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FFT-Based Methods for Nonlinear Image Restoration 
in Confocal Microscopy 
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Abstract. Recently we developed a new method for attenuation correction in 3D imaging by a confocal 
scanning laser microscope (CSLM) in the (epi)fluorescence mode. The fundamental element in our 
approach consisted of multiplying the measured fluorescent intensity by a correction factor involving a 
convolution integral of this intensity, which can be computed efficiently by the fast Fourier transform 
(FFT). The resulting algorithm is one or two orders of magnitude faster than an existing iterative 
method, but it was found to have a somewhat smaller accuracy. In this paper we improve on 
this latter point by reformulating the problem as a statistical estimation problem. In particular, we 
derive first-order-moment and cumulant estimators leading to a nonlinear integral equation for the 
unknown fluorescent density, which is solved by an iterative method in which in each step a discrete 
convolution is performed by using the FFT. We find that only a few iterations are needed. It is 
shown that the estimators proposed here are more accurate than the existing iterative method, while 
they retain the advantage in computational efficiency of the FFT-based approach. 
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1 Introduction 

A major problem in 3D imaging by a confo
cal scanning laser microscope (CSLM) in the 
( epi)fluorescence mode is the darkening of the 
deeper layers in the object due to scattering and 
absorption of excitation and fluorescence light 
[l], [7]. Visser et al. [6] have devised a method 
for correcting for this effect by layer stripping, 
in which one iteratively corrects the layers one 
at a time; see Visser et al. [6]. In previous 
research [5] we developed a new restoration 
method to correct for these effects. Assum
ing that the attenuation is weak, we constructed 
by analytic methods a correction factor to the 
standard restoration that takes the form of a 
3D convolution of the measured signal, which 
can be efficiently computed by the use of the 
fast Fourier transform (FFT). We therefore re
fer to this method as the "FFT method." In 
this way, the complexity of computation is re-

*Present address: Dept. of Mathematics and Computing 
Science, University of Groningen, The Netherlands. 

duced to O(Nz log N.), where Nz is the number 
of vertical layers to be restored. The accuracy 
of the results depends on the depth of the layer 
considered; deeper layers are less accurately re
constructed than are shallower layers. 

We also compared the computational effi
ciency of our algorithm with the iterative layer
stripping method of [6], henceforth referred to 
as the "layer method." In its original form this 
method has computational complexity O(N:), 
which is unacceptably slow, taking many hours 
on a RISC workstation for a 256 x 256 x 16 image 
[6]. The layer method "with condensat_ion,". de
veloped in [6] to reduce the computat10n time, 
still has complexity O(N;). Thus when the 
number of vertical layers gets larger, the dif
ference in computational efficiency between this 
method and the FFT method becomes increas
ingly pronounced. For spatially varying image 
densities the restoration quality of our method 
was found to be a little poorer than that of the 
layer method. 

In this paper we improve the accuracy of the 
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FFT method by reformulating the problem as 
a statistical estimation problem. In particular, 
we derive first-order-moment and cumulant es
timators leading to a nonlinear integral equa
tion for the unknown fluorescent density, which 
is solved by an iterative method. It is shown 
that the new estimators, the moment estimator 
in particular, are more accurate than the layer 
method. Since only two or three iterations are 
needed and each iteration step involves a dis
crete 3D convolution computable by the FFT, 
the advantage in computational efficiency over 
the layer method is retained. 

The organization of this paper is as follows. 
In section 2 we review the mathematical model 
of the imaging process of the CSLM, leading 
to a nonlinear integral transform of the object 
function, and we review the solution method of 
[5]. In section 3 we then reformulate the CSLM 
transform as a statistical averaging problem and 
derive the corresponding first-order moment and 
curnulant estimators. The resulting nonlinear 
integral equations for the object density can be 
solved by an iterative method, which is described 
in section 4. We apply our method in section 5 
to the test images used in [5], and we present 
results on the restoration accuracy. Section 6 
contains a summary and conclusions. 

2 The CSLM Transform 

The imaging process of a CSLM operating in the 
fluorescence mode was described in detail in [5]. 
A laser beam is focused on a pinhole, expanded 
again, and, through a system of lenses, focused 
on a point r = (x, y, z) in the object. Here the 
z direction is chosen along the optical axis. The 
rays converging to the object point are contained 
in a circular cone (light cone) with angle w, 
called the "semiaperture angle"; see figure 1. 
The radiation absorbed at the point in focus 
is uniformly reemitted as fluorescent radiation, 
and the part that travels back the same route as 
the incoming radiation is detected. The object is 
discretized into a number Nz of layers along the 
optical axis, a distance 6z apart. The total depth 
of the sample is denoted by dz. Also, each layer 
is discretized into a rectangular grid of Nx by 
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Fig. J. Geometry of light cone with apex at a point P(x, y, z) 
in the object: R, radius of spherical bundle; w, semiaperture 
angle; (Ii, </>), polar angles of light ray; d., depth of the 
sample. The optical axis coincides with the z axis. 

Ny points, with spacings 6x and 6y in the x and 
y directions, respectively. When the scan table 
of the CSLM is moved, each object point of the 
30 grid so formed is brought into focus and the 
corresponding fluorescent intensity (energy per 
unit of time) is measured. 

As a result, the measured fluorescent intensity 
f(r) can be expressed as the following nonlin
ear integral transform (CSLM transform) of the 
unknown fluorescent density p(r): 

f(r) = p(r) x 1J(r)1'b(r), (2.1) 

where 

11(r) := C1 1w dB fo 21' d</> sin B cos B 

x exp [-E 1· c::
1

8p(r)] (2.2) 

is the forward attenuation factor and 

l w 121' 
/b(r) := Cb 0 dB 0 d</J sin B 

[ r dz' ] 
x exp -E Jo cos Bp(r) (2.3) 



is the backward attenuation factor (both factors 
equal unity if there is no attenuation). In these 

equations E is a proportionality constant and 

1 
01 := . 2 , 

7rStn w 

1 
cb := 2 (l ) (2.4) 

7r - cosw 

are the normalization constants referring to the 

forward and backward attenuation factors, re

spectively. Here r is the vector 

r(r; e, </J, z') = (x + (z - z') tan e cos </J, 

y + (z - z') tan e sin </J, z'). 

(2.5) 

As z' runs from 0 to z this vector describes a 

light ray traveling to the point r = (x, y, z) and 

making polar angles e and cf> with respect to the 

optical axis; see figure 1. 
A measure for the degree of attenuation of 

the signal when it traverses the complete sample 

is provided by the dimensionless parameter Edz, 

where dz is the depth of the sample. Here we 
have restricted ourselves to the case in which 
the attenuation is proportional to the fluorescent 

density. For a more general case see [5]. 

2.1 Inversion of the CSLM Transform 

By performing a perturbation expansion of the 

density p in the parameter E and collecting terms 
to first order in E, we derived in [5] the following 
approximation p(r) for the density: 

p(r) = f(r){l + E c(r)}, (2.6) 

where c(r) is the convolution integral 

c(r) = l: l: l: dr' K(r')f(r - r'), (2.7) 

with K-(r), the space-invariant kernel, given by 

K(x, y, z) 

_ C1 (x2 + y2 + z2)3/2 + C,, x2 + y2 + z2' 
( 

z 1 

- 0 $ z $ dz, x 2 + y2 $ (ztanw)2, 

0 elsewhere, 

(2.8) 
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where it should be kept in mind that the densities 
f and p are nonzero only for 0 s; z $ dz. This 

means that in the computation of c(x, y, z) only 

the part of the kernel between 0 and z has to 

be taken into account; see figure 1. 

2.2 Numerical Computation 

For numerical computation the integral (2.7) is 

discretized on a grid of Nx x Ny x Nz voxels, each 
voxel being a box of dimensions 8x, 8y, 8z in the 
x, y, and z directions. Then the approximation 

(2.6) is replaced by 

where 

with 

i'=-M,/2+1 j'=-My/2+1 k'=l 

x K;'lk'F;-;1,J-J',k-k'1 

Rijk := p(i8x, j8y 1 k8z) 1 

C;Jk := c(i8x, j8y, k8z), 

F;jk := J(i8x, j8y, k8z) 

(2.9) 

(2.10) 

for (i, j, k) in the index set Il := {(i, j, k): i = 

1, ... , Nx; j = 1, ... , Ny; k = 1, ... , Nz} and 
where it is tacitly understood that array elements 
are defined to be zero when the indices are not 
in the index set Il (so the third summation in 

(2.10) actually runs from 1 to k - 1). Here K 

is the discrete counterpart of the convolution 

kernel (2.8), 

J, (i+l/2)6, l(j+l/2)6. 

K1jk := dx dy 
(i-1/2)6, (j-1/2)6. 

j (k+l/2)6, 

x dz "'(x, y, z) 
(k-1/2)6, 

~ 8x8y8z r;,(ibx, j8y, k8z), (2.11) 

and Mx = 2dz tan(w)/8x, My = 2dz tan(w)/8y, 
and Mz = dz/ Dz = Nz denote the support of the 
kernel in the three space directions, where in all 

cases rounding to integer values is understood. 

Treating the x and y summations differently from 
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the z summation is justified because the kernel 
is symmetric in the x and y directions, whereas 
it extends over only nonnegative values in the z 
direction. The discrete convolution (2.10) can 
be computed efficiently by FFT methods [5]; see 

also [4]. 

3 Statistical Estimators 

It is useful to provide a probabilistic formulation 
of the CSLM transform. To this end we notice 
that by introducing the probability densities into 

(9,</>) space {(9, </>): 0 $ () ~ w, 0 $ </> < 27r}, 

(() ,1..) _ sin () cos () 
PJ , 'I' - • 2 I 

7rSID W 

sin() 
Pb((),</>)= 27r(l - cosw)' (3.1) 

we can rewrite the basic transform (2.1) as 

f (r) = p(r)E J (exp [-€ 1z c~:'B p(i>)]) 

x Eb (exp [-€ 1z c~' () p('r)] ) , (3.2) 

where E; denotes the mathematical expectation 
(statistical average) with respect to the density 
p;, i = f, b. 

Now we can apply moment and cumulant ex
pansions of characteristic functions [2]. Per
forming the first-order moment expansion for the 
random variable X(9, </>), 

IE;(exp[-EX(B, </>)]) = 1- ElE;(X(O, </>)) + ... , 
(3.3) 

for both the forward and backward averages, we 
obtain 

J(r) ~ p(r) { 1 - € fo 211 
d</> 1w d8C1 sin B 

x 1· dz'p(~(r; (), </>, z'))} 

x { 1 - € 1211 
d</> 1w d()Cb tan B 

x 1· dz'p(t(r; B, 7r, z'))}. (3.4) 

Neglecting terms of order e2 and rewriting the 
sum of the two first-order terms in convolution 

form as in [5, section 3], we obtain an equation 
for the moment approximation p(ml(r) of (2.6), 

J(r) = p(ml(r){l - e(tt * p(ml)(r)}, (3.5) 

where it* p denotes the convolution of the func
tions tt and p and the kernel it is identical to 

that in (2.8). 
Next we look also at the first-order cumulant 

expansion, 

lE;(exp[-eX(O, </>)]) 

= exp[-elE;(X(B, </>)) + · · ·], (3.6) 

for both averages. Then we find the cumulant 
approximation p(cl(r) for the density, satisfying 

the equation 

J(r) = p(cl(r) exp[-e(it * p(c))(r)], (3.7) 

where again the same kernel tt turns up. To 
solve (3.5) and (3.7) numerically, we rewrite 
them as 

for the cumulant estimator and as 

for the moment estimator. We assume that e 

is chosen small enough for the inverse in (3.9) 
to exist. A precise condition can be derived by 
rewriting the convolution in this equation in the 
form (see [5, section 3]) 

r211 r 
(K*P(ml)(r)= lo lo dO(C1sinB+Cbtan()) 

which yields 

X 1• dz' pCml(t(r; B, </>, z')), 

(3.10) 

where d. is the depth of the sample and Pmax 

is the maximum value of the density p. So the 

preceding inverse exists if e:::; (2dzPmaxt1• 



If in (3.8) and (3.9) only first-order terms in 
E are taken into account and p(cl or p(m) is re

placed by f in the right-hand sides of these 

equations, respectively, we recover approxima

tion (2.6). It is therefore to be expected that 

the moment and cumulant estimators· may give 

accurate results for a larger range of values of 

E than the estimator used in [5]. This will be 

investigated further in section 5. 

4 Computation by Iterative Algorithms 

After discretization of (3.8) and (3.9), a finite 

system of nonlinear equations of the form 

R;ik = FiikG ((K * R)ijk), 

(i,j,k)EI (4.1) 

results, where G(x) = exp(Ex) and G(x) = (1 -

Ex)-1, respectively, and K * R is the discrete 

convolution of the 3D arrays K and R. The 

following result is immediate. 

LEMMA 4.1. Equations (4.1) have a unique 
solution. 

Proof. We consider successive values of the 

depth variable k. Starting at k = 1, we have 

Now, suppressing the summation limits in the i 

and j directions we have 

1\1, 

(K * R)ijl = L L K;1j'k'Ri-i',j-j', 1-k'' 

i',j' k'=l 

which equals zero because R;jk = 0 for k :::; 0. 

Since G(O) = 1 for both estimators, we get 

(4.2) 

Next, observe that for k 2: 2 we have 

k-1 

(K * R)ijk = L L Ki'j'k'R-i',j-j',k-k', (4.3) 
i',j' k'=l 

so that there are only nonzero contributions 

from the previous k - 1 vertical layers to the 
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convolution. This means that (4.1) can be solved 

successively for layers 1, 2, ... , Nz, e.g., 

R;j2 = F;j2G( LKi'j'lFi-i',j-j',1), (4.4) 
i' .j' 

where we have used the previous result (4.2). 

The same argument shows that for any n, R;jn 

can be uniquely expressed in terms of the values 

of the previous n - 1 layers of the signal array 

F. This completes the proof. 

Equations (4.1) can be solved by Picard iter

ation [3], with F;jk as the initial estimate: 

(1) -
Riik - F;ik 

R(n) - v G((K R(n-1)) ) 
ijk - I'ijk * ijk , n = 2, 3, .... 

(4.5) 

Each iteration step involves the computation of 
the discrete convolution K * R(n-l) of the esti

mate R(n-l) of the previous iteration (with the 

same convolution kernel K), which can be effi

ciently computed by the FFf. The first iterate of 
(4.5) with G(x) = 1 +Ex coincides with the dis

crete analogon of (2.6) and is the approximation 

used in [5]. 

The question of convergence of the iteration 

( 4.5) is answered by the following proposition. 

PROPOSITION 4.2. The iterates R~;i of ( 4.5) 
converge in a finite number of Nz steps towards 

the unique solution of (4.1). The convergence 
. • h . R(n) R(n-1) 
is monotomc; t at 1s, ijk 2: ijk • 

Proof. We will prove the following assertion: 

after n iterations, the array elements R~7~ in 

layers 1 to n have the correct values; that is, 

they coincide with the solution of ( 4.1). We 

use induction on n. The main ingredient is 

again ( 4.3), which for k = 1 must be read as 

(K * R)iil == 0. The initial estimate 

R~Jk == F;ik 

is correct for k = 1; see ( 4.2). Next, assume 

that R~7;; 1 J is correct for k = 1, 2, ... , n - 1. 

Then, since (K * R(n-l))ijk involves only layers 

1, 2, ... , k - 1 of the array R(n-l), we can write, 
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for k == 1, 2, ... , n, 

R (n) _ v. G((K R(n-1))··) 
ijk - .r;Jk * •Jk 

= F;jkG((K * R);ik) 

= R;jk· 

So the induction hypothesis R);k-l) = R;jk for 

k = 1, 2, ... , n - 1 yields R~7~ = R;ik for k = 
1, 2, ... , n. This proves the assertion. 

Finally, monotonicity of the iterates is easily 

proved by induction as well. First, because G is 
increasing, 

C2l - G(( (tl) ) F - R(t) Riik - F;ik K * R iik 2: ijk - ijk· 

Next, we assume that R~~ 2: R~;~-lJ (induction 
hypothesis). Then, using (i) nonnegativity of 
the convolution kernel, (ii) the fact that G is 
increasing, and (iii) the induction hypothesis, 
we deduce 

R~7:1l = F;ikG ( (K * RC"l)ijk) 

2: F;ikG((K * R(n-tl)iik) 

= R~7~, 

and we are done. 

In section 5 we apply the iterative proce

dure of this proposition for improving the im
age restorations as described in [5]. We will 
see that only a few iterations are needed for 
obtaining accurate results. If this were not the 
case and the full Nz iterations were needed, 
then the complexity of our algorithm would in
crease from O(Nz logNz) (single convolution) to 
O(N;logNz) and the advantage of our method 
over the layer method with condensation of 

Visser et al. [6], which has complexity O(N'f), 
would be lost. 

A final result concerns the relative ordering 
of the two estimators considered. 

PROPOSITION 4.3. The estimators p{m) and pCcl 

satisfy the inequality 

p(c) 5 pCmJ. 

This can be proved by complete induction, 
just as in the proof of Proposition 4.2. It seems 

very hard to obtain any general statement as to 
the ordering of these estimators with respect to 
the exact solution p. When the exact density p 

depends only on z, one may show by convexity 

arguments that 

p(c) S p S p(m) 

pointwise (that is, for every z). In that case it is 

also clear that the cumulant estimator is more 
accurate than the approximation (2.6). For the 
following examples with densities varying in the 

x and y directions these inequalities are found 

to be satisfied as well. 

5 Restoration of a Test Image 

In this section we consider a test density 
(trigonometric image) p(r) with a sinusoidal spa

tial variation which was used in [5]: 

where dx and dy are the spatial dimensions of the 
sample in the x and y directions, respectively. 

Signal data F;jk were generated by numerically 
computing the integrals in (2.1) for a number 
of equidistant 3D positions. The parameters 
were chosen as follows: dx = dy = 1.0; dz = 

0.1; Nx = Ny = 128; Nz = 8; W = 1.04719; nx = 
n 11 = 8. We computed the relative root-mean
square error, 

N, Ny 
1/2 

L L {p(x, y, z) - p(x, y, z)}2 

£(z) := 
x=1 y=l 

N, Ny 

L L {p(x, y, z)}2 
x=1 y=l 

(5.2) 
between the original density p and the restored 
density pat each plane z == constant. Computa
tions were performed on a SPARC workstation 
(35 MHz, 26 MIPS), taking about 1 min per 

iteration step (see [5, table 2]). 

Table 1 shows results for the moment esti

mator (3.9), and table 2 shows results for the 

cumulant estimator (3.8). For the moment esti
mator the errors first decrease and then start to 



Table I. Signal error and restoration errors by the moment 
estimator p<m>, after one, two, and three iterations, as a function 
of the effective depth ez. 

ez signal iter = 1 iter = 2 iter = 3 

0.0000 0.000 0.000 0.000 0.000 

0.0625 0.116 0.004 0.004 0.004 

0.1250 0.218 0.006 0.016 0.016 

0.1875 0.305 0.025 0.041 0.045 

0.2500 0.382 0.065 0.065 0.090 

0.3125 0.450 0.127 0.075 0.153 

0.3750 0.509 0.200 0.056 0.236 

0.4375 0.560 0.278 0.026 0.330 

Table 2. Signal error and restoration errors by the cumulant 
estimator p(c), after one, two, and three iterations, as a function 
of the effective depth €z. 

€Z signal iter = 1 iter = 2 iter = 3 

0.0000 0.000 0.000 0.000 0.000 

0.0625 0.116 0.010 0.010 0.010 

0.1250 0.218 0.035 0.022 0.022 

0.1875 0.305 0.080 0.047 0.046 

0.2500 0.382 0.141 0.089 0.084 

0.3125 0.450 0.213 0.146 0.136 

0.3750 0.509 0.286 0.213 0.198 

0.4375 0.560 0.357 0.283 0.265 

grow again after the third iteration. This occurs 
because the initial estimate f (r) is smaller than 
the exact density p(r) (this is obvious from (2.1)
(2.3)), so that at first the iterates underestimate 
the true solution. Because of the monotonicity 
property, the iterates always increase, so that (if 
the solution p(m) is larger than the true p, which 
is apparently the case here), they will start to 
overestimate the true density. The cumulant 
estimator p(c) underestimates the true density, 
and the values were stable within an accuracy 
of three digits after the third iteration. For 
comparison we give in column 2 of the tables 
the error before restoration, which is denoted 
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Fig. 2. Restoration of the trigonometric image: top row: 
attenuated test images; middle row, restoration by the cu
mulant estimator (iter = 2); bottom row, restoration by the 
moment estimator (iter = 2). In each row the first, fourth, 
and seventh layers are displayed from left to right. The 
original image in each layer is identical to the first image 
in the top row. 

by "signal" and is computed according to (5.2) 
with p replaced by f. 

Comparing the numbers in [5, table 4], we 
conclude that both the moment estimator with 
iter = 1, 2 and cumulant estimator with iter ~ 2 
are more accurate than the layer method of 
[6], which gives a restoration error of 0.301 at 
the deepest layer. From the tables it is clear 
that the moment estimator, when run to conver
gence, overestimates the exact image densities. 
The first iterate, however, underestimates the 
exact values. Therefore, in the case of the mo
ment estimator, we take the reconstruction cor
responding to the intermediate value iter = 2, 
which gives the best results. 

In figure 2 we show the corresponding re
stored images. We rescale the restored values 
of the densities to make sure that they occupy 
the complete gray scale, which consists of the 
set of integer values from 0 to 255. To en
sure that a few outliers did not cause a large 
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visual degradation of the resulting images, we 
constrained the approximate solutions p to lie 
between the known lower and upper bounds, 
i.e., 0 :5 p:::; 1. In each row, the first, fourth, 
and seventh layers are displayed from left to 
right, out of a total of eight depth layers. Since 
the exact density p(r) does not depend on z, 
the original image in each layer is identical 
to the first image in row 1. The top row 
contains the attenuated test images f (r), the 
middle row contains the restoration by the cu
mulant estimator, and the bottom row contains 
the restoration by the moment estimator; both 
restorations are after two iterations. The im
ages restored by the cumulant estimator are 
virtually identical to those of the layer method 
of Visser et al. [6]; see [5, figure 4]. Clearly, 
the largest improvement in restoration quality 
has been obtained by using the moment esti
mator. The reconstruction is not perfect, how
ever: the central regions in the centers of the 
light circular regions are slightly overestimated. 
The calculations made here for the trigonomet
ric image have been repeated for the "circle 
image" used in [5], leading to similar conclu
sions: the reconstruction errors are smallest 
when we use the moment estimator with iter = 
2, but the reconstructed images are still some
what different from the original images; see 
figure 3. Nevertheless, a considerable improve
ment in restoration accuracy has been obtained 
by using the estimators developed here, which, 
in addition, are efficiently computable by using 
FFT methods. 

6 Summary 

In this paper we describe a refinement of the 
method developed in [5] for attenuation cor
rection in fluorescence confocal microscopy by 
using FFT methods. Our approach, valid for 
weak attenuation, consists of multiplying the 
measured fluorescent intensity by a correction 
factor involving a convolution integral of the 
measured signal, which can be computed effi
ciently by an FFT-based algorithm. By a sta
tistical reformulation of the problem we de
rive first-order moment and cumulant estima-

Fig. 3. Restoration of the circle image: Top row, attenuated 
test images: middle row, restoration by the curnulant esti
mator (iter = 2); bottom row; restoration by the moment 
estimator (iter = 2). In each row the first, fourth, and 
seventh layers are displayed from left to right. The original 
image in each layer is identical to the first image in the top 
row. 

tors leading to a nonlinear integral equation 
for the unknown fluorescent density, which is 
solved by an iterative method. The algorithm is 
as follows: 

1. Read the measured data F;ik• i = 1, ... , N,,,, 

j = 1, ... 1 Ny, k = 1, ... 1 Nz. 

2. Iteratively compute 

R~;£ = F;ikG ( (K * R(n-1>)ijk) , n = 2, 3, ... 

where Rm = Fijk and where G(x) = (1 -

ex)-1 and G(x) = exp(ex) for the moment 
and cumulant estimators, respectively. 

In each iteration the convolution of the previ
ous estimate is computed by means of the FFT 
(using the kernel K of (2.11)). The :first iterate 
of the new estimators coincides with the approx
imation used in [5] for very weak attenuation. 
It turns out that the moment estimator with 



two iterations gives the best results, which are 
more accurate than those of the layer method 
of [6]. Since only two iterations are needed, the 
advantage in computational efficiency over the 
layer method is retained. We conclude therefore 
that the combined results of [5] and this paper 
provide an efficient and accurate method for 
attenuation correction in confocal microscopy. 
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