P]Nx×Ny
into[P]2Nx×2Ny

and then apply the two-dimensional

FFT to get
[
< ̂̂P >

]
;

4) Obtain a temporary frequency series using element-by-

element product of the two, i.e.,
[
< ̂̂D >

]
◦

[
< ̂̂P >

]
, where

“◦” means the operation of element complex multiplication;

5) Conduct two-dimensional IFFT
([

< ̂̂D >
]
◦

[
< ̂̂P >

])
to

obtain the surface deformation and keep the result data within
the original physical domain.

The error analyses by Liu et al. (2000) andWang et al. (2003) have
convinced that (1) the DC-FFT algorithm generates no additional
inaccuracy beyond the discretization error, (2) its accuracy for
solving elastic contact problems is nearly independent of the
computation domain size accept for the necessary extension, and
(3) the DC-FFT algorithm is the fastest among the commonly
used contact analysis methods. Figure 4B presents a series of
calculation results for the contacts of two honed rough surfaces
subjected to several normal loads. The composite root-mean
square (RMS) roughness is Rq = 0.5 micron. The contact
ellipticity is K = 2.0, radii of curvature of the contact bodies are
Rx = 19.05mm, Ry = 54.165mm, the equivalent elastic modulus
is E′ = 226.4 GPa, and the maximum Hertzian pressure is 2.72
GPa at the load of 7,680N. No plasticity is considered in this set
of analyses. The complementary conditions for contact modeling
are given in the Appendix.

Continuous Convolution and Fourier
Transform (CC-FT) for Nominally Flat-Flat
Contact Problems
The contact of nominally flat but rough surfaces is a problem
with an infinite domain, and it can also be considered as
a periodic contact problem, i.e., the contact characteristics
in a representative finite region repeat periodically in lateral
directions. Since the FRF of Green’s function exists and the
periodic pressure distribution can be made into Fourier series,
the continuous convolution theorem is applicable.

The continuous convolution and Fourier transform (CC-FT)
algorithm has been suggested by Liu et al. (2000) and Liu S. et al.
(2007) for this type of problems, which is so named because in
the theoretical nature, the continuous convolution theorem is
applied. If the FT in Equation (21) and the final IFT are replaced
by the discrete Fourier transform and the inverse discrete Fourier
transform (IDFT), which is actually that the FT divided by mesh
interval is replaced by the DFT and the IFT multiplied by the
mesh interval is replaced by the IDFT, the equation below can
be executed directly. Here, the FFT and IFFT are applicable to
execute the DFT and IDFT efficiently. The CC-FT algorithm is
built upon the frequency response functions (FRFs) G̃ and FFT
of pressure, p̂,

U = IDFT[G̃ ◦ p̂] (36)

The FRFs are singular at the coordinate origin, which can be
processed with the Gauss quadrature integration method. This
CC-FT method is actually what Ju and Farris (1996) and others
used before 2000 for non-periodic contact problems where it
involved periodic errors. With the CC-FT algorithm, the solution
can be computed only in a representative target domain as if this
were one period of the rough surface laterally. Therefore, this
method is highly efficient, as well as accurate, in computation.

FFT Algorithms for 3D Line-Contact
Problems
The 3D line-contact problems involve a limited domain size in
one of the lateral directions but a significantly long length in the
other. Such a problem can be simplified as a 2D plane-strain issue
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FIGURE 4 | 2D Wrap-around order in both x and y directions and zero padding for 3D point-contact problems (A), and elliptical contacts of two rough surfaces under

different normal loads (B). In (A), the arrows show the directions of the IC wrap-around order. In (B), the light-colored patterns inside the blue (middle) and red (top)

contours show asperity contact pressure and area.
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if the contacting surfaces are ideally smooth and the materials
homogeneous. To explore more detail, we are facing 3D problem
with mixed issues. Three FFT-based approaches have been
developed, to be discussed below, which are the algorithms of
mixed discrete-continuous convolution with duplicated padding
and FFT (DCD-FFT) (Chen et al., 2008), the hybrid discrete
convolution, continuous convolution and FFT (DC-CC-FFT)
(Liu and Hua, 2009), and the discrete-periodic convolution with
IC summation and FFT (DCS-FFT) (Liu and Hua, 2009; Sun
et al., 2020) to consider the effect of roughness and material
inhomogeneity. They are mathematically and numerically the
same in the finite direction (x), but different in the other
dimension (y).

DCD-FFT Algorithm
The DCD-FFT algorithm (Figure 5A) modifies the DC-FFT
algorithm with a treatment in the y direction, simply by
duplicating the pressures in the target domain to the extended
region in the y direction, called duplicated padding (Chen et al.,
2008). The length of the extended region should be at least
the same as that of the target domain. This method is not
as accurate as the DC-FFT one for non-periodic problems,
especially when the extended domain in y is not sufficiently long,
because it ignores the deformation influences from the region not
included in the calculation, and the IC truncation error plays a
role. Therefore, this method is mentioned here for a reference
use only. However, the DCD-FFT method can effectively solve
the normal deformation of finite-cylinder surfaces (a quarter-
space problem), if the cylinders are not too short, with pressure
duplication in the extended domain (Liu et al., 2020).

DC-CC-FFT Algorithm
The infinite extension of the problem in the y direction qualifies
the direct use of the CC-FT method. Thus, the DC-CC-FFT
algorithm combines the features of the discrete convolution
theorem in the x direction, and the continuous convolution
theorem in the y direction, shown in Figure 5B, involving hybrid
FRFs and ICs (named ICs-FRF). Because there are two ways to
obtain the FRFs for the y-direction solution, two variations of the
DC-CC-FFT algorithm can be constructed.

DC-CC-FFT with IC-conversion. A simple way, with known
ICs, described by Sun et al. (2020), to build the DC-CC-FFT
algorithm is to process the 2D Fourier transform of the ICs
sequentially in the y and the x directions to obtain ICs-FRF, where
the FRF is from the IC conversion. After the y-direction FFT, the
FRFs are calculated fromEquations (14) and (17). Then the wrap-
around order in the x direction is conducted, followed by the 1D
Fourier transform in x. The calculation can be performed in the
following steps with a slightly different procedure for the wrap
around order.

1) Input the pressure, [P]Nx× Ny
;

2) Extend the pressure [P]Nx×Ny
into [P]2Nx×Ny

with zero-
padding in the x direction only;

3) Transform [P]2Nx×Ny
to

[
<

ˆ̂P >
]
2Nx×Ny

by applying 2D FFT,

note here, the domain has been enlarged;
4) Calculate the IC matrix [D]2Nx× Ny

;
5) Apply 1D FFT to [D]2Nx×Ny

in the y direction to get[
D̂

]
2Nx× Ny

;

6) Calculate the ICs-FRF,
[
D̃

]
2Nx×Ny

by using Equations (14)

and (17) in the y direction;
7) Treat

[
D̃

]
2Nx×Ny

with the wrap-around order only in the

x direction and get
[
< D̃ >

]
2Nx×Ny

which is only term

flip because the domain has been enlarged in 4). Here,[
< D̃ >

]
2Nx×Ny

is the ICs after the wrap around order in the x

direction but FRF in the y direction, and the latter is converted
from the ICs done in the previous step;

8) Apply 1D FFT to
[
< D̃ >

]
2Nx×Ny

in the x direction, and the

resultant series is denoted as
[
<

ˆ̃D >
]
2Nx× Ny

;

9) Obtain a temporary frequency series by element-by-element

production between
[
< ̂̂P >

]
2Nx×Ny

and
[
<

ˆ̃D >
]
2Nx×Ny

,

which can be expressed as
[
<

ˆ̃D >
]
◦

[
< ̂̂P >

]
, where

“◦” means complex multiplication in an element-by-
element manner;

FIGURE 5 | DCD-FFT (A) and DC-CC-FFT (B) algorithms (based on Sun et al., 2020), Reprinted by permission from Springer, Computational Mechanics. The red

areas mark the target domains, and the light green regions are for the IC wrap around.
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10) Apply a 2D IFFT to
[
<

ˆ̃D >
]
◦

[
< ̂̂P >

]
;

11) Obtain the surface displacement by keeping values within
the original target domain, and the resultant series are shown

as IFFT
{[

<
ˆ̃D >

]
◦

[
< ̂̂P >

] }
.

The advantage of the algorithm of DC-CC-FFT with IC-
conversion is that it does not require known FRFs if ICs can be
calculated more easily. It is more accurate than the DCD-FFT
method but still involves some IC truncation and conversion
errors. The IC truncation error can be greatly reduced by using
the IC summation method, to be discussed in section DCS-
FFT Algorithm.

Precise DC-CC-FFT algorithm, presented by Liu and Hua
(2009), is to conduct the analytical Fourier transform of
Green’s function in the length (y) direction, and calculate
the ICs with respect to x, to obtain the hybrid ICs-FRFs,
and then conduct the wrap-around order in x and the one-
dimensional FFT of the new ICs-FRFs. This approach is
theoretically accurate.

Both DC-CC-FFT algorithms only require extending the

domain in the x direction twice the size of the target domain,

while the domain size in y is unchanged, which can be as small as
possible, as long as it is sufficient represent the necessary features
of surfaces and materials.

DCS-FFT Algorithm
Liu and Hua (2009) suggested another approach to deal with
3D line-contact problems, which is to consider the elasticity
effect of the entire domain, or a sufficiently large domain, by IC
summation, and Sun et al. (2020) have extended this method to
solve the contact problems involving inhomogeneous materials.
Figure 6A illustrates this idea. We can include M segments of
equal length on each side of the target domain in the length
direction, while making the target domain size as small as
possible, as long as the main contact features are included. Nx

in the x direction and Ny in the y direction may be different.
The ICs in each segment are the same, periodically shifted

from those in the target domain. The influences of the pressures
in the other segments on the deformation within the target
domain can be included via the IC summation in the target
domain, given below, with the superscripts for the segment
numbers and the subscripts for the y direction coordinates in the

FIGURE 6 | IC summation in the periodic convolution (A) and 3D line contact of a smooth, rigid cylinder, and a flat rough surface calculated by using the DCS-FFT

algorithm (B).
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target domain.

DSum
i,j =

M∑

r=−M

(
D
(r)
i,j−rNy

)
, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

(37)

Because the ICs in each segment are the same, only one copy of
the IC, marked with superscript (0), is necessary, shown below
with proper shifts for other copies.

DSum
i,j =

M∑

r=−M

(
D
(0)
i,j−rNy

)
, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

(38)

Using DSum
i,j in the DC-FFT algorithm should result in more

accurate solutions to 3D line-contact problems than those by
using the DCD-FFT algorithm. Of course DSum

i,j can be used in

the algorithm of DC-CC-FFT with IC-conversion discussed in
the previous section. The solution procedure of the DCS-FFT
algorithm can utilize the DC-FFT framework, which may involve
the following steps:

1) Calculate the summed IC matrix, DSum
i,j , from the ICs

calculated in the region from –Nx to Nx-1 in the x
direction and from −MNy to MNy-1 in the y direction, and

construct [D] SumNx×Ny
;

2) Apply the wrap-around order, as well as zero padding if
needed, to transfer the IC matrix into a cyclic matrix,

[< D >]Sum2Nx×2Ny
, similar to that in the DC-FFT algorithm,

and then employ the 2D FFT to obtain the Fourier

transformed IC matrix,
[
< ̂̂D >

]Sum
;

3) Input pressure, conduct zero padding in the x direction and
duplicated padding in the y direction to convert pressure

[P]Nx×Ny
into [P]2Nx×2Ny

, and apply the 2D FFT to get the

Fourier transformed pressure matrix,
[
< ̂̂P >

]
;

4) Obtain a temporary frequency series from the element-by-

element complex product of the two, as
[
< ̂̂D >

]Sum
◦

[
< ̂̂P >

]
;

5) Obtain the surface deformation data from

IFFT

{[
< ̂̂D >

]Sum
◦

[
< ̂̂P >

]}
and keep the resultant

data within the original physical target domain.

Figure 6B presents the 3D cylindrical contact of a rigid infinite-
length cylinder and an elastic half space material (E = 200 GPa,
υ = 0.3) with a sinusoidal rough surface, analyzed with the
DCS-FFT algorithm. The 3D roughness is periodic in both the
x and y directions, and the load is treated periodically in the y
direction. With the DCS-FFT method, no edge effect appears at
the borders of the target domain, which means that the elasticity
effect of neighboring duplicated domains has been properly taken
into account.

Compared with the DCD-FFT algorithm, the DCS-FFT
method does not require a large target domain because of the

IC summation. As mentioned before, Ny can be very small,
e.g., as small as one period of the pressure variation in the y
direction, or as short as the length of a representative rough
surface area and/or material inhomogeneity region. Among all
the three algorithms for 3D line-contact problems, the DCS-
FFT and the accurate DC-CC-FFT algorithms are recommended,
and the former may be more preferred because it uses the same
DC-FFT solution framework, convenient for programming,
especially when the DC-FFT software is available as a set of
the open-source codes (http://othello.mech.northwestern.edu/
qwang/OpenSourceCodeDCFFT/DC-FFTWeb.htm). It should
be mentioned that the DCS-FFT algorithm can also be used to
construct a mechanism to solve the nominally flat-flat contact
problems, namedDCSS-FFT, which further modifies the ICs with
2D IC summations in both x and y directions (Sun, 2020).

DCR-FFT Algorithm
In comparison to the contact issues involving an excitation
and response defined in a convolution, the relationship between
eigenstrains and the components of the elastic field in a
material involves both the convolution and the correlation
(Liu and Wang, 2005; Liu et al., 2012), and the correlation
theorem should be implemented as well. Here, eigenstrain is a
generic term for various non-elastic strains, defined by Mura
(1993), including thermal strain, plastic strain, fit-induced strain,
phase transformation induced strain, and residual strain in a
general sense. Many inhomogeneity problems can be solved
via the Equivalent-eigenstrain method (EIM) (Eshelby, 1957),
and correlations of functions are involved in the mathematical
expressions of the eigenstrain-induced field.

Correlation Theorem
The Fourier transform of the correlation of two real datum
series is the multiplication of the complex conjugate of Fourier
transform of one function and the Fourier transform of the other.

Correlation

∞∫

−∞

g(t + τ )f (t)dt = RGf (τ ) (39)

with RGf (τ ) = RfG(−τ ), and the Fourier transform is,

R̃Gf (m) = g̃(m)f̃ (m) (40)

where f̃ is the complex conjugate of f̃ .

DCR-FFT Algorithm
The DCR-FFT algorithm is an analogy to the DC-FFT
algorithm, to be proven below, and it can be combined with
the DC-FFT algorithm for a hybrid convolution-correlation
operation to solve the inhomogeneity problem illustrated
in Figure 1D. Details are given by Liu and Wang (2005),
and applications can be found in the works by Liu et al.
(2012), Wang et al. (2013a,b), Zhou et al. (2016), and Zhang
M. Q. et al. (2018). A set of open-source codes can be
downloaded from http://othello.mech.northwestern.edu/qwang/
OpenSourceCodeEigenstrainFiledHalfSpace/2012Web.htm.

Let’s use deformation as an example. Equation (41) (Liu et al.,
2012) shows the link between eigenstrain [e] in domain � and
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surface deformation ui in the i = x, y, or z direction, via a group
of Green’s functions, Us

i .

ui =
−1

2π

∫

�

Us
i[e]dx

′ (41)

Similar to the expression of convolution related

to potential function RI =
√

(x − ξ)2 +
(
y− η

)2
for the solution to contact elasticity, Equation (41)

involves RI =
√

(x− ξ)2 +
(
y− η

)2 + (z − ζ )2 and

R =
√

(x− ξ)2 +
(
y− η

)2 + (z + ζ )2. Here, R has a plus

sign inside the third term, which means a 1D cross correlation
with [e] on z for the solution.

The discrete form of the 1D cross correlation of influence
coefficient D and [e] in Equation (41) is given below

uz =
Ne∑

i=1

Di+kei (42)

where Ne is the total number of nodes, and IC components Dk+i

involves R.
More generally, for two series of complex numbers, f and g,

Rhg =
∫ ∞

−∞
f (t)g(t + τ )dt (43)

where f (t) is the complex conjugate of f (t). Equation (42) is
equivalent to the following correlation,

Rhg =
∫ ∞

−∞
f (t − τ )g(t)dt and R̃hg = f̃ (t − τ )g̃(t) (44)

Or Rhg [n] ≡
∞∑

m=−∞
f[m−n]g[m] and R̂hg = f̂ (t − τ )ĝ(t) (44’)

This means that the convolution theorems should also be true to
Equation (44) or (44’), no matter the series are real or complex.
The numerical calculation of correlation can be done either by
direct use of the correlation theorem (Equations 39–40) or the
convolution given in Equation (44) (or Equation 44’) with proper
treatment of the two series, and the DC-FFT algorithm directly
works for the latter. Caution should be given in conducting the
Fourier transform.

By analogy, the DC-CC-FFT and CC-FT algorithms can all be
extended to include the correlation operation for the analyses of
the field due to eigenstrains.

Figure 7 shows a case of a cylinder in contact with the rough
surface of an inhomogeneous half-space material (Sun et al.,
2020), solved with the DCS-FFT algorithm. The representative
piece of a ground surface is given in Figure 7A) in a mesh
of 128 × 128, and Rq= 1.18µm. A virtual ground rough
surface subjected to the cylindrical contact is formed through
periodically extending this patch along the y direction. The target

domain has the dimensions of lx× ly× lz , and the length are all set

to be lx = ly = 8a
3 , lz =

4a
3 . All the cuboidal inhomogeneities are

identical, with ax = ay = az = 0.3a, and they are distributed in
the subsurface in the x = 0 plane in the depth of zd = 0.45a.
Figure 7B shows the 3D pressure distribution mapped on the
contact surface, where sporadic pressure peaks can be found. The
contours of the pressure and the von Mises stress distributions in
the XOZ and YOZYOZ cross sections are given in Figures 7C,D.
The 3D features of the pressure and stress are captured while their
length-direction periodicities are also retained.

IC Conversion From FRFs
Figure 1E shows the contact involving a multi-layered material.
The core analytical solutions to this type of problems are
obtained, ignoring the body forces, by solving the governing
differential equations in the frequency domain through the
Fourier transform. The Fourier-domain solutions become the
frequency response functions (FRFs) if surface tractions are unit
valued. The conversion through Equations (13)–(18) leads to
influence coefficients for the DC-FFT algorithm (Liu and Wang,
2002; Yu et al., 2014, 2016). Note that here, the direct inverse
Fourier transform of the frequency-domain solution may result
in inaccuracy when solving a non-periodic non-infinite contact
problem (Liu et al., 2000).

The IC conversion method can be used to other contact
cases as well. Our recent studies on the contacts involving
magnetoelectroelastic or viscoelastic materials are all through the
path of FRFs-ICs conversion and then the DC-FFT algorithm.
Two such examples are given in Figures 8, 9.

Figure 8A shows the contact of two magnetoelectroelastic
materials subjected to interfacial contact pressure, surface electric
and magnetic charges. For this type of multifield material
systems, the Fourier-domain solutions can be obtained by
solving the coupled mechanical governing equations and the
Maxwell equations in the frequency domain through the Fourier
transform. The Fourier-domain solutions become the FRFs if the
mechanical tractions, surface electric and magnetic charges are
unit valued. The inverse Fourier transform through Equations
(13) and (18) leads to influence coefficients to construct the DC-
FFT algorithm. Figure 8B shows a case of an ellipsoid in contact
with the surface of a magnetoelectroelastic material. The major
and minor radii of the ellipsoid are Rx = 300mm and Ry =
200mm, and the normal force is Pz = 500N. More details can
be found in the work by Zhang X. et al. (2017, 2018, 2019).

Viscoelastic contact problems have drawn a great deal of
attention (Goryacheva and Sadeghi, 1995; Chen et al., 2011;
Putignano et al., 2015; Stepanov and Torskaya, 2018). It is also
convenient to solve certain viscoelastic contact problems in the
frequency domain. Here, two types of frequencies are involved,
one with respect to time and the other to space. Figure 9A shows
the sliding contact of a layer- substrate system, which actually
represents four cases for each contacting bodies, (1) a viscoelastic
layer on an elastic substrate, as shown, (2) a viscoelastic half
space with the layer thickness = ∞, (3) an elastic half space
with the layer thickness = 0, and 4) an elastic layer on a
viscoelastic substrate by exchanging material properties under
certain conditions, all solvable with the same model (Zhang et al.,
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FIGURE 7 | Contact of a cylinder with inhomogeneous half-space and a rough surface (A) and inhomogeneities, 3D pressure distribution on the contact surface (B),

pressure and von Mises stress distributions in the XOZ plane (C), and pressure and von Mises stress distribution in the YOZ plane (D). The square inhomogeneities

are shown in (D). Note that (C) cuts through the center of the domain, where no inhomogeneity appears.

FIGURE 8 | Contact of magnetoelectroelastic materials subjected to interfacial contact pressure, pz, friction, px , surface electric and magnetic charges, qb and gb,

(A); solutions of pressure and electrical potential on the surface (B).
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FIGURE 9 | Sliding contact of a viscoelastic layer-elastic substrate system (A); and the pressure variations in the case of a sphere sliding on the surface of such a

material set at speed V = 50 mm/s (B). This model includes four cases, (1) a viscoelastic layer on an elastic substrate, as shown, (2) a viscoelastic half space, layer

thickness = ∞, (3) an elastic half space, layer thickness = 0, and (4) an elastic layer on a viscoelastic substrate by exchanging material properties under

certain conditions.

2020a,b). The FRFs can be readily obtained from the elastic FRFs
of elastic layered materials, by replacing the elastic modulus in
elastic FRFs with the viscoelastic complex modulus. The inverse
Fourier transform of the viscoelastic FRFs through Equations
(13) and (18) leads to the viscoelastic influence coefficients
to construct the DC-FFT algorithm in the viscoelastic contact
framework. Figure 9B shows a case of a sphere sliding on the
surface of a viscoelastic layer-elastic substrate system at a contact
speed V = 50 mm/s. The layer thickness is 1mm, the sphere
radius is 10mm, and the normal load is 1.48N. Note that in
Figure 9A, the interface between the layer and the substrate can
be imperfect, and the spatial domain ICs have been solved by
Wang et al. (2017a,b) and Zhang andWang (2020). More studies
related to viscoelastic contact solutions of layered materials with
perfect or imperfect interfaces subjected to steady-state and
transient conditions can be found in the work by Zhang et al.
(2020a,b).

FFT With Non-uniform Mesh
In engineering systems, such as gears, journal bearings, and
manufacturing tools, the contact regions can be large but the
computation scale in a numerical simulation is limited. It is
always a challenge to balance efficiency and accuracy. Take the

line contact in a gear or a roller bearing as an example; the
middle portion of the contact zone can be analyzed accurately
with a coarse mesh, but the edges have to be modeled with a
fine mesh in order to describe the drastic pressure variations
there. The FEM deals with this type of issues with non-
uniform meshes; however, the FFT-based methods built so far,

although efficient in a single mesh, are largely confined by
the requirement of uniform grids. Sun (2020) has developed
a method to extend the FFT-based algorithms to meshes of
different densities, in which a finer mesh system is used in
specific regions involving high pressure peaks while a coarser
one is set in other regions under relatively smooth pressures.
Figure 10A illustrates this non-uniform-mesh idea for a roller
contact problem, where one side of the regions under the edge
effects is meshed denser, while the other side is meshed with
a coarse grid. In this particular example, the density of the
fine grid is three times that of the coarse grid. The solution
on the coarse-grid domain may be run for the entire region,
depending on the size of the problem, but that on the fine-
mesh domain is pursued just in a region somewhat larger than
what it is designated. Extra data are discarded, and the joint
deformations from the two meshes in both designated regions
are used to evaluate the gap. This process involves overlapped
calculations; however, for problems like the roller contact shown
here, the larger the physical domain is, the more the saving of the
computation time.

Figure 10B shows the comparison of the pressure calculated
with a uniform mesh system and non-uniform meshes. The
density of the uniform mesh is the same as that of the fine
mesh of the non-uniform meshes. The pressure obtained on
the effective zone of the fine mesh from the non-uniform mesh
solution well matches that on the uniform fine mesh system.
When the contact region is large and the pressure distribution
is strongly non-uniform, the FFT method with non-uniform
meshes offers a more efficient and flexible way to detail the
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FIGURE 10 | Non-uniform mesh system used in the contact of a bearing roller with an end profile modification (A), and a calculation result (B).

FIGURE 11 | Error comparisons. (A) DC-FFT and CC-FT algorithms in solving a finite-domain problem (Liu et al., 2000), Reprinted by permission from Elsevier, Wear,

γ means the discretization density in the frequency domain and χ the ratio for spatial calculation domain extension, (B) CC-FT and DCD-FFT algorithms in solving the

contact of a 3D sinusoidal wavy surface and a flat (Liu S. et al., 2007), Reprinted by permission from Elsevier, Tribology International; this is an infinite-domain, or

periodic, problem. p means the average pressure.

regions of special concerns, such as edges, interfaces, dents,
and defects.

DISCUSSION AND CONCLUSIONS

Accuracy Comparisons
Figure 11A is for the results of a finite-domain problem with
pressure acting on a region of 2a in length (Liu et al., 2000);
it compares the errors from the DC-FFT algorithm structured
in different routes with respect to the solution from the direct
summation (DS) method. The continuous convolution and
Fourier transform (CC-FT) algorithm is used to solve the same
finite-domain problem, and its result is also compared. In this
figure, the solutionmethods are named routes, which are Route 2:

DC-FFT with ICs from Green’s function, Route 3: DC-FFT with
ICs from conversion of frequency response functions, Route 4:
CC-FT with frequency response functions, Route 5: the classic
DS method with ICs from Green’s function. Route 1 is not
included here, which uses the FEM to calculate the ICs. The
DC-FFT solution method (Route 2) appears to be accurate; its
results overlap with those by the DS method. This means that
the solution is not affected by the calculation domain size. Route
3, however, is different, depending on the discretization density
in the frequency domain. The discrete influence coefficient from
the frequency response function is the key for error control,
the frequency domain sampling intervals, 1m and 1n, should
satisfy Nm≥2Nx and Nn≥2Ny, and Equations (16), or (17), or
(18) should be implemented, followed by a proper wrap-around
order (Liu and Wang, 2002).
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FIGURE 12 | Comparison of the algorithms of DCS-FFT, DCD-FFT and

DC-CC-FFT with IC-sum conversion. The physical domains are marked as

x × y × z, and M = 8 means the number of segments used in the IC

preparation.

Figure 11B shows the behavior of the CC-FT algorithm in
solving the periodic problem of a 3D sinusoidal wavy surface in
contact with a flat; it compares the numerical solution with the
corresponding analytical results results (Liu S. et al., 2007). In
addition, the DCD-FFT algorithm is also evaluated. It is evident
that the CC-FT algorithm yields the solutions of high accuracy
that is within machine precision. The CC-FT algorithm with
either the zero-order or the first-order shape function yields
nearly the same high accuracy. This indicates that a higher
order shape function may be unnecessary if the algorithm is
formulated properly.

The CC-FT algorithm is superb in analyzing the contact of
nominally flat but actually rough surfaces.

Figure 12 compares the 3D cylindrical-contact algorithms of
DCS-FFT, DCD-FFT, and DC-CC-FFT with IC-sum-conversion
in calculating the maximum shear stress τ1, given below:

τ1 =
1

2

√
(σ11 − σ33)

2 + 4σ 2
13 (45)

The identical target domain (2a× 2a× 2a) is used in all the three
FFT-based methods. A large gap is shown between the result
curves for the analytical and the DCD-FFT results, caused by the
IC truncation error. The utilization of the DC-CC-FFT algorithm
(IC-summation-conversion) greatly reduces the truncation error;
however, some difference is still visible. The advantage of this
DC-CC-FFT algorithm with the summarized ICs is the reduced
computational burden because no duplicated-padding and wrap-
around order are needed in the length direction. The DCS-
FFT algorithm shows its accuracy and efficiency in dealing with
this type of contact problems without knowing analytical FRFs.
Theoretically the precise DC-CC-FT algorithm is more accurate
(Liu et al., 2009), which is similar to the CC-FT shown in
Figure 11B.

Range of Applications of the FFT
Approaches
The FFT-based approaches are efficient. Many publications
have shown the applications of these FFT algorithms on the
contact analyses of elastic fields, plastic transition and yield, flash
temperature, thermal stress, partial slip, and contact electrical
and magnetic fields, dealing with science and mechanics issues
for various systems from traditional mechanical components
to emerging sensors and batteries (Zhang X. et al., 2019;
Zhang et al., 2020c). The FFT algorithms discussed above are
advantageous in solving the problems that are mathematically
described in convolutions, correlations, combined convolutions
and correlations, and in frequency response functions as well.
The last one makes the FFT-based approaches more widely
applicable and powerful because many governing differential
equations can be more easily solved in the frequency domain
through the Fourier transform, such as those for functionally
graded materials (Ke and Wang, 2006), thermoelastically graded
materials (Choi and Paulino, 2008), thermally graded materials
(Zhang H. B. et al., 2018), materials with coupled stresses (Wang
et al., 2020), and magnetoelectroelastic materials (Zhou and Lee,
2013). In addition, because the surface deformation analysis is
an intermittent process of the elastohydrodynamic lubrication
(EHL) calculation and related modeling, the FFT-based solutions
are also building blocks in the models of mixed EHL in general
(Liu et al., 2006, 2009), 3D line-contact EHL (Ren et al., 2009),
finite-roller EHL (Zhang H. B. et al., 2017 with IC-overlapping
DC-FFT, Liu et al., 2020 with DCD-FFT), coating EHL (Liu Y. et
al., 2007 for single coatings, Wang et al. (2015) for multilayered
coatings), plasto-EHL (Ren et al., 2010), EHL of inhomogeneous
materials (Wang et al., 2014), wear in EHL (Zhu et al., 2007), EHL
of transversely isotropic materials (Wang and Zhang, 2019), EHL
of artificial joints (Wang and Jin, 2004), and EHL of 2D bearings
(Liu and Chen, 2012). Moreover, adhesive contact problems can
be solved with the FFT-based methods as well (Pohrt and Popov,
2015; Popov et al., 2017; Rey et al., 2017).

It is important to note that different contact types

require different convolution theorems and thus different
FFT algorithms. As summarized by Wang and Zhu (2019),

contact with nominally flat surfaces should be tackled with
the continuous convolution and Fourier transform (CC-FT)

algorithm. Point-contact problems, either circular or elliptical,
are non-periodic, and they should be formulated with the

cyclic convolution and solved with the discrete convolution

and FFT (DC-FFT) method utilizing zero padding and wrap-
around order. Three-dimensional cylindrical (line) contact

problems involve infinite domain extension in one direction
but a finite domain width in the other, for which the discrete-

continuous convolutions and FFT (DC-CC-FFT) and the discrete

convolution with IC summation and FFT (DCS-FFT) methods
should be used. The DCS-FFT algorithm is recommended if ICs

are already known. Both the CC-FT and DCS-FFT algorithms
are capable of solving periodic problems, and if the latter is

used, the IC summation in the other direction is also needed,
which makes it the DCSS-FFT algorithm mentioned in section
DCS-FFT Algorithm. Figure 13 summarizes the FFT algorithm
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FIGURE 13 | FFT algorithm tree and the application field (light blue) of each. The darker arrow lines indicate the paths of method development while the lighter arrow

lines means IC-FRF conversions and information supplies.

tree and the application field of each. The roots of this tree
are the essential analytical solutions to mechanics and physical
problems in the forms of Green’s functions, ICs, or FRFs.

Recently, the fast Fourier transform method has been
incorporated with the boundary-element method for solving
problems with an arbitrary columnar geometry, not confined
by the half-space assumption (Benad, 2018, 2019). This further
extends the breadth of FFT applications. For the plane-strain
problems associated with a columnar geometry formed by
extruding a 2D shape in the length direction, e.g., the one
solved by Benad (2018, 2019), the FFT solutions have a lower
computational complexity, O(n3 log n1.5), than the inversion of
a standard BEM matrix, O(n4), where n x n is the total number
of surface nodes. These problems are, mathematically, in the
same nature as that in Figure 2F, automatically meeting the
DC-FFT requirement with no need of the domain extension, as
indicated in the first row of Table 1 and Figure 13. Likewise, the
FFT method should also be directly applicable to plane-stress
problems of a disk-like geometry of any shape.

Limitations and Future Developments
The FFT-based methods mentioned here well fit the solutions of
many engineering problems, not limited to mechanical contacts,
as long as their model formulations contain convolution and/or
correlation, or are solvable in the frequency domain, subjected
to the assumptions of small deformation (linear or piecewise
linear). So far, for counterformal contacts, the characteristic body

dimension, such as radius, should be much larger than that of
the contact area; for conformal contacts, bodies involved should
have axisymmetry or columnar geometries. Generally, these FFT-
based solution approaches are confined by uniform meshes.
Although section FFT With Non-uniform Mesh has briefly
discussed the use of non-uniform meshes, more work is needed
to make the non-uniform-mesh FFT algorithms more flexible
and more efficient for contact analyses. Large deformation and
the effect of body forces are also among the challenges to further
developments of FFT-based methods for contact mechanics.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are
included in the article, open-source codes are available on-
line in http://othello.mech.northwestern.edu/qwang/Open
SourceCodeDCFFT/DC-FFTWeb.htm; http://othello.mech.
northwestern.edu/qwang/OpenSourceCodeEigenstrainFiledHalf
Space/2012Web.htm. Further inquiries can be directed to the
corresponding authors.

AUTHOR CONTRIBUTIONS

QW leads the overall writing, LS is on some of the methods
and results in Introduction, FFT Algorithms for 3D Line-
Contact Problems, DCR-FFT Algorithm, FFT With Non-
uniform Mesh, XZ on IC Conversion From FRFs, SL on

Frontiers in Mechanical Engineering | www.frontiersin.org 19 August 2020 | Volume 6 | Article 61

http://othello.mech.northwestern.edu/qwang/OpenSourceCodeDCFFT/DC-FFTWeb.htm
http://othello.mech.northwestern.edu/qwang/OpenSourceCodeDCFFT/DC-FFTWeb.htm
http://othello.mech.northwestern.edu/qwang/OpenSourceCodeEigenstrainFiledHalfSpace/2012Web.htm
http://othello.mech.northwestern.edu/qwang/OpenSourceCodeEigenstrainFiledHalfSpace/2012Web.htm
http://othello.mech.northwestern.edu/qwang/OpenSourceCodeEigenstrainFiledHalfSpace/2012Web.htm
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Wang et al. FFT-Based Methods Computational Contact Mechanics

technical and algorithm review, and DZ on a part of Frequency
Response Functions and ICs and rough surface contact results.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

The authors would like to express sincere gratitude to co-
workers at the Center for Surface Engineering and Tribology,
Northwestern University, Evanston, IL, USA, for years of

research on theoretical derivations of fundamental solutions, ICs,
and FRFs, and developments and implementations of the FFT-
based methods, especially to Drs. W. W. Chen, X. Q. Jin, W.-S.
Kim, D. L. Li, Y. C. Liu, Z. Liu, A. Martini, N. Ren, M. J. Rodgers,
X. J. Shi, Z. J. Wang, C. J. Yu, M. Q. Zhang, K. Zhou, and Q.
H. Zhou, as well as Mr. H. Yu, Chongqing University, China, for
their valuable contributions. The authors would also like to thank
Professor L. M. Keer, Northwestern University, for long-term
collaboration and research discussion, and the journal editor and
reviewers for their valuable suggestions on manuscript revision.

REFERENCES

Ai, X., and Sawamiphakdi, C. (1999). Solving elastic contact between rough

surfaces as an unconstrained strain energy minimization by using CGM and

FFT techniques. ASME J. Tribol. 121, 639–647. doi: 10.1115/1.2834117

Benad, J. (2018). Efficient calculation of the BEM integrals on arbitrary

shapes with the FFT. Facta Univ. Ser. Mech. Eng. 16, 405–417.

doi: 10.22190/FUME180912034B

Benad, J. (2019). Numerical methods for the simulation of deformations and

stresses in turbine blade fir-tree connections. Facta Univ. Ser. Mech. Eng. 17,

1–15. doi: 10.22190/FUME190103008B

Boucly, V., Nelias, D., Liu, S. B., Wang, Q., and Keer, L. M. (2005). Contact analyses

for bodies with frictional heating and plastic behavior. ASME J. Tribol. 127,

355–364. doi: 10.1115/1.1843851

Bracewell, R. N. (1978). The Fourier Transform and Its Applications. New York,

NY: McGraw Hill.

Brigham, E. O. (1988). The Fast Fourier Transform and Its Applications. Prentice

Hall, NJ: Englewood Cliff.

Chen, W. W., Liu, S. B., and Wang, Q. J. (2008). Fast fourier transform based

numerical methods for elasto-plastic contacts of nominally flat surfaces. ASME

J. Appl. Mech. 75:011022. doi: 10.1115/1.2755158

Chen, W. W., Wang, Q., Zhang, H., and Luo, X. (2011). Semi-analytical

viscoelastic contact modeling of polymer-basedmaterials. J. Tribol. 133:041404.

doi: 10.1115/1.4004928

Choi, H., and Paulino, G. (2008). Thermoelastic contact mechanics for a flat punch

sliding over a graded coating/substrate system with frictional heat generation.

J. Mech. Phys. Solids 56, 1673–1692. doi: 10.1016/j.jmps.2007.07.011

Conry, T. F., and Seireg, A. (1971). A mathematical programming method

for design of elastic bodies in contact. ASME J. Appl. Mech. 38, 387–392.

doi: 10.1115/1.3408787

Eshelby, J. D. (1957). The determination of the elastic field of an

ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376–396.

doi: 10.1098/rspa.1957.0133

Goryacheva, I. G., and Sadeghi, F. (1995). Contact characteristics of a

rolling/sliding cylinder and a viscoelastic layer bonded to an elastic substrate.

Wear 184, 125–132. doi: 10.1016/0043-1648(94)06561-6

Hu, Y. Z., Barber, G. C., and Zhu, D. (1999). Numerical analysis for

the elastic contact of real rough surfaces. Tribol. Trans. 42, 443–452.

doi: 10.1080/10402009908982240

Jin, X., Keer, L. M., and Wang, Q., and Chez, E. (2013). “Conjugate gradient

method for contact analysis,” in Encyclopedia of Tribology, eds Q. Wang and

Y. W. Chung (New York, NY; Heidelberg Dordrecht, London: Springer), 467.

Johnson, K. L. (1987). Contact Mechanics. London: Cambridge University Press.

Ju, Y. Q., and Farris, T. N. (1996). Spectral analysis of two-dimensional contact

problems. ASME J. Tribol. 118, 320–328. doi: 10.1115/1.2831303

Kalker, J. J. (1986). Numerical calculation of the elastic field in a half-space.

Commun. Appl. Num. Methods 2, 401–410. doi: 10.1002/cnm.1630020412

Kalker, J. J., and van Randen, Y. (1972). Aminimumprinciple for frictionless elastic

contact with application to non-hertzian half space contact problems. J. Eng.

Math. 6, 193–206. doi: 10.1007/BF01535102

Ke, L., and Wang, Y. (2006). Two-dimensional contact mechanics of functionally

graded materials with arbitrary spatial variations of material properties. Int. J.

Solids Struct. 43, 5779–5798. doi: 10.1016/j.ijsolstr.2005.06.081

Liu, S. (2013). Numerical simulation of conformal contacts involving

both interference and clearance. Tribol. Transac. 56, 867–878.

doi: 10.1080/10402004.2013.806686

Liu, S., and Chen, W. (2012). Two-dimensional numerical analyses of double

conforming contacts with effect of curvature. Int. J. Solids Struct. 49, 1365–1374.

doi: 10.1016/j.ijsolstr.2012.02.019

Liu, S., Chen, W. W., Hua, D., and Wang, Q. (2007). Tribological modeling:

application of fast fourier transform. Tribol. Int. 40, 1284–1293.

doi: 10.1016/j.triboint.2007.02.004

Liu, S., and Hua, D. Y. (2009). Three-dimensional semiperiodic line

contact–periodic in contact length direction. J. Tribol. 131:021408.

doi: 10.1115/1.3084237

Liu, S., and Wang, Q. (2002). Studying contact stress fields caused by surface

tractions with a discrete convolution and fast fourier transform algorithm.

ASME J. Tribol. 124, 36–45. doi: 10.1115/1.1401017

Liu, S., Wang, Q., and Liu, G. (2000). A versatile method of discrete

convolution and FFT (DC-FFT) for contact analyses. Wear 243, 101–111.

doi: 10.1016/S0043-1648(00)00427-0

Liu, S. B. (2001). Thermomechanical contacts of rough surfaces [Ph. D. thesis].

Northwestern University, Evanston, IL, United States.

Liu, S. B., Jin, X. Q., Wang, Z. J., Keer, L. M., and Wang, Q. (2012).

Analytical solution for elastic fields caused by eigenstrains in a half-space

and numerical implementation based on FFT. Int. J. Plasticity 35, 135–154.

doi: 10.1016/j.ijplas.2012.03.002

Liu, S. B., and Wang, Q. (2005). Elastic fields due to eigenstrains in a half-space.

ASME J. Appl. Mech. 72, 871–878. doi: 10.1115/1.2047598

Liu, S. B., Wang, Q., Rodgers, M. J., Keer, L. M., and Cheng, H. S. (2002).

Temperature distributions and thermoelastic displacements in moving bodies.

Comput. Model. Eng. Sci. 3, 465–481. doi: 10.3970/cmes.2002.003.465

Liu, Y., Chen, W., Liu, S., Zhu, D., and Wang, Q. (2007). An elastohydrodynamic

lubrication model for coated surfaces in point contacts. J. Tribol. 129, 509–516.

doi: 10.1115/1.2736433

Liu, Y., Wang, Q., Hu, Y., Wang, W., and Zhu, D. (2006). Effects of differential

schemes and mesh density on EHL film thickness in point contacts. ASME J.

Tribol. 128, 641–653. doi: 10.1115/1.2194916

Liu, Y., Wang, Q., Zhu, D., Wang, W., and Hu, Y. (2009). Effects of differential

scheme and viscosity model on rough-surface point-contact isothermal EHL. J.

Tribol. 131:044501. doi: 10.1115/1.2842245

Liu, Z., Gu, T., Pickens, D., Nishino, T., and Wang, Q. (2020). Model assisted

housing profile design for improved apex seal lubrication using a finite-length

roller EHL model. Rev. J. Tribol.

Londhe, N. D., Arakere, N. K., and Subhash, G. (2018). Extended hertz theory

of contact mechanics for case-hardened steels with implications for bearing

fatigue life. ASME J. Tribol. 140:021401. doi: 10.1115/1.4037359

Love, A. E. H. (1929). Stress produced in a semi-infinite solid by pressure on part of

the boundary. Philod. Trans. R. Soc.A228, 337–420. doi: 10.1098/rsta.1929.0009

Morrison, N. (1994). Introduction to Fourier Analysis. New York, NY: John Wiley

and Sons.

Mura, T. (1993).Micromechanics of Defects in Solids, 2nd Edn. Dordrecht: Kluwer

Academic Publishers.

Nogi, T., and Kato, T. (1997). Influence of a hard surface layer on the limit of elastic

contact-part i: analysis using a real surfacemodel.ASME J. Tribol. 119, 493–500.

doi: 10.1115/1.2833525

Frontiers in Mechanical Engineering | www.frontiersin.org 20 August 2020 | Volume 6 | Article 61

https://doi.org/10.1115/1.2834117
https://doi.org/10.22190/FUME180912034B
https://doi.org/10.22190/FUME190103008B
https://doi.org/10.1115/1.1843851
https://doi.org/10.1115/1.2755158
https://doi.org/10.1115/1.4004928
https://doi.org/10.1016/j.jmps.2007.07.011
https://doi.org/10.1115/1.3408787
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1016/0043-1648(94)06561-6
https://doi.org/10.1080/10402009908982240
https://doi.org/10.1115/1.2831303
https://doi.org/10.1002/cnm.1630020412
https://doi.org/10.1007/BF01535102
https://doi.org/10.1016/j.ijsolstr.2005.06.081
https://doi.org/10.1080/10402004.2013.806686
https://doi.org/10.1016/j.ijsolstr.2012.02.019
https://doi.org/10.1016/j.triboint.2007.02.004
https://doi.org/10.1115/1.3084237
https://doi.org/10.1115/1.1401017
https://doi.org/10.1016/S0043-1648(00)00427-0
https://doi.org/10.1016/j.ijplas.2012.03.002
https://doi.org/10.1115/1.2047598
https://doi.org/10.3970/cmes.2002.003.465
https://doi.org/10.1115/1.2736433
https://doi.org/10.1115/1.2194916
https://doi.org/10.1115/1.2842245
https://doi.org/10.1115/1.4037359
https://doi.org/10.1098/rsta.1929.0009
https://doi.org/10.1115/1.2833525
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Wang et al. FFT-Based Methods Computational Contact Mechanics

Oppenheim, A., Schafer, R., and Buck, J. (1999). Discrete-Time Signal Processing,

2nd Edn, Pearson, Upper Saddle River, NJ.

Pohrt, R., and Popov, V. L. (2015). Adhesive contact simulation of elastic

solids using local mesh-dependent detachment criterion in boundary elements

method. Facta Univ. Ser. Mech. Eng. 13, 3–10.

Polonsky, I. A., and Keer, L. M. (1999). A numerical method for solving rough

contact problems based on the multi-level multi-summation and conjugate

gradient techniques.Wear 231, 206–219. doi: 10.1016/S0043-1648(99)00113-1

Polonsky, I. A., and Keer, L. M. (2000). Fast methods for solving rough

contact problems: a comparative study. ASME J Tribol. 122, 36–41.

doi: 10.1115/1.555326

Popov, V. L., Pohrt, R., and Li, Q. (2017). Strength of adhesive contacts:

influence of contact geometry and material gradients. Friction 5, 308–325.

doi: 10.1007/s40544-017-0177-3

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).

Numerical Recipes in Fortran 77-The Art of Scientific Computing, 2nd Edn.

Cambridge: Cambridge University Press.

Putignano, C., Carbone, G., and Dini, D. (2015). Mechanics of rough contacts

in elastic and viscoelastic thin layers. Int. J. Solids Struct. 69, 507–517.

doi: 10.1016/j.ijsolstr.2015.04.034

Ren, N., Zhu, D., Chen, W.W., Liu, Y., andWang, Q. (2009). A three-dimensional

deterministic model for rough surface line-contact EHL. J. Tribol. 131:011501.

doi: 10.1115/1.2991291

Ren, N., Zhu, D., Chen, W. W., and Wang, Q. (2010). Plasto-

Elastohydrodynamic Lubrication (PEHL) in point contact. J. Tribol.

132:031501. doi: 10.1115/1.4001813

Rey, V., Anciaux, G., andMolinari, J.-F. (2017). Normal adhesive contact on rough

surfaces: efficient algorithm for FFT-based BEM resolution. Comput Mech. 60,

69–81. doi: 10.1007/s00466-017-1392-5

Stanley, H. M., and Kato, T. (1997). An FFT-based method for roughness surface

contact. ASME J. Tribol. 119, 481–485. doi: 10.1115/1.2833523

Stepanov, F., and Torskaya, E. (2018). Modeling of sliding of a smooth indenter

over a viscoelastic layer coupled with a rigid base. Mech. Solids 53, 60–67.

doi: 10.3103/S0025654418010077

Sun, L. (2020). Advanced FFT Algorithms for Contact of Materials with

Inhomogeneities and Their Applications. [Ph.D. thesis]. Northwestern

Polytechnical University, Xian, China.

Sun, L., Wang, Q., Zhang, M., Zhao, N., Keer, L. M., Liu, S. B., et al. (2020). Discrete

convolution and FFT method with summation of influence coefficients (DCS-

FFT) for three-dimensional contact of inhomogeneous materials. Comput.

Mech. 65, 1509–1529. doi: 10.1007/s00466-020-01832-2

Walker, J. S. (1996). Fast Fourier Transforms, 2nd Edn. Boca Raton, FL: CRC Press.

Wang, F. C., and Jin, Z. M. (2004). Prediction of elastic deformation of acetabular

cups and femoral heads for lubrication analysis of artificial hip joints. Proc.

Inst. Mech. Eng. Pt. J. J. Eng. Tribol. 218, 201–209. doi: 10.1243/1350650041

323331

Wang, Q., and Zhu, D. (2019). Interfacial Mechanics, Theories and Methods for

Contact and Lubrication. Boca Raton, FL; London, New York, NY: CRC Press.

Wang, W.-Z., Wang, H., Liu, Y.-C., Hu, Y.-Z., and Zhu, D. (2003). A comparative

study of the methods for calculation of surface elastic deformation. Proc. Inst.

Mech. Eng. Pt. J. J. Eng. Tribol. 217, 145–152. doi: 10.1243/13506500360603570

Wang, Y., Zhang, X., Shen, H., Liu, J., and Zhang, B. (2020). Couple stress-

based 3D contact of elastic films. Int. J. Soilds Struct. 191–192, 449–463.

doi: 10.1016/j.ijsolstr.2020.01.005

Wang, Z., Jin, X., Keer, L. M., and Wang, Q. (2013b). Novel model for partial-

slip contact involving a material with inhomogeneity. J. Tribol. 135:041401.

doi: 10.1115/1.4024548

Wang, Z., Yu, H., and Wang, Q. (2017a). Layer-substrate system with imperfect

bonding interface: coupled dislocation-like and force-like conditions. Int. J.

Solids Struct. 122–123, 91–109. doi: 10.1016/j.ijsolstr.2017.06.004

Wang, Z., Yu, H., and Wang, Q. (2017b). Layer-substrate system with an

imperfectly bonded interface: spring-like condition. Int. J. Mech. Sci. 134,

315–335. doi: 10.1016/j.ijmecsci.2017.10.028

Wang, Z. J., Jin, X. Q., Zhou, Q. H., Ai, X. L., Keer, L. M., andWang, Q. (2013a). An

efficient numerical method with a parallel computational strategy for solving

arbitrarily shaped inclusions in elasto-plastic contact problems.ASME J. Tribol.

135:031401. doi: 10.1115/1.4023948

Wang, Z. J., Yu, C., and Wang, Q. (2015). Model for elastohydrodynamic

lubrication of multilayered materials. J. Tribol. 137:011501.

doi: 10.1115/1.4028408

Wang, Z. J., and Zhang, Y. (2019). An efficient numerical model of

elastohydrodynamic lubrication for transversely isotropic materials. ASME J.

Tribol. 141:091501. doi: 10.1115/1.4043902

Wang, Z. J., Zhu, D., and Wang, Q. (2014). Elastohydrodynamic lubrication of

inhomogeneous materials using the equivalent inclusion method. J. Tribol.

136:021501. doi: 10.1115/1.4025939

Yu, C. J., Wang, Z. J., Liu, G., Keer, L. M., and Wang, Q. (2016). Maximum von

mises stress and its location in trilayer materials in contact. ASME J. Tribol.

138:041402. doi: 10.1115/1.4032888

Yu, C. J., Wang, Z. J., and Wang, Q. (2014). Analytical frequency response

functions for contact of multilayered materials. Mech. Mater. 76, 102–120.

doi: 10.1016/j.mechmat.2014.06.006

Zhang, H. B., Wang, W. Z., Zhang, S. G., and Zhao, Z. Q. (2017).

Elastohydrodynamic lubrication analysis of finite line contact problem

with consideration of two free end surfaces. J. Tribol. 139:031501.

doi: 10.1115/1.4034248

Zhang, H. B., Wang, W. Z., Zhang, S. G., and Zhao, Z. Q. (2018). Semi-analytic

solution of three-dimensional temperature distribution multilayered materials

based on explicit frequency response functions. Int. J. Heat Mass Transfer 118,

208–222. doi: 10.1016/j.ijheatmasstransfer.2017.10.118

Zhang, M. Q., Zhao, N., Wang, Z. J., and Wang, Q. (2018). Efficient numerical

method with a dual-grid scheme for contact of inhomogeneous materials and

its applications. Comput. Mech. 62, 991–1007. doi: 10.1007/s00466-018-1543-3

Zhang, X., and Wang, Q. (2019). A SAM-FFT based model for 3d steady-

state elastodynamic frictional contacts. Int. J. Solids Struct. 170, 53–67.

doi: 10.1016/j.ijsolstr.2019.04.028

Zhang, X., and Wang, Q. (2020). “Thermoelastic Contacts of Layered

Materials with Interface Imperfections,” Int. J. Mech. Sci. 186:105904.

doi: 10.1016/j.ijmecsci.2020.105904

Zhang, X., Wang, Q., Harrison, K., Roberts, S., and Harris, S. J. (2019). Rethinking

how external pressure can suppress dendrites in lithium metal batteries. J.

Electrochem. Soc. 166, A3639–A3652. doi: 10.1149/2.0701914jes

Zhang, X., Wang, Q., Harrison, K. L., Roberts, S. A., and Harris, S. J. (2020c).

Pressure-driven interface evolution in solid state lithium metal batteries. Cell

Rep. Phys. Sci. (2020) 1:100012. doi: 10.1016/j.xcrp.2019.100012

Zhang, X., Wang, Q., and He, T. (2020a). Triansient and steady-state viscoelastic

contact response of layer-substrate systems with interfacial imperfections. J.

Mech. Phys. Solids (2020).

Zhang, X., Wang, Q., He, T., Liu, Y., Li, Z., Jim, H. J., et al. (2020b). Fully coupled

modeling of thermo-viscoelastic contacts of layered materials. Mech. Mater.

Zhang, X., Wang, Z. J., Shen, H. M., and Wang, Q. (2017). Frictional contact

involving a multiferroic thin film subjected to surface magnetoelectroelastic

effects. Int. J. Mech. Sci. 131–132, 633–648. doi: 10.1016/j.ijmecsci.2017.07.039

Zhang, X., Wang, Z. J., Shen, H. M., and Wang, Q. (2018). An efficient model

for the frictional contact between two multiferroic bodies. Int. J. Solids Struct.

130–131, 133–152. doi: 10.1016/j.ijsolstr.2017.10.004

Zhou, Q. H., Jin, X. Q., Wang, Z. J., Yang, Y., Wang, J. X., Keer, L.

M., et al. (2016). A mesh differential refinement scheme for solving

elastic fields of half-space inclusion problems. Tribol. Int. 93A, 124–136.

doi: 10.1016/j.triboint.2015.09.009

Zhou, Y., and Lee, K. (2013). Theory of sliding contact for multiferroic

materials indented by a rigid punch. Int. J. Mech. Sci. 66, 156–67.

doi: 10.1016/j.ijmecsci.2012.11.004

Zhu, D., Martini, A., Wang, W., Hu, Y., Lisowsky, B., and Wang, Q. (2007).

Simulation of sliding wear in mixed lubrication. J. Tribol. 129, 544–552.

doi: 10.1115/1.2736439

Conflict of Interest: DZ is associated with Tri-Tech Solutions.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Wang, Sun, Zhang, Liu and Zhu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Mechanical Engineering | www.frontiersin.org 21 August 2020 | Volume 6 | Article 61

https://doi.org/10.1016/S0043-1648(99)00113-1
https://doi.org/10.1115/1.555326
https://doi.org/10.1007/s40544-017-0177-3
https://doi.org/10.1016/j.ijsolstr.2015.04.034
https://doi.org/10.1115/1.2991291
https://doi.org/10.1115/1.4001813
https://doi.org/10.1007/s00466-017-1392-5
https://doi.org/10.1115/1.2833523
https://doi.org/10.3103/S0025654418010077
https://doi.org/10.1007/s00466-020-01832-2
https://doi.org/10.1243/1350650041323331
https://doi.org/10.1243/13506500360603570
https://doi.org/10.1016/j.ijsolstr.2020.01.005
https://doi.org/10.1115/1.4024548
https://doi.org/10.1016/j.ijsolstr.2017.06.004
https://doi.org/10.1016/j.ijmecsci.2017.10.028
https://doi.org/10.1115/1.4023948
https://doi.org/10.1115/1.4028408
https://doi.org/10.1115/1.4043902
https://doi.org/10.1115/1.4025939
https://doi.org/10.1115/1.4032888
https://doi.org/10.1016/j.mechmat.2014.06.006
https://doi.org/10.1115/1.4034248
https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.118
https://doi.org/10.1007/s00466-018-1543-3
https://doi.org/10.1016/j.ijsolstr.2019.04.028
https://doi.org/10.1016/j.ijmecsci.2020.105904
https://doi.org/10.1149/2.0701914jes
https://doi.org/10.1016/j.xcrp.2019.100012
https://doi.org/10.1016/j.ijmecsci.2017.07.039
https://doi.org/10.1016/j.ijsolstr.2017.10.004
https://doi.org/10.1016/j.triboint.2015.09.009
https://doi.org/10.1016/j.ijmecsci.2012.11.004
https://doi.org/10.1115/1.2736439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Wang et al. FFT-Based Methods Computational Contact Mechanics

APPENDIX

Contact Conditions
The contact of two bodies, (1) and (2), should satisfy the
complementary “gap-G” and “flux-F” conditions, shown below,
with 1, 2, 3 for x, y, z.

G3(x1, x2) > 0; F∗33 = 0 if (x1, x2) /∈ Ac

G3(x1, x2) = 0; F∗33 > 0 if (x1, x2) ∈ Ac (A1)

where F∗33 = −p is the contact pressure, and

G3 = B̄(1)(x1, x2)+ u
(1)
3 (x1, x2)+ B̄(2)(x1, x2)+ u

(2)
3 (x1, x2)− ḡ

with g(x1, x2) =
(
B̄(1)(x1, x2)+ u

(1)
3 (x1, x2)

)
+

(
B̄(2)(x1, x2)+ u

(2)
3 (x1, x2)

)
, ḡ = 1

Nc

[
∑

(i,j)∈Ac

g(x1, x2)

]
, where u3

is uz given in Equation (3) or (10), B̄(i)is for the geometry of body
i, and Nc is the total nodes in the contact area Ac.

The contact area adjustment can be made through
the following.

If G3(x1, x2) < 0, make G3(x1, x2) = 0 and

add point (x1, x2) to Ac (A2)

The overall the load balance is

∫

Ac

F∗33dA = P̄M (A3)

where P̄M is the normal load. The contact area and pressure
distributions can be solved by using the conjugate gradient
method (CGM) (Polonsky and Keer, 1999).

In addition, the contact should also satisfy the interfacial
conditions for fluxes.

F∗3J = 0 if (x1, x2) /∈ Ac

F
∗(1)
3J (x1, x2) = −F

∗(2)
3J (x1, x2) if (x1, x2) ∈ Ac J = 1, 2, 3

(A4)

where F
∗(i)
3J (x1, x2) =

{
t̄M1, t̄M2,−p

}
, and t̄Mi means the surface

tangential tractions in the x1 and x2 directions. These conditions
are also applicable to other multifield contact problems (Wang
and Zhu, 2019).
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