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FFT-PEEC: A Fast Tool From CAD to

Power Electronics Simulations
R. Torchio, F. Lucchini, J.-L. Schanen, O. Chadebec, G. Meunier

Abstract—A fast and general Partial Element Equivalent
Circuit (PEEC) method based on the Fast–Fourier–Transform
(FFT) is proposed for the first time. The numerical tool only
requires common CAD data input files (e.g. .stl format), then
the discretization process is performed automatically by means
of a fast voxelization technique based on ray intersection, thus
drastically reducing the human effort required to setup the model.
The method allows for considering at the same time inductive and
capacitive effects, and is focused on power electronics applications
where propagation effects can be neglected, whereas all the
other electromagnetic phenomena are considered. Specifically,
the proposed method is particularly suited for problems where
both electric and magnetic fields are equally important and
therefore quasistatic approximations do not apply. An ad–hoc
preconditioner which significantly speeds-up the solver is also
proposed and, thanks to the FFT, both memory and computation
time are significantly reduced, without the need of applying data
compression. Both linear and non–linear materials are considered
by the proposed FFT–PEEC method. Sample implementation of
the method is made publicly available.

Index Terms—PEEC, FFT, Non–Linear Materials, Capacitive
Effects.

I. INTRODUCTION

The need of reducing the weight, size and cost of power

electronics converters has been a constant trend over the

years. For this purpose, the switching frequency has always

been increasing, in order to reduce the passive components’

dimensions and therefore the weight, size and cost of the

overall system. For instance, in automotive applications, the

introduction of new generation Silicon Carbide MOSFETs has

allowed for significantly increasing the switching frequency

of dc–dc resonant converters [1]–[3]. Devices such as wide

band-gap semiconductors have reasonably low commutation

losses, however when they reach frequencies of several MHz

they still requires soft switching in order to further reduce

switching losses. For this purpose, resonant converters are

used, exciting L-C circuits. Moreover, to improve the power-

density of converter components, these passive devices are

often integrated into a single sophisticated electromagnetic

(EM) component, mixing capacitive and magnetic effects to

reduce the overall size [4], [5]. However, designing such

integrated passive devices necessitates having very precise

modeling capabilities, which allow for evaluating magnetizing
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and leakage inductances, as well as capacitive effects, to analyse

and optimise the proposed geometry and material characteristics.

The Finite Elements Method (FEM) is sometimes used [6],

but the particular geometry of such kind of devices, which

includes very thin conductors, makes the meshing a complicated

task. Furthermore, the high memory requirements and the

long computation times do not facilitate optimisation. For

these reasons, engineers often use analytical formula (see,

e.g., [4], [7], [8]) for the design and optimisation of such

components, since they allow short computation times and low

memory requirements. However, solving Maxwell’s equations

with analytical approaches necessitates approximations, which

are not always valid. For instance, in [7] and [8], magnetic

and dielectric problems are solved separately, thus significantly

simplifying the study but, at the same time, approximating the

actual behaviour of the real working component. For many

cases this approach offers a valid and useful approximation

which, however, is not valid in general [9].

Commercially available numerical tools for electromagnetic

simulations are nowadays either focused on low frequency

(electric motors, cables, power transformers, etc.) or high

frequency applications (e.g. scattering, SAR quantification, etc.).

However, as previously discussed, the increase in operating

frequencies necessitates electromagnetic field problems solution

in the model range where resistive, capacitive and inductive

effects need to be considered simultaneously, but radiation

effects can still be neglected. The modelling and simulation

of applications that fit into this regime is now a challenging

topic of ongoing research efforts in the field of computational

electromagnetics. Since these applications are actual industrial

cases subject to optimisation, complex geometries must be

addressed and computation times reduced. Moreover, besides

the purely computational cost, the numerical tool should also

reduce the human effort required to setup the computational

model, which is often the most demanding part of the process

since it requires man-hours instead of CPU-time.

For these reasons, in recent years, the interest and the

research in Integral Equation (IE) methods has significantly

increased. Contrary to FEM, IE methods avoid the air discretiza-

tion by exploiting the Green’s function of the background.

Among all IE methods, the Partial Element Equivalent Circuit

(PEEC) method, first introduced by A. Ruehli in 1972, has

captured the interest of the scientific community for its

versatility and its useful and natural circuit interpretation of

the electromagnetic problem [9]–[14]. However, as all classical

IE approaches, the PEEC method generates dense matrices

that may easily lead to prohibitive storage and computation

time. For this reason, many authors have proposed several

numerical techniques to reduce the computational cost and
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Fig. 1. Representation of Ωe, Ωm and Ωm. In this example, the electric
domain Ωe is the electric trace of the L–C–T component [4] and Ωm is the
magnetic core. The red box represents the detail reported in Fig. 3

improve the range of applicability of the PEEC methods. For

instance, PEEC has been coupled with Hierarchical Matrices

and with cross approximation in [15] and [16], with the Fast

Multiple Method in [17] and [12], with Voronoi decomposition

in [18], and other methods in, e.g., [19]. All these approaches

provide a general computational cost reduction. However,

they are somehow intrusive and mostly based on matrix

compression (therefore introducing unavoidable, hopefully

small, approximations), which usually requires some expertise

from the user which a priori has to choose suitable values

for the compression tolerances. Moreover, all these methods

only focus on computational cost reduction, and they do not

reduce the effort required by the user to setup the computational

model.

In this paper, a fast and general PEEC method based

on the Fast–Fourier–Transform (FFT) is proposed for the

first time, although it is fair to say that the possibility of

combining PEEC with FFT has been preliminarily investigated

in [20]. Specifically, the underlying formulation of the proposed

FFT–PEEC is the one of [21], where a standard Volume

Integral Equation (VIE) method is re-interpreted in the PEEC

framework. Then, the FFT approach proposed in [22] for

very high frequency problems (EM scattering by biological

tissues) and in [23] and [24] for eddy current problems (i.e.

neglecting the capacitive effects) is applied to the PEEC

formulation, drastically reducing the memory requirements

and the computation times, without introducing any data

compression (and therefore without loss of accuracy). The

proposed numerical tool only requires common CAD data

input files (e.g. .stl format), then the discretization process

is performed automatically by means of a fast voxelization

technique based on ray intersection [25]. This feature allows for

considerably reducing the pre–processing time, which is often

underestimated but, instead, may require several man–hours to

convert the CAD data information to a model which is suitable

for electromagnetic simulations and then its discretization.

The FFT–PEEC allows for considering resisitive, inductive

and capacitives effects, and is mostly focused on low to mid–

frequency applications, i.e. for electrically short devices where

inductive and capacitive effects must be considered in a coupled

Fig. 2. Left: Conceptual representation of the L-C-T component. Right:
Corresponding CAD model scaled along the vertical direction to improve the
clarity. The device is fed by connecting the voltage source to the P1 and P2′

terminals.

way, but propagation effects can be neglected. Considering the

typical size of PE devices the FFT–PEEC method is mostly

focused on a frequency range from 0 Hz to 300 MHz (or

higher for devices smaller than 5 cm). In more detail, the

proposed tool is mainly focused on the study of devices where

electric and magnetic fields are equally important, and therefore

quasistatic approximations cannot be exploited. For instance,

this is the case of devices for which closed inductive loops

cannot be identified or when the target frequency and/or the

device structure necessitate a model based on, e.g., distributed

(self and mutual) inductances and capacitances obtained from a

full-Maxwell’s study. The solution of the EM problem is sped-

up by means of an ad–hoc preconditioner, which is fundamental

to solve the EM problem for the target frequency range. Non–

linear materials, which have been rarely treated in the literature

[26], are also considered by the proposed FFT–PEEC.

II. FFT–PEEC FORMULATION AND DISCRETIZATION

In this section, the theoretical background of the FFT–

PEEC method is thoroughly described. The background PEEC

formulation adopted in this work is the general one proposed

in [21], where a standard VIE formulation is re–interpreted

resulting in an equivalent circuit interpretation, equal to the one

of the traditional PEEC scheme. In the following, for the sake

of completeness, such formulation is shortly reported. Instead,

the discretization procedure is modified according to [22], [23]

in order to exploit the translational invariant property of the

integral kernel and speed–up the PEEC simulation.

A. Target Problem Description

Since conductive, dielectric, and magnetic media are all con-

sidered, it is convenient to introduce the following definitions:

• Ωc is the conductive domain, i.e. all the regions where

the electric conductivity σc is greater than zero,

• Ωd is the dielectric domain, i.e. all the regions where the

relative permittivity εr is different from one,

• Ωm is the magnetic domain, i.e. all the regions where the

relative permeability µr is different from one,

• Ωe is the electric domain, i.e. the union of Ωc and Ωd.

The intersection between Ωc, Ωd, and Ωm can be non-empty.
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To illustrate the application of the method for power

electronics components, the example illustrated in Fig. 1 is

considered, i.e. an integrated LCT device [4] used in resonant

power electronics converters. This device can be interpreted

as a high frequency transformer with a series capacitance

and a series inductance, originating from the leakage of the

transformer. This device consists of a gapped magnetic core

(Ωm), and wound conductors (Ωc) forming simultaneously the

integrated capacitance and the transformer. Dielectric materials

(Ωd) are used to increase the capacitance. Fig. 2 shows a

conceptual representation of the L-C-T primary winding with

the corresponding CAD model. Distributed capacitances (which

are fundamental for the working principle of the device) are

also represented in Fig. 2 and they account for the effects

due to the time derivative of the electric field. As can be

seen, a closed inductive path cannot be identified, therefore the

magnetoquasistatic approximation cannot be exploited, thus

making the LCT component a perfect candidate for using the

FFT-PEEC method. The aim is to obtain from this complex

3D geometry both inductive and capacitive behaviour of the

component, thus it is not possible to separate the study into

magnetoquasistatic and electrostatic analyses. Indeed, as shown

by the conceptual representation of Fig. 2, it is worth noting that

primary winding of the LCT component is actually divided

into two parts and the currents can jump from one part to

the other by means of capacitives effects, therefore closing

the primary current path. Thus, for this particular geometry,

capacitive effects related to the time derivative of the electric

field cannot be neglected and it is not even possible to split the

electromagnetic simulation into separate magnetoquasistatic

and electrostatic analyses. Therefore, to correctly model the

behaviour of the device, a full-Maxwell study is necessary.

It is worth noting that several well–know and established

tools are used for PE devices. For instance, the well-known

FastHenry [27] and FastCap [28] tools exploit the magne-

toquasistatic and electrostatic approximations, respectively,

and therefore they are well suited for extracting equivalent

inductance and capacitance of devices which, in the frequency

range of interest, exhibit a predominant inductive (e.g. a

closed printed trace) or capacitive (e.g. two parallel traces)

behavior. However, such tools cannot be used for general

cases (as the LCT component described above) and they

only consider conductive structures, completely or partially

neglecting the presence of dielectric and magnetic media.

Similar considerations also hold for the Flux PEEC (Inca3D)

software [29], which also exploits the magnetoquasistatic

assumption. Another well–known tool typically used for printed

circuit boards with surface mounted conductive traces is

ANSYS HFSS 3D Layout, which exploits the dominant 2D

current density distribution in such structures, thus reducing

the computational cost but at the same time reducing its

generality. ANSYS Q3D is another extensively used tool, which

provides equivalent circuits in the form of R-L-C-G lumped

elements, where R-L and C-G are calculated by decoupling

the electric and magnetic fields in the Maxwell’s equations

[9], thus allowing for reducing the problem complexity but

again leading to approximations which are not always valid. A

thorough discussion concerning the above mentioned tools for

PE applications can be found in [9], where pros and cons are

discussed both from a theoretical and a numerical point of view.

Differently from the above mentioned tools, the proposed FFT-

PEEC allows for considering the full set of Maxwell’s equations

without making approximations as done by other FEM or

IE based software (e.g. COMSOL and FEKO, respectively).

However, with respect to the existing full-Maxwell’s equations

software, thanks to the use of FFT and automatic voxelization

techniques, the proposed method is fast and efficient during

both the pre-processing and computation phases.

B. PEEC as a Reinterpretation of Volume Integral Equation

As typically done in IE methods, the full–Maxwell’s equa-

tions are recast into the following well–known equations [21]:

E(r) = −iωAe(r)−∇ϕe(r)−
1

ε0
∇×Am(r)+Eext(r), (1)

H(r) = −iωAm(r)−∇ϕm(r) +
1

µ0
∇×Ae(r) +Hext(r),

(2)

where E and H are the electric and the magnetic fields,

respectively, Ae and Am are the electric and magnetic vector

potentials, respectively, and ϕe and ϕm are the scalar electric

and magnetic potentials. Eext and Hext are incident external

fields, r is the field point, i is the imaginary unit, ω is the

angular frequency and ε0 and µ0 are the permittivty and

permeability of vacuum. Vector and scalar potentials in (1)

and (2) are given by their integral expression in terms of Je,

and Jm, which are the electric and magnetic current densities,

respectively, due to the conduction and polarization currents

and the magnetization. These expressions can be found, e.g.,

in [21] and they exploit the Green’s function of vacuum. In

this paper, propagation effects are neglected, the static Green’s

function is used, however, theoretically, the dynamic Green’s

function can also be used, thus considering also propagation

effects. However, in the case of very high frequency problems,

which are not so relevant for power electronics applications,

more suited formulations exist [22].

Then, as in [21], constitutive equations which locally link E

with Je and H with Jm by means of equivalent electric and

magnetic resistivities are introduced.

Finally, combing such constitutive relations with (1) and

(2), together with the continuity equations of Je and Jm, one

finally obtains the four continuum equations where Je, Jm,

ϕe, and ϕm are the problem unknowns, as in the traditional

PEEC scheme [21].

C. Discretization: Voxelization

In this work, the dual PEEC discretization [21], [30],

[31] is adopted. However, the mesh creation procedure is

fundamentally modified and the main steps are described

in the following and reported in Algorithm 1. Indeed, in

traditional unstructured PEEC methods like the ones in the

above mentioned papers, the mesh generation is performed in

a standard way, such as in FEM approaches (with the only

exception that the vacuum/air domains are not discretized).

Thus, the CAD input files must first be handled in order
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Algorithm 1 FFT–PEEC Discretization

Input: .stl files of the devices to be simulated
1) Create Ωbox identified by the corners C1 and C2
2) Define the discretization steps ∆x, ∆y , and ∆z and generate the 3–D
grid
3) Identify index sets SIDe and SIDm of voxels discretizing Ωe and
Ωm, respectively
Output: Mesh for FFT–PEEC

to make them suitable for EM simulations (e.g. deleting

electromagnetically insignificant details and adjusting critical

parts), then a mesh is generated. When complex devices such

as the LCT component of Fig. 1 are considered, these two

steps may require several iterations and a considerable human

time and effort, that can even dominate the computational cost

required by the EM solver. The proposed FFT-PEEC aims

precisely at reducing the time and effort required by these

two steps, making full Maxwell’s EM simulations of complex

devices possible also for novice users.

First, a box domain Ωbox which contains Ωe and Ωm

is introduced as exemplified in Fig. 1. The box domain is

identified by defining the corners C1 and C2 of Fig. 1 (step 1

of Algorithm 1).

According to step 2 of Algorithm 1, once Ωbox is identified,

a uniform grid in the 3–D coordinate system is introduced, with

∆x, ∆y , and ∆z being the three discretization steps along the x,

y, and z axes, respectively. The x, y, and z dimensions of Ωbox

are discretized by Nx, Ny , and Nz voxels, respectively. Each

ijkth voxel of the grid (with i = 1, · · · , Nx, j = 1, · · · , Ny,

and k = 1, · · · , Nz) has ∆x × ∆y × ∆z dimension and is

identified by the triplet of indices i, j, k, or, equivalently, by

the global index t. The triplet i, j, k can be mapped into the

global index t as

t = i+ (j − 1)Nx + (k − 1)NxNy. (3)

Such map will be hereafter indicated as t = map ijk(i, j, k)
and the inverse map is [i, j, k] = map t(t).

Successively, in step 3 of Algorithm 1, the index sets of

voxels belonging to Ωe and Ωm are identified. These two

index sets are defined as SIDe and SIDm, respectively, and

their dimension is Nve and Nvm, respectively. Nve and Nvm

are, indeed, the number of voxels discretizing Ωe and Ωm,

respectively.

The identification of SIDe and SIDm can be performed

by using several methods, such as ray intersection [25] or

conservative voxelization [32] methods. These methods are

generally very fast and only require common CAD data input

files (e.g. .stl format) where Ωe and Ωm are described by

means of polygon-based 3D models. In this paper, with the

aim of developing a pure MATLAB® tool, the MATLAB®

code implemented in [33] (with only some non-substantial

modifications) has been used. In Appendix A, the ray intersec-

tion approach is described. However, other more sophisticated

and robust methods based on GPUs can also be used [34].

Obviously, when a voxelization method is adopted, the price

to pay is that the original geometry is not perfectly represented

by the voxelized structure. However, it is worth noting that

in any standard VIE method the discretization process always

Fig. 3. Voxelization of Ωe and Ωm. The picture represents the detail in the
red box of Fig. 1.

introduces some (hopefully small) distortion of the original

geometry. Moreover, the FFT approach described in Section

II-D makes it possible to consider meshes with a very large

amount of elements, therefore leading to a very good definition

of the voxelized structure, and, as shown by the numerical

results, significantly alleviating the errors introduced by the

imperfect representation of the original geometry due to the

voxelization. Another important remark is that the (brute-force)

voxelization approach allows for using standard CAD input

files which are not directly suited for EM simulations, e.g.

with many tiny and electromagnetically insignificant details

that would have to manually be removed if standard simulation

tools were used. On the contrary, such details are automatically

treated by the ray intersection voxelization.

One of the main goals of the proposed FFT-PEEC tool is

to reduce the human effort required for the model preparation

and meshing of complex devices, such as the LCT component

of Fig. 1, and, at the same time, allow for solving the full

Maxwell’s equations without introducing approximations. The

proposed voxelization techniques allow for reducing practically

to zero the user time and effort required to create a model

which is suited for EM simulations having standard CAD

models as input files. Clearly, one should accept to loose the

total control in the model construction and to introduce some

small distortion with respect to the original geometry.

Once SIDe and SIDm are identified, the meshes of Ωe and

Ωm have been actually generated, as shown in Fig. 3. Now,

following [21], Je and Jm are expanded as

Je(r) =

Nfe
∑

h=1

wh(r)je,h, (4)

Jm(r) =

Nfm
∑

h=1

wh(r)jm,h, (5)

where wh is the vector face shape function related to the

hth face of the mesh and je,h and jm,h are the Degrees of

Freedom (DoFs) related to the hth face corresponding to the

fluxes of Je and Jm through that face, respectively. Nfe and

Nfm are the number of internal faces of the mesh of Ωe and

Ωm, respectively.

In the PEEC framework, scalar potentials are also consid-

ered as problem unknowns. Therefore, the DoFs related to
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scalar electric and magnetic potentials are associated to the

barycenters of the voxels belonging to SIDe and SIDm, i.e.

ϕe(r) =

Nve
∑

h=1

pk(r)φe,h, (6)

ϕm(r) =

Nvm
∑

h=1

pk(r)φm,h, (7)

where ph is the hth pulse function equal to 1
∆x∆y∆z

when r

belongs to the hth voxel in SIDe (or SIDm) and zero elsewhere.

φe,h and φm,h are the degrees of freedom corresponding to

the average electric and magnetic scalar potentials in the hth

voxel of SIDe and SIDm, respectively.

Then, substituting (4)–(7) in the continuum equations ob-

tained in Section II-B and projecting the resulting equations

with a Galerkin scheme, the final, traditional, PEEC system of

equations is obtained







Re + iωLe K AT
e 0

−KT Rm + iωLm 0 AT
m

PeAe 0 −iω1 0
0 PmAm 0 −iω1













je
jm
φe

φm






=







e0

h0

0
0






,

(8)

where je, jm, φe, and φm are arrays storing the DoFs je,h, jm,h,

φe,h, and φm,k, respectively, whereas e0 and h0 are arrays

corresponding to Eext and Hext. The PEEC matrices R, L,

and P are the standard resistance, inductance, and potential

PEEC matrices, respectively, (where the subscript e indicates

electric matrices and m indicates magnetic matrices). Their

expressions can be found in [21]. Instead, the coefficients

of K can be obtained following [4] (taking care that in [4]

different, i.e scaled, current unknowns are used). It is important

to note that the magnetic and dielectric properties of materials

(i.e. the conductivity σc, the relative permittivity εr and the

relative permeability µr) only appear in the sparse Re and

Rm. Matrices Ae and Am are the volumes–faces incidence

matrices related to Ωe and Ωm, respectively. Their dimensions

are Nve ×Nfe and Nvm ×Nfm, respectively.

The solution of (8) provides an (approximate) solution of the

electromagnetic problem. Often, in literature, (8) coupled with

lumped component network equations is solved by Spice–like

solvers based on Modified Nodal Analysis (MNA) procedures.

However, it has been clearly shown in [35] and [36] that

dedicated sparse circuit solvers are extremely inefficient for

the solution of PEEC systems when objects with a relatively

fine discretization are considered. Indeed, L, P, and K are

dense matrices whose memory storage grows quadratically with

the number of the unknowns. Moreover, as noticed in [35],

when even a few hundred unknowns are considered Spice–like

solvers would require a considerable time just to read the

input file. Furthermore, the net list itself would require a

considerable amount of disk space. For these reasons, many

authors have developed different solution strategies based,

for instance, on LU factorisation [37] (when the problem

dimension is reasonable), iterative solvers [36], or more

sophisticated methods such as Hierarchical Matrices coupled

with cross approximation [15], [16], Fast Multiple [17], Voronoi

decomposition [18], and others [19], [38], [39].

In this work, thanks to the voxelization of the geometry,

the coefficients of L, P, and K posses the property of being

translationally invariant. Therefore, it is possible to exploit

this property in order to significantly reduce the memory

requirement for the storage of the matrices and speed–up the

solution.

In Section II-D, it is shown how to exploit the translational

invariance property in order to efficiently store L, P, and K

matrices and speed up matrix–vector products involving such

matrices. Then, in Section II-E, a general preconditioner is

proposed to solve (8) by means of iterative solvers. Subse-

quently, in Section II-G, the case of connections with external

lumped networks is discussed and in Section II-H the case

of non–linear materials is also considered, with emphasis on

non–linear magnetic media.

D. Acceleration of PEEC via FFT

Thanks to translational invariance property of the Green’s

function, the coefficients of L, P, and K related to two pairs of

unknowns having the same mutual position are equal. Namely,

whenever the mesh is obtained through a voxelization process,

considering four unknowns with support barycenters equal to

ri, rj , rk, and rh, when ri − rj = rh − rk the related mutual

inductance coefficients are equal, i.e. Lij = Lhk (and the same

holds for P and K). As shown in [22], [40], and [23], this

property can be exploited in order to represent L, P, and K in

an efficient format and speed-up matrix vector products. The

main steps for doing so are described in the following for the L,

P, and K matrices. Mathematical considerations are neglected

in the following discussion and they can be found in other

works [22], [40]. Instead, for the sake of completeness, all

the steps required for the implementation of the algorithm are

described and the specific operations to apply such technique

to the PEEC formulation are described.

For the sake of conciseness, all the steps are given consider-

ing the electric matrices only. However, the steps are exactly

the same for the magnetic matrices.

1) Matrix Pe: Matrix Pe, of dimension Nve × Nve, is

the easiest to handled. We now introduce the auxiliary total

electric potential matrix Pe,t of dimension Nv,box × Nv,box,

where Nv,box = NxNyNz is the total number of voxels in

Ωbox. Matrix Pe can be seen as a row–column selection of

Pe,t, i.e., by using the MATLAB® notation hereafter,

Pe = Pe,t(SIDe, SIDe). (9)

Thanks to the translational invariance property, Pe,t is a

Block Toeplitz matrix with Toeplitz blocks (BTTB) and all the

coefficients of Pe,t appear in its first row (or first column). The

idea is to exploit such property in order to efficiently represent

Pe,t and perform matrix–vector products. The computational

and mathematical literature concerning Toeplitz and Block

Toeplitz matrices is vast and many algorithms and numerical

methods have been proposed [41], [42]. In this work, we follow

the procedure described in [22] where the Block Toeplitz

matrix is first represented as a Nx ×Ny ×Nz tensor and then

embedded into a circulant tensor. Matrix vector products are

then efficiently performed by means of the FFT [43], [44].
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First, as in [22], the Nx×Ny×Nz tensor Pe,t is constructed:

Pe,t(map t(t)) = Pe,t(1, t), for t = 1, Nv,box. (10)

Of course, the entry Pe,t(1, t) in (10) can be generated on

the fly, therefore the whole Pe,t is never actually generated.

A Toeplitz matrix can be always embedded in a circulant

matrix. Analogously, Pe,t can be embedded in the circulant

tensor CPe,t of dimension 2Nx × 2Ny × 2Nz:

CPe,t(1 : Nx, 1 : Ny, 1 : Nz) =

Pe,t(1 : Nx, 1 : Ny, 1 : Nz),

CPe,t(Nx + 2 : 2Nx, 1 : Ny, 1 : Nz) =

Pe,t(Nx : −1 : 2, 1 : Ny, 1 : Nz),

CPe,t(1 : Nx, Ny + 2 : 2Ny, 1 : Nz) =

Pe,t(1 : Nx, Ny : −1 : 2, 1 : Nz),

CPe,t(1 : Nx, 1 : Ny, Nz + 2 : 2Nz) =

Pe,t(1 : Nx, 1 : Ny, Nz : −1 : 2), (11)

CPe,t(Nx + 2 : 2Nx, Ny + 2 : 2Ny, 1 : Nz) =

Pe,t(Nx : −1 : 2, Ny : −1 : 2, 1 : Nz),

CPe,t(Nx + 2 : 2Nx, 1 : Ny, Nz + 2 : 2Nz) =

Pe,t(Nx : −1 : 2, 1 : Ny, Nz : −1 : 2),

CPe,t(1 : Nx, Ny + 2 : 2Ny, Nz + 2 : 2Nz) =

Pe,t(1 : Nx, Ny : −1 : 2, Nz : −1 : 2),

CPe,t(Nx + 2 : 2Nx, Ny + 2 : 2Ny, Nz + 2 : 2Nz) =

Pe,t(Nx : −1 : 2, Ny : −1 : 2, Nz : −1 : 2).

Once the circulant tensor CPe,t is generated, the matrix–

vector product between Pe and a general vector v can be

efficiently obtained by using CPe,t and the FFT. Indeed, the

vector resulting from the matrix–vector product x = Pev can

be obtained from the following steps:

• embed v into the Nx ×Ny ×Nx tensor V , i.e.

V(map t(t)) = v(t), for any t ∈ SIDe, (12)

• using the 3–dimensional discrete FFT and Inverse-FFT to

efficiently perform tensor products by means of convolu-

tion,

X = IFFTN(FFTN(CPe,t).∗

FFTN(V, [2Nx, 2Ny, 2Nz])),
(13)

where X is a 2Nx × 2Ny × 2Nx tensor, FFTN and

IFFTN are the 3–dimensional discrete MATLAB® FFT

and its inverse, .∗ indicates the MATLAB® entry–by–

entry multiplication,

• extract the solution x from X :

Y =X (1 : Nx, 1 : Ny, 1 : Nz),

x(t) =Y(map t(t)), for any t ∈ SIDe.
(14)

The standard matrix–vector product requires O(N2
v,e) mul-

tiplications and additions and demands for the generation of

all the N2
v,e entries of Pe, therefore leading to a prohibitive

memory requirement and computation time if several matrix–

products must be performed. The steps reported in (12)–

(14), instead, require a reduced memory requirement and

Fig. 4. 2–D exemplification of voxel and face IDs. Blue voxels discretize
Ωe whereas withe voxel discretize Ωbox \ Ωe. Red dashed faces constitute
SIDe,fx and the white dots and lines represents the graph of the equivalent
circuit.

computation time. Specifically, in (13), 8Nv,box multiplication

are performed and FFTN(CPe,t) can be generated once at

the beginning of the algorithm and then re–used to perform

several matrix–vector multiplications. FFT and IFFT have a

O(Nlog(N)) complexity, that is generally much lower than

O(N2
v,e) required by the standard matrix-vector product in IE

methods.

2) Matrix Le: Due to the orthogonality of the face functions

and the regularity of the mesh, matrix Le, of dimension Nf,e×
Nf,e has the following structure:

Le =





Le,xx 0 0

0 Le,yy 0

0 0 Le,zz



 (15)

where Le,xx, Le,yy , and Le,zz have dimensions Nf,e,x×Nf,e,x,

Nf,e,y × Nf,e,y, and Nf,e,z × Nf,e,z , respectively. Nf,e,x,

Nf,e,y, and Nf,e,z are the number of faces shared by voxels

in SIDe pointing in the x, y, and z directions, respectively. As

for Pe, also Le,xx, Le,yy , and Le,zz are seen as row–column

selections of BTTB matrices. For instance,

Le,xx = Le,xx,t(SIDe,fx, SIDe,fx) (16)

where Le,xx,t is the total BTTB inductance matrix and SIDe,fx

is the index set of faces (of dimension Nf,e,x) shared by voxels

in SID,e pointing in the x direction. Index sets SIDe,fy and

SIDe,fz , with obvious meaning, are also introduced. Le,xx,t

has dimension Nv,box×Nv,box. Indeed, as exemplified in Fig. 4

for a 2–D case, each face in Ωbox pointing in the x direction

is identified by the ijk-id of the the voxel at its left. Therefore,

all the faces pointing in the x direction at the far left of Ωbox

are not considered (since there are no voxels at their left).

Equivalent considerations hold also for Le,yy,t and Le,zz,t.

Then, all the steps described above for matrix Pe can be also

applied to efficiently perform matrix–vector products involving

Le, significantly reducing computation time and memory.

3) Matrix K: Due to the orthogonality of the face functions

and the regularity of the mesh, matrix K, of dimension Nf,e×
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Nf,m, has the following structure:

K =





0 Kxy Kxz

KT
xy 0 Kyz

KT
xz KT

yz 0



 (17)

where Kxy , Kxz , and Kyz have dimensions Nf,e,x ×Nf,m,y ,

Nf,e,x × Nf,m,z , and Nf,e,y × Nf,m,z , respectively. Again,

Kxy, Kxz , and Kyz are seen as row–column selections of

BTTB matrices, e.g.

Kxy = Kxy,t(SIDe,fx, SIDm,fy), (18)

where Kxy,t has dimension Nv,box × Nv,box. While Pe,t,

Le,xx,t, Le,yy,t, and Le,zz,t are symmetric matrices, Kxy,t

is antisymmetric (and the same holds for Kxz,t and Kyz,t).

However, Kxy,t is still a BTTB matrix and matrix–vector

products involving K can be handled similarly to Pe and

Le. The only difference is in the construction of the circulant

tensor.

First, the three Nx × Ny × Nz tensors Kxy,t, Kxz,t, and

Kyz,t are constructed, i.e.

Kxy,t(map t(t)) = Kxy,t(1, t), for t = 1, Nv,box, (19)

and similarly for Kxz,t and Kyz,t. Then, Kxy,t, Kxz,t and Kyz,t

are embedded in the circulant tensors CKxy,t, CKxz,t, CKyz,t

of dimension 2Nx × 2Ny × 2Nz:

CKα,t(1 : Nx, 1 : Ny, 1 : Nz) =

Kα,t(1 : Nx, 1 : Ny, 1 : Nz),

CKα,t(Nx + 2 : 2Nx, 1 : Ny, 1 : Nz) =

s1(α)Kα,t(Nx : −1 : 2, 1 : Ny, 1 : Nz),

CKα,t(1 : Nx, Ny + 2 : 2Ny, 1 : Nz) =

s2(α)Kα,t(1 : Nx, Ny : −1 : 2, 1 : Nz),

CKα,t(1 : Nx, 1 : Ny, Nz + 2 : 2Nz) =

s3(α)Kα,t(1 : Nx, 1 : Ny, Nz : −1 : 2), (20)

CKα,t(Nx + 2 : 2Nx, Ny + 2 : 2Ny, 1 : Nz) =

s4(α)Kα,t(Nx : −1 : 2, Ny : −1 : 2, 1 : Nz),

CKα,t(Nx + 2 : 2Nx, 1 : Ny, Nz + 2 : 2Nz) =

s5(α)Kα,t(Nx : −1 : 2, 1 : Ny, Nz : −1 : 2),

CKα,t(1 : Nx, Ny + 2 : 2Ny, Nz + 2 : 2Nz) =

s6(α)Kα,t(1 : Nx, Ny : −1 : 2, Nz : −1 : 2),

CKα,t(Nx + 2 : 2Nx, Ny + 2 : 2Ny, Nz + 2 : 2Nz) =

−Kα,t(Nx : −1 : 2, Ny : −1 : 2, Nz : −1 : 2).

where α = xy, xz, yz and sk(α), with k = 1, · · · , 6 is given

in Tab. I.

Once the circulant tensors are constructed, matrix–vector

products involving K can be performed following the steps

given for Pe. It is worth noting that, thanks to the antisymmetric

property, matrix–vector products involving KT
xy , KT

xz , and KT
yz

are easily obtained from Kxy , Kxz , and Kyz by changing the

signs.

Finally, following the above instructions to efficiently per-

form matrix–vector products involving P, L, and K, one can

efficiently perform matrix–vector products involving the whole

system (8). Since they are very sparse, multiplications with

the resistance and the incidence matrices are performed in a

classical way.

E. Preconditioning the PEEC System

In the previous Section, a method based on FFT and convolu-

tion to efficiently perform matrix–vector products involving the

system of equations in (8) has been described. This procedure

can actually be used in an iterative solver to speed–up matrix

vector products and significantly reduce the memory required to

solve (8). However, it is well–known that, for integral equation

problems, the convergence of iterative solvers is very slow if

no preconditioning is used. The preconditioning of IE methods

is still an open issue and some consolidated approaches have

been found only for very high frequency problems, e.g. [45].

Moreover, especially for the kind of EM problems which are

the target of this paper the literature is scarce.

In this section, a preconditioner based on [23] is constructed.

However, with respect to [23], the preconditioner is extended to

include dielectric and magnetic media and, more importantly for

the goal of the paper, capacitive effects. Indeed, the formulation

in [23] only considers eddy current problems with possible

lumped voltage excitation, but completely neglects capacitive

effects.

System (8) can be represented in a more compact form, i.e.
[

Zem AT
em

PemAem −iω1

] [

jem
φem

]

=

[

eh0

0

]

, (21)

where matrices and vectors have been grouped:

Zem =

[

Re + iωLe K

−KT Rm + iωLm

]

, (22)

jem =

[

je
jm

]

, φem =

[

φe

φm

]

, eh0 =

[

e0
h0

]

(23)

and equivalently for the other quantities in (21).

The preconditioner proposed in this paper is obtained starting

from the following system

Λ =

[

diag(Zem) AT
em

diag(Pem)Aem −iω1

]

, (24)

where diag() extracts the diagonal of the matrices. System

(24) somehow approximates the original system (21) since,

by extracting the diagonals of Zem and Pem, all the mutual

electromagnetic interactions are neglected and only the self

interactions are considered.

Then, as in [23], the Schur complement is applied to

efficiently perform y = Λ−1x, i.e.
[

c

d

]

=

[

diag(Zem) AT
em

diag(Pem)Aem −iω1

]

−1 [
a

b

]

, (25)

TABLE I
VALUE OF sk , WITH k = 1, · · · , 6 FOR THE CONSTRUCTION OF THE

CIRCULANT TENSORS CKxy,t , CKxz,t , AND CKyz,t .

P
P
P
P
PP

α

sk s1 s2 s3 s4 s5 s6

xy +1 +1 −1 +1 −1 −1

xz +1 −1 +1 −1 +1 −1

yz −1 +1 +1 −1 −1 +1
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leading to

Sd = b− diag(Pem)Adiag(Zem)−1, (26)

c = diag(Zem)−1(a−ATd), (27)

where S is the Schur complement

S = −iω1− diag(Pem)(Adiag(Zem)−1AT ). (28)

Since S is very sparse, d can be cheaply obtained by using

an efficient sparse LU factorisation available in MATLAB®,

then c is obtained according to (27).

F. Dealing with Heterogeneous Resistivity

When regions with very different resistivity values are

involved, (8) is badly scaled and this may reduce the numerical

performances of the iterative solver. It is worth noting that this

issue naturally occurs when highly conductive media and dielec-

tric media are considered since, generally, σc ≫ iωε0(εr − 1).
As shown by numerical results (Section III), a possible

solution to speed-up the solver is the use of a standard Gauss–

Seidel iteration scheme [46], i.e. by separately solving the

electromagnetic problem (i.e. (8)) for each domain and updating

the right–hand–side according to the mutual interactions

between the domains. A similar procedure has been proposed in

[47] to reduce the overall computational cost of VIE methods,

however only focusing on multiple disconnected conductive

regions with equal resistivity.

G. Connections with Lumped Circuit Components and Param-

eters Extraction

Thanks to the circuit interpretation provided by the PEEC

formulation, it is very easy to couple external circuits consisting

of lumped components with (21). This leads to







Zem 0 AT
em 0

0 Zl AT
l−em AT

l

PemAem PemAl−em −iω1 0
0 Al 0 0













jem
jl

φem

φl






=







eh0

e0l

Pemj0
j0l







(29)

where Zl is the impedance matrix of the lumped components,

Al is the incidence matrix of the external lumped circuit and

Al−em is the incidence matrix describing connections between

the equivalent circuit representing the discretized devices and

the external lumped circuit. jl and φl are the vectors of currents

and potentials of the external lumped circuit and j0, j0l, and

e0l are vectors storing possible currents and voltage excitation.

System (29) can be solved by means of an iterative solver

using the FFT method described in Section II-D. Moreover, a

preconditioner like the one proposed in Section II-E can still

be constructed by grouping together the matrix blocks of (29).

It is worth noting that the proposed FFT-PEEC method

can be also used to extract equivalent circuit parameters

such as impedances, and self and mutual inductances and

capacitances. Indeed, once the solution of the EM problem

is found, equivalent circuit parameters can be extracted from

both circuit inspections (involving currents and potentials) or

derived from the electric and magnetic energies which can be

easily obtained from the solution in terms of DoFs by using

the dense matrix operators. For instance, when only conductive

media are present, the magnetic energy, Wm, and the electric

energy, We, can be obtained as

Wm =
1

4
j∗eLeje, (30)

We =
1

4
q∗

eφe, (31)

where ∗ denotes the conjugate transpose and qe = 1
iω
Aeje

is the charge density array. Obviously, (30) can be computed

efficiently by using the related circulant tensor operator. From

(30) and (31) one can easily extract equivalent inductance and

capacitance, respectively.

H. Non–Linear Materials

Magnetic materials used in Power Electronics are designed

to reduce high frequency losses. However, saturation occurs at

quite low flux densities, especially for ferrites. Therefore, this

phenomenon must be taken into account. This section shows

how to extend the FFT-PEEC method to the case of non-linear

media. Even if we treat only the case of non–linear magnetic

materials, equivalent considerations also hold for non-linear

dielectric media.

When non–linear magnetic media are taken into account, the

relative permeability is considered as a function of the magnetic

field H. Therefore, the equivalent magnetic resistivity ρm is a

function of H too (see [21] for the definition of ρm).

Usually, data-sheets of materials provide information con-

cerning the B–H curve. Therefore, it is convenient to translate

the B–H curve into a function of the type ρm(Jm).
When non–linear materials are involved, only static or time–

domain solutions can be solved (non–linear frequency domain

problems can be solved only by imposing the first harmonic

approximation and using the effective B–H curve). Here, for

the sake of clarity, only static problems are considered but the

extension to the other cases is straightforward.

The (static) non–linear PEEC problem is given by







Re 0 AT
e 0

−KT Rm(ρm(µ0M)) 0 AT
m

Ae 0 0 0
0 PmAm 0 −1













je
m
φe

φm






=







e0

h0

0
0






, (32)

where, with respect to (8), µ0M has been considered as

unknown instead of Jm. µ0M is expanded as in (5) and m

stores the corresponding DoFs. Also note that the expression

of ρm for a static problem is

ρm(r) =
1

µ0(µr(µ0M, r)− 1)
. (33)

The non–linear problem (32) can be re–written as: find

x = [je,m,φe,φm]T such that

S(x)x− b = 0 (34)

where S is the matrix in (32), and b = [e0,h0,0,0]
T .

The non–linear problem (34) can be solved by using the

Newton–Raphson method which requires the solution of a

system of equations involving the Jacobian of (34) several
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times. The generic ijth entry of the Jacobian, J , of (34) is

given by

Jij(x) = Sij(x) +

N
∑

a=1

∂Sia(x)

∂xj

xa −
∂bi

∂xj

, (35)

where xj is the jth entry of x and bi is the ith entry of b.

In the right–hand–side of (35), the most difficult term to

evaluate is the second one. However, since only matrix Rm

depends on µ0M (and therefore from x), its computation

reduces to the computation of

Hij =

Nv,m
∑

a

∂Ria(m)

∂mj

ma. (36)

In the above expression, it is required to evaluate ∂ρm

∂mj
. It is

convenient to do that as follows

∂ρm

∂mj

=
∂ρm

∂||µ0M||

∂||µ0M||

∂mj

, (37)

where

∂||µ0M||

∂mj

= 2

Nv,box
∑

b=1

wj ·wbxb. (38)

Then, Hij is given by

Hij =

Nv,box
∑

a=1

Nv,m
∑

b=1

∫

Ωm

wi ·wawj ·wb2xbxa

∂ρm

||µ0M||
dΩ.

(39)

It is worth noting that, in general, due to the local support

of the shape functions, Hij can be computed according to (39)

with only one for–loop on the voxels belonging to SIDm and

adding the local contributions. Thus, the double sum in (39)

is converted into the more efficient

Nv,box
∑

a=1

Nv,m
∑

b=1

(· · · ) =

Nv,box
∑

k=1

vf (k,6)
∑

a=vf (k,1)

vf (k,6)
∑

b=vf (k,1)

(· · · ), (40)

where vf (k, h) provides face ID of the hth face of the kth

voxel, with h = 1, · · · , 6.

Finally, the non–linear problem can still be solved by using

an iterative solver. At each Newton–Rhapson iteration, a system

of equations involving J must be solved. Actually, the structure

of J is very similar to the original system of equations

(32) (matrix H is added to Rm). Therefore, at each Newton–

Rhapson iteration, the same procedure described in Section

II-D and Section II-E can be used to efficiently solve

J∆x = f , (41)

by means of an iterative solver and without actually assembling

and storing J . The preconditioner is constructed following

the same steps of Section II-E and thus selecting the diagonal

of H+Rm.

Fig. 5. L–C–T prototype (left) and L–C–T copper trace scaled along the z
direction of a factor of 20 (right). Symbols + and − indicate the terminals
where the voltage source is connected.

III. NUMERICAL RESULTS AND EXAMPLES OF

APPLICATION

The FFT–PEEC method was implemented in MATLAB®

coupled with MEX–FORTRAN functions combined with

OpenMP libraries. Simulations were run on a Linux machine

equipped with a Xeon E5-2643 v4 processor (dual 6-core/12-

thread, @3.40 GHz) and 512 GB of RAM. To run the FFT-

PEEC code the only required input files are: 1) the .stl files

of each part with a flag to indicate if they are conductive,

dielectric, magnetic media or ports with assigned potential, 2)

the material properties and/or the assigned potentials (if ports),

3) the voxel sizes for the vozelization, and 4) the frequencies

for the simulation. Then, the mesh generation and the solution

is performed automatically by the tool. Sample MATLAB®

implementations of the FFT–PEEC method are available at

https://github.com/UniPD-DII-ETCOMP/FFT-PEEC.

A. L–C–T Component

The L-C-T component already introduced in Fig. 1 was de-

signed using analytical formulas in [4] and then manufactured,

as illustrated in Fig. 5. At that time, due to the complexity of

the geometry, the device was too complex to be easily simulated

with a numerical tool. The device is a significant test–case

since capacitive effects are fundamental for its operation and

conductive, dielectric, and magnetic media are present.

All the geometrical and material details of the device are

reported in [48]. The device (Fig. 5) consists of 16 copper

layers (70 µm thickness each) that compose the first and the

second part of the primary winding of the transformer. The

16 copper layers are printed on dielectric substrates composed

of Kapton (εr = 3.3, 50 µm thick) or Preg (εr = 4.5, 140 µm

thick). The magnetic core is composed of Ferrite 3F3, which

exhibits a complex frequency dependent relative permeability.

The device is fed by a voltage source connected to only two

of the four terminals of the primary winding. At low frequency,

the device behaves as a capacitor. The primary winding is an

open circuit and the current flows from the first part to the

second part of the winding thanks to capacitive effects.

The design of this kind of devices is a complex process since

they must resonate at a prescribed working frequency and both

geometry and material parameters affect their self resonant

frequency. The FFT–PEEC method can simplify the design
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Fig. 6. Magnitude and phase of Zeq of the L–C–T component.
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Fig. 7. Magnitude and phase of Zeq of the L–C–T component without
magnetic core (a) and with the copper trace only (b).

process of these devices since the electromagnetic simulation

only requires the CAD file as input, therefore reducing the

human effort. The FFT–PEEC model of the L–C–T component

is discretized by Nx = 67, Ny = 127, and Nz = 138 voxels,

resulting into Nve + Nvm = 470 703 electric and magnetic

voxels.

Fig. 6 shows the magnitude and phase of the equivalent

impedance (Zeq) obtained from the FFT–PEEC method and

compared with: 1) measurements, 2) the unstructured PEEC

method proposed in [37], 3) a commercial software based on

FEM, and 4) a commercial software based on IE methods. To

highlight the importance of considering dielectric and magnetic

media, Fig. 7 show the magnitude and phase of Zeq for the

device without the magnetic core (a) and with the copper trace

only (b). In Table II, the computational details of the numerical

methods are reported for a single frequency simulation.

As can be seen from Fig. 6, Fig. 7, and Table II, the results of

FFT–PEEC method are in good agreement with measurements

and the other numerical approaches. Moreover, the FFT–PEEC

method required a smaller computational cost compared to

the other methods. Furthermore, although it is very difficult to

make a precise quantitative comparison, the FFT-PEEC method

required a much lower user time with respect the one required

by the FEM method (minutes vs several hours/working-days

TABLE II
COMPUTATIONAL DATA FOR THE L–C–T CASE.

DoFs Time (s) Memory (GB)

FFT–PEEC 1 849 228 647 18

PEEC 18 429 1 278 15

FEM 29 582 652 18 713 430

IEM 35 243 1 892 19

Fig. 8. Current density distribution in the corner of the external turn of the
bottom layer copper trace (in A/m2) at 100 kHz.

Fig. 9. Charge density distribution in the four top layers of the transformer
(top). Detail of the charge density distribution with mesh (bottom). Results are
in C/m3. For the sake of clarity, geometry has been scaled in the z direction
of a factor of 20. The white dashed boxes show abrupt changes in charge
density due to the presence of nearby corners of adjacent layers. Results are
at 100 kHz.

in the authors’ experience). Indeed, as can be seen from Fig. 5,

the copper trace has a very complex geometry, with very

thin thickness and air gaps. The discretization of this kind

of geometry, generally, requires a non–negligible time and

human effort, especially for FEM models. Instead, with the

FFT–PEEC method, the meshing time and the human effort for

the discretization is eliminated since the method automatically

creates the mesh from the CAD file.

Fig. 8 shows the current density distribution in the corner of

the external turn of the bottom layer copper trace. As can be

seen, thanks to the high number of mesh elements which can

be considered with FFT-PEEC, hot-spots of the current density

can be better quantified, which can provide useful information
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Fig. 10. Convergence of the solver based on the Gauss–Seidel iteration scheme
(top) and convergence of a standard GMRES approach (bottom) applied to
the L–C–T case at 50 kHz. Blue circles: first iteration, orange crosses: second
iteration, yellow squares: third iteration, purple triangles: fourth iteration.
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Fig. 11. Convergence of the solver for the L-C-T case at 10 MHz without
the preconditioner, with a diagonal preconditioner, and with the proposed
preconditioner.

during the design of such devices. Fig. 9, instead, shows the

charge density distribution in the four top layers of the primary

winding of the transformer. As can be seen in the bottom

of Fig. 9, FFT-PEEC is able to accurately model the charge

density distribution which determines the capacitive behaviour

of the device. Clearly, such kind of information cannot be

obtained with analytical formula or too coarse discretizations.

Finally, it is worth noting that, due to the presence of highly

conductive media and dielectric media, the numerical approach

proposed in Section II-F has been adopted. In particular, the

solution is reached by separately solving the conductive trace

plus the magnetic core in one step and the dielectric substrate

in the second step. Then, the solver iterates between the two

steps until the convergence is reached (here fixed to 10−6). The

convergence plots (for a frequency equal to 50 kHz) are reported

in Fig. 10 and compared with the convergence profile obtained

Fig. 12. Non–linear Power Inductor .stl model (top) and its voxelization
(bottom).
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Fig. 13. Equivalent inductance of the power inductor for different current
values. FFT–PEEC vs FEM.

from a standard GMRES solver without using the approach

described in Section II-F. Fig. 11 shows the performance

of the proposed preconditioner with respect to both an un-

preconditioned GMRES and a standard diagonal preconditioner.

Due to the presence of capacitive effects, the FFT-PEEC system

is badly scaled and/or possibly ill-conditioned, therefore the

adoption of a good preconditioner is fundamental.

B. Power Inductor

In this section, for completeness, the case of a power inductor

is considered, taking into account the saturation effect of the

magnetic material. For the sake of reproducibility, the Power

Inductor model provided by COMSOL® and available online

has been chosen. The device consists of a current driven coil

and a non–linear magnetic core (its B–H curve is the one

provided by COMSOL® for lossless soft iron). The CAD

model and its voxelization are shown in Fig. 12. The volume

of the power inductor is 0.15 × 0.1 × 0.0475 m3, which are

also the dimensions of Ωbox.

In this test case, the inductance of the device has been

evaluated by varying the current value, and therefore the

saturation of the magnetic core. The results, compared with

the one obtained from FEM, are reported in Fig. 13.

The computational performances of the two methods are

reported in Table III (for a current of 31 A). As can be seen

from Fig. 13 and Table III, although a fully standard Newton–

Rhapson method has been used for the FFT–PEEC, the results
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TABLE III
COMPUTATIONAL DATA FOR THE NON–LINEAR POWER INDUCTOR CASE.

DoFs Time (s) Memory (GB)

FFT–PEEC 1 823 609 1 456 6.30

FEM 2 278 001 2 583 15.63
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Fig. 14. Convergence of the error on the inductance of the Power Inductor
with respect to the FEM solution versus the number of voxels.

are in good agreement and the computational cost and memory

of FFT–PEEC are abut half of those of FEM.

Finally, Fig. 14 shows the convergence of the error on the

inductance of the device with respect to the FEM solution as a

function of the number of voxels used for the discretization. As

can be seen, Fig. 14 shows a rapid decrease (which is typical

of IE). Fluctuations are due to the discrete representation of the

device, which introduces deviations from the original geometry.

The effects of such imperfect representation also decrease with

the number of voxels, i.e. by reducing the sizes of the voxels.

C. L-Shaped Trace Over a Ground Plane

Finally, in this section, to further test the accuracy of the

FFT-PEEC tool, the simple case of an L-shaped conductive

trace over a conductive ground plane is considered. Contrary to

the LCT primary winding, this component has a predominantly

resistive-inductive behaviour and the equivalent impedance of

the device obtained from the FFT-PEEC can be compared

against the one obtained from the well-known FastHenry tool

[27], which exploits the magnetoquasistatic approximation

therefore neglecting capacitive effects. Moreover, results are

also compared with the already mentioned full-Maxwell IE

method. Fig. 15 shows the model of the component. The ground

plate has a 0.01 mm thickness whereas the L-shaped trace has

a 0.01 mm thickness and a 4 mm width. Both the ground plate

and the L-trace have a 107 S/m conductivity. The distance

between the ground plate and the trace is 0.5 mm. A voltage

source connects the trace with the ground plate in (A), whereas

a short circuit is placed between the trace and the plate in (B)

to close the path.

The magnitude of the equivalent impedance seen from the

voltage source computed with the three methods is reported in

Fig. 16. As expected, the three methods are in good accordance

for a wide frequency range (from 0 Hz to ∼145 MHz) until

capacitives effects become significant. Indeed, since FastHenry
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Fig. 15. Top view of the L-shaped trace (red) over the ground plane blue).
Dimensions are in mm.
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Fig. 16. Magnitude of the equivalent impedance of the L-shape trace over
the ground plate vs frequency.

is based on the magnetoquasitatic approximation, it cannot

follow the reference curve (i.e. the full-Maxwell IE one) for

the highest frequencies. FFT-PEEC and the IE method, instead,

agree very well for the whole frequency range since they both

solve the full-Maxwell equations.

For this simple case, all the three methods required less than

10 seconds for each frequency solution and less than 100 MB.

IV. CONCLUSION

A fast Partial Element Equivalent Circuit (PEEC) method

based on the Fast–Fourier–Transform (FFT) has been pre-

sented. In the proposed method the discretization is performed

automatically by means of a voxelization procedure based

on ray intersection. Therefore, the FFT–PEEC method only

requires common CAD input files, thus significantly reducing

the human effort and, in general, the overall time for the pre–

processing. Thanks to the FFT approach, both memory and

computation time are significantly reduced, without the need

of applying matrix compression (i.e. approximations). The

proposed method has been developed starting from the results

of [23], and then extended for considering both inductive and

capacitive effects, with focus of mid–frequency applications

among which, for instance, printed circuit boards and electronic

components for the automotive industry. Conductive, dielectric,

and magnetic media can be considered by the proposed FFT–

PEEC method and both linear and non–linear media can
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Fig. 17. 2D exemplification of ray tracing voxelization technique. The gray
domain represents the device. Nodes of the superimposed gray grid are the
barycenter of voxels. Numbers represent the intersection counter of the blue
dashed line of the grid with the object, from left to right order. The green
cross indicates a voxel which belongs to the object since it has, at its left, a
odd number of intersections. The red cross indicates a voxel which does not
belong to the object since it is has, at its left, a even number of intersections.

be considered. As proposed in [49], further computational

improvements can be obtained with the adoption of a Graphical

Processing Unit (GPU) that can speed-up the voxelization

process and, mostly, the matrix-vector products via FFT.

Moreover, when the considered devices have parts with very

different dimensions (e.g. bulky components and bonding wires)

one can adopt FFT-PEEC for the bulky components and couple

it with a standard Integral Equation method for the smaller

part like bounding wires. Furthermore, the FFT-PEEC can

be extended to unstructured meshes (therefore eliminating

the problem of using a global voxel size) by exploiting the

advanced precorrected-FFT technique [50], [51]. Finally, further

improvements can be also achieved by combining FFT-PEEC

with Model Order Reduction (MOR) techniques, which allow

for generating computationally inexpensive equivalent models

of the considered devices. Starting from the proposed FFT-

PEEC tool, future works will exploit such MOR techniques in

order to provide fast and accurate models capable of considering

all the EM effects of interest in Power Electronics applications,

such as electromagnetic interference modeling and signal

integrity analysis.

APPENDIX A

RAY INTERSECTION VOXELIZATION

In this work, the voxelization of the devices is obtained by

using a ray intersection technique. The input of such approach

(i.e. the information which the user must provide) are only the

CAD file (e.g. in STL format) and the desired resolution of the

voxelization. Then, the ray intersection voxelization algorithm

automatically creates the regular structured mesh in an efficient

way, i.e. it finds the index sets SIDe and SIDm.

At the beginning, the algorithm generates a structured 3D

grid of the desired resolution which contains the devices. Nodes

of this grid correspond to the barycenters of the voxels. Then,

the algorithm iterates along each xy-plane, generating rays

along axes, and finding the intersection points of the rays with

the boundary facets of the devices. Indeed, CAD files (like STL

format) represent the devices by means of triangular facets.

Since the number of intersections of each ray with the facets

of the device is always even, it is possible to define a criterion

to determine if a voxel belongs or not to the device. Thus, if a

voxel has at its left an odd number of intersections it actually

belongs to the device. Instead, if the voxel has at its left an even

number of intersections it does not belong to the device. Fig. 17

shows an exemplification of such ray intersection approach.

This technique is embarrassingly parallel and is very efficient,

i.e. mesh with millions of voxels are generated in only some

seconds (about 4 seconds for the LCT case).

Therefore, the ray intersection technique allows for deter-

mining the index sets SIDe and SIDm, i.e. the voxels IDs

belonging to the devices. It is worth noting that a standard

mesh also requires other information such as the connections

of voxels with each others. However, since the mesh is

structured and regular, such information can be evaluated

during the construction of the matrices with a truly negligible

computational effort.
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