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b-catenin is the major effector of the canonical Wnt signal-

ing pathway. Mutations in components of the pathway that

stabilize b-catenin result in augmented gene transcription

and play a major role in many human cancers. We em-

ployed microarrays to identify transcriptional targets of

deregulated b-catenin in a human epithelial cell line (293)

engineered to produce mutant b-catenin and in ovarian

endometrioid adenocarcinomas characterized with respect

to mutations affecting the Wnt/b-catenin pathway. Two

genes strongly induced in both systems—FGF20 and

DKK1—were studied in detail. Elevated levels of FGF20

RNA were also observed in adenomas from mice carrying

the ApcMinallele. Both XFGF20 and Xdkk-1 are expressed

early in Xenopus embryogenesis under the control of the

Wnt signaling pathway. Furthermore, FGF20 and DKK1

appear to be direct targets for b-catenin/TCF transcrip-

tional regulation via LEF/TCF-binding sites. Finally, by

using small inhibitory RNAs specific for FGF20, we show

that continued expression of FGF20 is necessary for main-

tenance of the anchorage-independent growth state in

RK3E cells transformed by b-catenin, implying that FGF-

20 may be a critical element in oncogenesis induced by the

Wnt signaling pathway.
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Introduction

Wnt proteins are secreted glycoproteins that bind and acti-

vate two classes of co-receptors, LDL-related proteins (LRPs)

and members of the Frizzled protein family. Signaling in-

itiated by Wnts and their receptors controls a wide variety of

cell processes, including cell fate specification, differentia-

tion, migration, and polarity (reviewed in Peifer and Polakis,

2000). b-Catenin is the major effector of the canonical Wnt

signaling pathway. In the absence of Wnt, cytosolic b-catenin

forms a complex with Axin and adenomatous polyposis coli

(APC) proteins, and is rapidly degraded by the ubiquitina-

tion–proteosome system. Wnt signaling inactivates the

b-catenin destruction complex, so that b-catenin is stabilized,

accumulates in the cytoplasm and nucleus, and forms hetero-

dimers with the DNA-binding factors belonging to the LEF/

TCF family (reviewed in Huelsken and Behrens, 2002). As a

result, significant changes occur in the gene expression

program (reviewed in Hecht and Kemler, 2000; Miller et al,

2001). In addition, Wnt signaling can be antagonized extra-

cellularly by secreted factors such as Wnt inhibitory factor-1

(WIF-1), Cerberus, members of the Dickkopf (DKK) family,

and soluble Frizzled-related proteins (sFRP) (Kawano and

Kypta, 2003).

Genetic alterations that stabilize b-catenin are found in

tumors in mice and humans. The most commonly observed

genetic alterations involve either the loss of APC or Axin or

mutations that affect the amino-terminus of b-catenin, all

occurring in a mutually exclusive manner, and the most

commonly affected organs are the colon, liver, skin, stomach,

ovaries, pancreas, and prostate. For example, loss of APC

occurs in 70–80% of human colorectal cancers (reviewed in

Bienz and Clevers, 2000) and mutations affecting b-catenin

are found in about half of the remaining tumors, implying

that stabilization of b-catenin is a major early event in colonic

carcinogenesis. Similarly, in ApcMin/þ mice, the loss of the

wild-type allele initiates adenoma formation (Moser et al,

1993; Oshima et al, 1995), and expression of an oncogenic

form of b-catenin produces adenomas in the mouse intestine

(Romagnolo et al, 1999).

Identification of the transcriptional targets of the Wnt/

b-catenin signaling pathway is a potentially important means

to understand the role of the canonical pathway in oncogen-

esis and development. A number of candidate target genes

have been identified in human cell lines and tumors. (For

more information on Wnt pathway targets, consult the Wnt

webpage at www.stanford.edu/~rnusse/wntwindow.html.)

Our objective in the study reported here has been to

identify novel b-catenin target genes that are regulated

directly by DNA binding of b-catenin/TCF heterodimers and

are potentially relevant to carcinogenesis. To this end, we

employed microarray technology to identify genes with sig-

nificantly altered levels of expression in human epithelial

(293) cells expressing mutant (stabilized) b-catenin in which
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serine 37 has been replaced with alanine; we then compared

a list of these genes to a similar list obtained using the same

methods to measure the abundance of RNAs in a well-

characterized set of primary human ovarian endometrioid

adenocarcinomas (OEAs) with and without Wnt pathway

defects (Wu et al, 2001). Merging of microarray data from

cell culture and OEA tumors revealed at least 17 genes that

are regulated in common when similar criteria were applied.

Two such genes, FGF20, a putative proto-oncogene (Jeffers

et al, 2001), and DKK1, a Wnt pathway antagonist (Glinka

et al, 1998), were studied in greater detail in mouse and

human tumors, in frog development, in tests of the direct

action of b-catenin-TCF heterodimers on gene expression,

and in tests for a role of FGF20 during maintenance of the

b-catenin-induced transformed state. We present evidence

supporting the conclusions that FGF20 and DKK1 are directly

regulated by b-catenin during development and tumorigen-

esis, and that continued expression of FGF20 is required to

maintain the anchorage-independent growth state established

by Wnt/b-catenin signaling.

Results

Genes regulated by mutant b-catenin in a human

epithelial cell line

In an initial effort to identify genes regulated by mutant

b-catenin, whether directly or indirectly, we used an efficient

virus-based gene delivery system to introduce mutant

b-catenin into virtually all cells in a cultured epithelial cell

line, the human embryonic kidney cell line 293. This

approach obviated a need to select individual clones of

b-catenin-expressing cells and thus minimized variations

in gene expression that might have been attributed to clonal

variation.

293 cells were engineered to produce Tva, the avian

leukosis subgroup A virus receptor, allowing efficient infec-

tion by the avian retroviral vector RCAS (Fisher et al, 1999).

In addition, the b-catenin/TCF reporter construct, pOT, was

inserted in the genome of this cell line to monitor b-catenin/

TCF activity (Rubinfeld et al, 1993). The resulting cell line,

293Top, was infected with RCAS vectors encoding either GFP,

to serve as a control, or HA-tagged b-cateninS37A, a stable

mutant protein (Wu et al, 2001). Typically, about 80% of 293

cells were infected with either virus, as judged by anti-HA

immunofluorescence or GFP fluorescence (data not shown).

In the cells infected with RCAS-b-cateninS37A (293Top-

S37A), the pOT reporter was typically induced 100–300-fold

compared to cells infected with RCAS-GFP (293Top-GFP; data

not shown).

RNA for microarray analysis was isolated 7 days after viral

infection from four independently infected cultures, and

chromophore-tagged cDNAs were hybridized to human

Affymetrix U133A oligonucleotide microarrays to compare

the messenger RNA (mRNA) expression profile of 293Top-

S37A cells with that of 293Top-GFP cells, as described in

greater detail in Materials and Methods. The criteria for

identifying genes as up- or downregulated by b-cateninS37A

included differential expression of at least two-fold, with a

P-value of less than 0.05 using a parametric test.

In all, 62 genes were represented by higher levels of RNA

in cells expressing b-cateninS37A than in GFP-expressing

cells, and 15 genes were represented by lower RNA levels.

Genes previously reported to be regulated by b-catenin-

mediated Wnt signaling, such as CCND1 (CyclinD1), ENC1,

ABCB1 (MDR1), LEF1, ENPP2 (Autotaxin), MSX1, and MSX2,

were among the genes upregulated in the 293 cells expressing

b-cateninS37A, as compared to the 293 cells expressing GFP

(Supplementary Table 1S). Among the top 20 upregulated

genes, we identified several known or suspected proto-onco-

genes, such as FGF20 (Jeffers et al, 2001), ETV5 (Ets-5)

(Dhulipal, 1997), LMO2 (Rabbitts et al, 1997; Hacein-

Bey-Abina et al, 2003), and some genes implicated in Wnt

signaling, such as DKK1 (Glinka et al, 1998) and WNT11

(Table I). Reverse transcription followed by semiquantitative

polymerase chain reaction-mediated amplification (RT–PCR

assay) was used to confirm the findings, with some of the

most dramatically upregulated genes by microarray tests

(Figure 1A).

FGF20 mRNA is undetectable in 293Top cells that express

GFP, although readily observed in cells expressing activated

b-catenin. In a survey of normal human tissues with RT–PCR

assays, FGF20 RNA was found exclusively in the adult central

nervous system, suggesting that expression of FGF20 is tightly

controlled in normal development. The gene is, however,

expressed in human cancers; for example, FGF20 RNA was

detected in five of 15 human colon cancer cell lines (Jeffers

et al, 2001). One of those lines, the SW480 line, is known to

have deregulated b-catenin due to loss of APC (Munemitsu

et al, 1995). We have corroborated this finding with SW480

cells, and we have also found FGF20 RNA in the ovarian

endometrioid cell line TOV112D, which contains mutant form

of b-catenin (Figure 1B). In contrast, FGF20 RNA is not

detectable in TOV21G or LS123, ovarian and colorectal carci-

noma lines respectively, harboring wild-type b-catenin

(Rutzky et al, 1983; Wu et al, 2001; MN Chamorro, unpub-

lished data, 2004; Figure 1B).

Prior studies have shown that activated mutants of

b-catenin promote neoplastic transformation of RK3E cells,

a rat epithelial cell line (Kolligs et al, 1999). In agreement

with our expression profile of FGF20 in 293Top cells, FGF20

RNA is readily detectable in the b-catenin-transformed RK3E

lines by RT–PCR, but not in the parental line (Figure 1C).

Increases in FGF-20 and DKK1 RNA are associated with

deregulated b-catenin in human ovarian endometrioid

adenocarcinomas

We next extended our findings with 293Top cells by examin-

ing the gene expression profiles of our large collection of

OEAs. Approximately 40% of these tumors have mutations in

CTNNB1 (b-catenin), APC, AXIN1 or AXIN2 (Wu et al, 2001),

providing a test of the proposed correlation between Wnt/

b-catenin pathway defects and induction of candidate target

genes for regulation by b-catenin, as illustrated previously for

the b-catenin-regulated genes, ITF-2 and AXIN2 (Kolligs et al,

2002; Leung et al, 2002).

Affymetrix U133A oligo microarrays were again used to

profile gene expression in 18 OEAs with an intact b-catenin

pathway and 12 OEAs with deregulated b-catenin, in a

fashion similar to recently published work using lower

density HuGeneFL arrays (Schwartz et al, 2003). By compar-

ing the profiles from tumors with normal versus mutant Wnt/

b-catenin pathways, we identified a list of 563 genes differ-

entially regulated by at least 1.75-fold with a P-value of less

than 0.05 (Schwartz et al, 2003). To develop a shorter list of
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genes that are commonly regulated by Wnt/b-catenin signal-

ing in different cell types, we compared our list of regulated

genes using modestly different criteria from 293Top cells

(two-fold regulation, Po0.05) and OEAs (1.75-fold regula-

tion, Po0.05). By these criteria, at least 17 genes appeared to

be regulated in common; 16 of these genes were upregulated

and one was downregulated (Table II). It is noteworthy that

eight of the 20 most dramatically upregulated genes in

293Top cells are present in the combined list of 16 upregu-

lated genes, including three proto-oncogenes and two genes

involved in Wnt signaling (Tables I and II).

The two genes that appear to be most highly induced by

stabilized b-catenin in both the 293Top cell system and in

OEA primary tumors are FGF20 and DKK1 (Table II).

Figure 2A demonstrates that both of these genes are ex-

pressed at markedly elevated levels in eight of 12 OEAs

harboring mutations that deregulate b-catenin, but neither

was induced in the 19 tumors lacking such mutations.

FGF-20 is expressed in adenomas from ApcMin/þ mice

but not in normal intestinal mucosa

Of the suspected proto-oncogenes on our combined list of

candidate targets for regulation by b-catenin, FGF20 displayed

the strongest correlation between RNA levels and the status of

the Wnt/b-catenin pathway in OEA tumors. We therefore

extended our studies of FGF20 expression to other tumor types.

In mice heterozygous for loss-of-function mutations at the

Apc locus, such as ApcMin/þ mice and other heterozygous

Apc knockout mice, loss of the wild-type allele initiates

adenoma formation in the small intestine (Oshima et al,

1995). Using RT–PCR to detect expression of RNA, we

found little or no Fgf20 RNA in non-neoplastic intestinal

tissues from 15-day-old and adult ApcMin/þ mice, but readily

detected Fgf20 RNA in all the adenomas analyzed (Figure 2B).

Stabilization of b-catenin in colonic epithelial cells by loss

of APC is an early event in the majority of human colon

cancers (Polakis, 2000). In preliminary experiments, we used

the RT–PCR assay to measure FGF20 RNA in six primary

human colon adenocarcinomas and in three samples of nor-

mal colon mucosa. We found FGF20 RNA in half of the tumors,

but in none of the normal mucosas (Supplementary Figure IS).

XFGF20 and Xdkk-1 are downstream of the Wnt

pathway in Xenopus laevis embryos

Much of our knowledge about the Wnt pathway and its role

in vertebrate development comes from studies in Xenopus

laevis (reviewed in Harland and Gerhart, 1997; Huelsken and

Birchmeier, 2001). We therefore sought to extend the evi-

dence for regulation of some of our candidate genes by the

Wnt/b-catenin pathway by testing for transcripts in Xenopus

embryos at relevant times in development. Both FGF20 and

DKK1 were first identified in X. laevis (Glinka et al, 1998;

Koga et al, 1999) and are closely related to their human

counterparts (79% amino-acid identity between Xenopus and

human FGF-20; 56% identity between Xdkk-1 and human

DKK-1). Xdkk-1 is expressed at the beginning of gastrulation

(stage 10) in the future anterior endomesoderm, on the dorsal

side of the embryo (Glinka et al, 1998). The localization of

XFGF20 RNA was previously reported for the neurula stage,

but the RNA could be detected from late blastula onwards by

RT–PCR (Koga et al, 1999). As in Xenopus early develop-

mental stages are the most accessible experimentally,

we confirmed zygotic expression from stage 10 onwards

(Figure 3B, left panel), and localized XFGF20 RNA by

RT–PCR exclusively to the equatorial region (the marginal

Table I List of the twenty most strongly upregulated genes in 293Top cells by mutant b-cateninS37A

Gene
symbol

Gene name Fold
change

P-value Function

FGF20 Fibroblast growth factor 20 17.7 0.003 Signal transduction; cell–cell signaling
DKK1 Dickkopf (Xenopus laevis) homolog 1 15.5 o0.001 Extracellular Wnt signaling antagonist
MEGT1 Megakaryocyte-enhanced gene transcript 1 9.4 0.012 Unknown
BIK BCL2-interacting killer 9.2 0.002 Apoptotic program; induction of apoptosis
EST GenBank acc. # AK022120 9.1 0.014 Unknown
ETV5 Ets variant gene 5 6.2 0.007 Transcription factor
WNT11 Wingless-type MMTV integration site, member

11
5.3 0.006 Signal transduction; cell–cell signaling; embryogen-

esis; and morphogenesis
SLC2A3 Solute carrier family 2, member 3 5.2 0.026 Glucose transport; carbohydrate metabolism
SERPIND1 Serine proteinase inhibitor, clade D, member 1 5 0.049 Plasma glycoprotein; proteinase inhibitor
SLC7A8 Solute carrier family 7, member 8 4.9 0.007 Cationic amino-acid transporter
ENPP2 Ectonucleotide pyrophosphatase/phosphodies-

terase 2 (autotaxin)
4.7 0.001 Cell motility; G-protein-linked receptor signaling

pathway; transcription factor binding
DUSP6 Dual-specificity phosphatase 6 4.6 0.024 Apoptosis; MAPKKK cascade; cell cycle control;

inactivation of MAPK
LMO2 LIM domain only 2 (rhombotin-like 1) 4.2 o0.001 Oncogenesis; developmental processes
SLC2A14 Solute carrier family 2, member 14 4.0 0.001 Carbohydrate transport
ARHGAP26 GTPase regulator associated with FAK 3.8 0.028 Neurogenesis; cell growth/maintenance
GAD1 Glutamate decarboxylase 1 (brain, 67 kDa) 3.6 0.003 Synaptic transmission; glutamate decarboxylation
FUT1 Fucosyltransferase 1 3.5 0.036 Carbohydrate metabolism
QPTC Glutaminyl-peptide cyclotransferase (glutaminyl

cyclase)
3.5 o0.001 Protein modification

RBP1 Cellular retinol-binding protein 1 3.3 0.024 Retinoid binding; vitamin A metabolism
ABCB1 MDR/TAP member 1 3.1 0.002 Drug resistance; small-molecule transport

RNA for microarray analysis was isolated from 293Top cells 7 days after viral infection from four cultures independently infected with either
RCAS-b-cateninS37A or RCAS-GFP. The top 20 upregulated genes are shown in descending order with respect to fold increase in RNA levels.
P-values were obtained using a parametric test. Known or suspected proto-oncogenes and genes implicated in the Wnt pathway are shown in
bold-faced letters.
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zone) of stage 10 embryos, which is fated to produce meso-

derm, (Figure 3B, right panel). The pattern of XFGF20 ex-

pression is similar to that described for other FGF genes like

eFGF and XFGF3 (Isaacs et al, 1994; Schohl and Fagotto,

2003), and for a group of genes expressed in the marginal

zone, which require a zygotic Wnt pathway (Figure 3A), such

as XmyoD and Xbra (Hoppler et al, 1996; Vonica and

Gumbiner, 2002).

Activating or inhibiting the Wnt pathway had a dramatic

effect on FGF20 and DKK1 expression. We injected RNA

encoding an activated form of the downstream component

of the pathway (VP16Xtcf-3) or a dominant-negative mutant

(DNXtcf-3) (Vonica et al, 2000) into the equatorial zone of

each blastomere at the four-cell stage (Figure 3C). XFGF20

and Xdkk-1 RNAs were increased by VP16Xtcf-3, and unde-

tectable when Wnt signaling was blocked with DNXtcf-3RNA.

Known direct (siamois) (Carnac et al, 1996; Brannon et al,

1997) and indirect (chordin) (Kessler, 1997) target genes of

the maternal dorsal Wnt pathway (Figure 3A), as well as the

zygotic Wnt target and mesodermal marker Xbra (Smith et al,

1991; Vonica and Gumbiner, 2002), showed a similar re-

sponse. In contrast, Xwnt-8, a marker of ventral mesoderm

(Christian et al, 1991) inhibited by the maternal Wnt path-

way, retained expression in embryos injected with DNXtcf-3

RNA, but was absent when VP16Xtcf-3 RNA was injected.

We also asked whether ectopic activation of the Wnt

pathway in animal cap explants, which are normally fated

to produce only ectoderm, could induce expression of XFGF20

and Xdkk-1 (Figure 3D). On its own, VP16Xtcf-3 can induce

both genes only slightly, but induction was significantly

enhanced by co-injection of the endomesoderm inducer

VegT (Kofron et al, 1999). The indirect target chordin was

similarly activated, and the direct Wnt target twin, a homo-

logue of siamois, was strongly activated with VP16Xtcf-3

alone. We conclude that expression of XFGF20 and Xdkk-1

in animal caps is augmented by Wnt signaling. The differ-

ences in embryonic expression patterns between the two

genes could be a consequence of different requirements for

cooperative signaling pathways, responses to different Wnt

ligands, or both.

FGF-20 and DKK1 are direct targets of the canonical Wnt

signaling pathway

To differentiate between the direct and indirect effects of

b-catenin stabilization on the control of FGF20 and DKK1,

we took advantage of a dexamethasone-inducible form of

VP16 Xtcf-3 (TVGR) (Darken and Wilson, 2001). TVGR RNA

was injected alone or in combination with VegT RNA in the

animal pole of two cell stage Xenopus embryos (Figure 4).

Animal caps were dissected at stage 8.5 and dexamethasone

was added in the presence or absence of cycloheximide, an

inhibitor of translation. Under these conditions, the transcrip-

tion of only those genes directly activated by VP16 Xtcf-3 will

increase upon addition of the inducer. Cycloheximide

treatment decreased the levels of XFGF20 and Xdkk-1 RNA

in VegT and TVGR-injected embryos, but addition of dexa-

methasone significantly raised them. siamois, a direct Tcf

target, and, less dramatically, Xbra, showed similar variation.

On the contrary, levels of chordin RNA, an indirect Wnt

target, did not respond to dexamethasone when translation

was inhibited. The low level of siamois induction and the

absence of chordin stimulation upon addition of dexametha-

sone are due to the late timing of Wnt activation, at the limit

of competence for activation of dorsal genes (Darken and

Wilson, 2001). In conclusion, the injection experiments in

frog embryos suggest that expression of XFGF20 and Xdkk-1

is subject to direct regulation by the Wnt/b-catenin signaling

pathway.

To address the implied direct relationship between the

Wnt/b-catenin pathway and the regulation of FGF20 and

DKK1 more rigorously, we have performed chromatin immu-

noprecipitation (ChIP) assays with an anti-b-catenin antibody

in the 293Top cells (for ChIP methodology, see Orlando, 2000;

Weinmann et al, 2001). Stabilized b-catenin accumulates in

the nucleus in a complex with TCF, and the heterodimer

influences transcription by binding to TCF recognition sites in

DNA (Huelsken and Behrens, 2002). Regulatory domains of

direct b-catenin/TCF targets are therefore expected to be

enriched in anti-b-catenin immunoprecipitates, as compared

Figure 1 Validation of microarray data by semiquantitative
RT–PCR. (A) To verify oligonucleotide microarray results, semi-
quantitative RT–PCR was used to estimate the amount of RNA from
five of the upregulated genes in 293Top cells (Table I). The same
total RNA sample was used to prepare probes for microarray
hybridization. (B) Expression of FGF20 RNA as assessed by
RT–PCR with RNA from OEA cell line TOV112D, ovarian clear cell
carcinoma-derived line TOV21G, and colon cancer cell lines SW480
and LS123. The letters D and N refer to b-catenin status
(Deregulated and Normal). (C) Measurement of FGF20 RNA from
RK3E cells transformed by b-cateninS33Y (clones A and D) and
N-terminal-deleted b-cateninDN132 (DN132B) by RT–PCR. GAPDH
mRNA was reverse transcribed and amplified to control for the
amount of RNA loaded.
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to immunoprecipitates obtained with a control antibody.

Formaldehyde-fixed chromatin from 293 cells expressing

either b-cateninS37A or GFP was subjected to immunopreci-

pitation with either a rabbit anti-b-catenin antibody or an

Table II List of genes regulated by b-catenin in both 293Top cells and in OEAs

Gene symbol Gene name 293Top fold change P-values OEAs fold change P-values

FGF-20 Fibroblast growth factor 20 17.70 0.003 7.39 o0.001
DKK1 Dickkopf homolog 1 (Xenopus laevis) 15.55 o0.001 12.95 o0.001
ETV5 Ets variant gene 5 (ets-related molecule) 6.23 0.007 1.82 0.037
WNT11 Wingless-type MMTV integration site family, member 11 5.32 0.006 2.20 0.011
LMO2 LIM domain only 2 (rhombotin-like 1) 4.27 o0.001 4.05 o0.001
GAD1 Glutamate decarboxylase 1 3.66 0.003 6.89 o0.001
QPCT Glutaminyl-peptide cyclotransferase (glutaminyl cyclase) 3.57 o0.001 3.90 o0.001
ABCB1 ATP-binding cassette, subfamily B (MDR/TAP), member 1 3.15 0.002 1.75 o0.001
SNK Serum-inducible kinase 2.75 0.006 3.49 o0.001
IRS1 Insulin receptor substrate 1 2.62 0.002 2.68 0.001
TBX3 T-box 3 (ulnar mammary syndrome) 2.49 o0.001 2.17 0.024
MSX2 Msh homeo box homolog 2 (Drosophila) 2.47 o0.001 6.03 0.000
MSX1 Msh homeo box homolog 1 (Drosophila) 2.46 0.001 3.31 0.047
DNCI1 Dynein, intermediate polypeptide 1 2.20 o0.001 3.70 o0.001
CCND1 Cyclin D1 (PRAD1: parathyroid adenomatosis 1) 2.05 o0.001 2.90 0.001
NMA Putative transmembrane protein 2.01 0.003 7.28 o0.001
ISYNA1 Myo-inositol 1-phosphate synthase A1 �2.1 o0.001 �2.1 0.009

Regulated genes are shown in descending order with respect to fold change in upregulation in 293Top cells.

Figure 2 FGF20 and DKK1 gene expression in individual human
and mouse tumors. (A) FGF20 (upper panel) and DKK1 (lower
panel) gene expression in OEAs. Relative RNA levels were deter-
mined by Affymetrix microarray data analysis. White boxes repre-
sent the relative gene expression in tumors with an intact Wnt
pathway and black boxes represent tumors with a deregulated Wnt
pathway. (B) FGF20 RT–PCR products using 200 ng of RNA from
adenomas from ApcMin/þ mice and from normal intestinal mucosa
samples from 15-day-old and adult ApcMin/þ mice.

Figure 3 Wnt signaling regulates XFGF20 and Xdkk-1 expression in
Xenopus embryos. (A) Schematic description of a pregastrula
Xenopus embryo (left panel) and the localizations and timing of
the maternal and zygotic Wnt pathways (right panel). (B) XFGF20 is
expressed zygotically and localized exclusively in the marginal
zone. RT–PCR for XFGF20 in various developmental stages (left
panel) and various locations of stage 10 (early gastrula) embryos
(right panel). ODC RNA and Xwnt-8 RNA serve as controls for
amounts loaded and localization (ODC is normally expressed
weakly in vegetal cells). (C) Modulation of the Wnt signaling
pathway alters XFGF20 and Xdkk-1 expression. Embryos were
injected marginally in each cell at the four-cell stage with 100 pg
DN-Xtcf-3 RNA or 20 pg VP16-Xtcf-3 RNA, and collected at stage 9.5
for RT–PCR analysis. XFGF20, Xdkk-1, siamois, chordin, and Xbra
all required early activation of the Wnt pathway, while Xwnt-8 is
repressed under the same conditions. (D) Synergistic effect of the
Wnt pathway and the endomesoderm inducer VegT on ectopic
expression of XFGF20 and Xdkk-1 in animal caps. Two-cell stage
embryos were injected in the animal pole of each cell with 400 pg
VegT RNA or 10 pg VP16 Xtcf-3 RNA, as indicated, and animal caps
were cut and collected at stage 9.5 for RT–PCR analysis.
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irrelevant rabbit antibody as a negative control. To determine

whether immunoprecipitates were enriched for regulatory

DNA sequences from the putative target genes DKK1 and

FGF20, we used PCR to amplify the precipitated DNA and

determined the amounts of DKK1 and FGF20 regulatory

regions as well as DNA from the presumably irrelevant

genes GAPDH and LMO7, neither of which shows evidence

of regulation by Wnt/b-catenin signaling. As illustrated in

Figure 5, the approximately 500 bp regions immediately up-

stream of the transcript start sites of the DKK1 and FGF20

genes (see Figure 6A for amplified promoter regions) were

enriched in the anti-b-catenin immunoprecipitates from cells

expressing S37A b-catenin, compared to immunoprecipitates

formed with control antibody; no differences were seen with

tests of the promoter regions of GAPDH and LMO7. Moreover,

no differences in the amounts of these putative regulatory

domains were seen with cells expressing GFP. In addition, as

positive controls, we showed that b-catenin–DNA complexes

from 293Top cells expressing b-cateninS37A are enriched for

the promoter regions of the pOTreporter and from the CCND1

(Cyclin D1) gene (Figure 5); the latter has been shown to

be a direct target of the b-catenin/TCF complex (Tetsu and

McCormick, 1999). Our ChIP data strongly suggest that

DKK1 and FGF20, as well as CCND1 and the pOT reporter,

are direct targets of b-catenin.

b-Catenin regulates FGF-20 and DKK1 transcription

in 293 cells and Xenopus embryos via TCF-binding

sites proximal to the promoter

To further investigate the regulation of DKK1 and FGF20 by

b-catenin, genomic fragments containing regions 50 to the

transcriptional start sites were placed upstream of a luciferase

reporter gene (DKK1-luciferase and FGF20-luciferase); these

constructs were then used to study regulation of luciferase

production by mutant b-catenin in 293 cells and in Xenopus

embryos.

Inspection of the sequences of the putative regulatory

regions revealed four potential TCF-binding sites (CTTTGA/

TA/T) in DKK1 and two in FGF20 (Figure 6A). Transient co-

transfection of 293 cells with either of the luciferase reporters

and a plasmid encoding b-cateninS37A stimulated the DKK1-

luciferase reporter about five-fold and the FGF20-luciferase

reporter about two-fold. These effects were abolished

when ICAT, a b-catenin inhibitor (Tago et al, 2000), or the

C-terminus of E-cadherin, which binds to b-catenin, was co-

transfected with b-cateninS37A (Figure 6A). The low activity

of the FGF20-luciferase reporter suggests that it probably lacks

other regulatory sequences for optimal response to mutant

b-catenin. Parallel tests with a semi-quantitative RT–PCR

assay showed that mutant b-catenin increased the levels of

DKK1 RNA from the endogenous gene to the same extent as it

increased the luciferase activity from the DKK1 reporter

construct (data not shown), suggesting that the DKK1 repor-

ter contains most or all of the sequences necessary for

regulation by b-catenin.

Figure 4 Xenopus XFGF20 and Xdkk-1 are direct targets of the Wnt
pathway. Embryos were injected at the two-cell stage in both
blastomeres with 400 pg VegT RNA and 20 pg TVGR RNA, and
treated with cycloheximide (CHX) and dexamethasone (DEX) as
indicated. XFGF20 and Xdkk-1 were induced when DEX was added
to CHX-treated caps (compare lanes 4 and 5). Siamois is a control
for direct induction by the Wnt pathway, and chordin for indirect
induction.

Figure 5 ChIP assay in 293Top cells shows that FGF20 and DKK1
are direct targets of b-catenin. Formaldehyde-fixed chromatin from
293Top cells infected either with RCAS-b-cateninS37A or RCAS-GFP
was immunoprecipitated either with anti-b-catenin antibody (B) or
with control isogenic antibody (C). The immunoprecipitated DNAs
were PCR-amplified using primers mapping to the proximal promo-
ter sequences of FGF20 and DKK1. Amplification of the GAPDH and
LMO7 promoters was used as a negative control, and amplification
of the TOPFLASH and CCND1 (Cyclin D1) promoters was used as a
positive control.
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A series of 50 deletions was then used to map the regions of

the regulatory domain of the DKK1 promoter required for

b-catenin stimulation. No significant changes were observed

until the deletions reached the region containing the two

TCF-binding sites proximal to the start site (Figure 6B). Site-

directed mutations of either of these two sites partially

impaired the response b-catenin, while mutations affecting

both sites resulted in complete loss of activity (Figure 6C).

Sequence conservation in the regulatory elements of verte-

brate promoters is well documented to have occurred during

evolution. We therefore tested luciferase reporter constructs

containing the human FGF20 and DKK1 promoters in tran-

scription assays in Xenopus embryos (Figure 7). Both wild-

type reporters responded strongly to co-injected VP16 Xtcf-3

RNA (Figure 7A and B), while the TCF site-mutated reporters

were considerably less sensitive, demonstrating that the Wnt

effect is mediated mainly by these sites. In addition, the

human FGF20 promoter showed high levels of activity

when injected alone in Xenopus embryos, with the greatest

activity in the marginal zone, corresponding to the normal

pattern of expression of the Xenopus homologue (not

shown). This activity was also dependent on intact TCF

sites, as the reporter with the mutant TCF sites was signifi-

cantly less active (Figure 7C). We note that at stage 9 the

wild-type FGF20 promoter was more active dorsally, probably

due to an earlier onset of transcription there, as has been

reported for Xbra (Lerchner et al, 2000; Vonica and

Gumbiner, 2002).

FGF-20 small inhibitory RNA (siRNA) interferes

with b-catenin-mediated transformation of RK3E cells

Mutant b-catenin promotes the neoplastic transformation of

RK3E cells and renders them capable of anchorage-indepen-

dent growth, as judged by formation of colonies in soft agar

(Kolligs et al, 1999). As shown above, RK3E cells transformed

by b-catenin express Fgf20 (Figure 1), and FGF-20 has been

reported to induce morphological transformation of mouse

3T3 cells (Jeffers et al, 2001). To evaluate the possibility that

production of FGF-20 is required to maintain the transformed

phenotype of RK3E cells expressing ectopic b-catenin, we

attempted to block the expression of the FGF20 gene in those

cells using siRNAs (Brummelkamp et al, 2002).

To this end, we constructed plasmids encoding two siRNA

hairpins based on the rat FGF20 gene sequence (siFGF20.A

and siFGF20.B); an additional plasmid (siFGF20.C) encodes a

mutant form of one of these siRNAs. We initially showed that

siFGF20.A and siFGF20.B could reduce the amounts of FGF-

20 protein in RK3E cells programmed to express a V5-tagged

version of rat FGF-20 (RK3E-FGF20V5; Figure 8A). Subse-

quently, the two wild-type constructs and the mutant

construct, siFGF20.C, were transfected into RK3E cells

stably transformed by DNA encoding a mutant b-catenin

(clone S33YA; Figure 1). Selection for a co-transfected drug

resistance gene generated three polyclonal cultures, RK3E-

S33YA-siFGF20.A, RK3E-S33YA-siFGF20.B, and RK3A-S33YA-

siFGF20.C, which were used in the subsequent experiments.

The cells producing either of the wild-type siRNAs for rat

FGF20 contained relatively low levels of FGF20 RNA as

compared to the line producing the mutant siRNA, RK3A-

S33YA-siFGF20.C, and the starting line, S33YA (Figure 8A and

data not shown). When we attempted to grow cells from each

of these cultures in soft agar, we found that the cells in which

FGF-20 production was inhibited (RK3E-S33YA-siFGF20.A

and RK3E-S33YA-siFGF20.B) formed few colonies, whereas

the parental cell line and cells expressing the mutant form

of FGF20 siRNA formed colonies efficiently in soft agar

Figure 6 Mapping regions required for response to b-catenin in
human DKK1 and FGF20 promoters reporter constructs in 293 cells.
(A) Depicted at the top are schematic diagrams of the promoter
reporter constructs; black boxes represent potential LEF/TCF bind-
ing sites. Black arrows represent location of primers used to amplify
immunoprecipitated chromatin in the ChIP assays. The relative
activity of the promoter constructs was assessed in 293 cells after
transient co-transfections with either empty vector or vector ex-
pressing b-cateninS37A in the presence or absence of vectors
expressing either ICAT or the C terminus of E-cadherin. To control
for transfection efficiency, firefly luciferase activity was normalized
to results with Renilla luciferase. (B) DKK1 promoter deletion
analysis. 50 deletions of pDKK1-luciferase were generated using
PCR, and their relative activities were measured after transient
co-transfections with either empty vector or vector expressing
b-cateninS37A, as described in Materials and methods. (C) Muta-
genesis analysis of potential LEF/TCF-binding sites in the -–328 to
þ 43 DKK1-luciferase construct. Mutations in the putative TCF-
binding sites were generated using QuickChange Site Directed
Mutagenesis Kit (Stratagene), and their relative activities assessed
as described for panel B.
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(Figure 8C). We conclude that continued production of FGF-

20 is necessary for maintenance of the anchorage-indepen-

dent growth capacity of RK3E cells expressing mutant

b-catenin.

Discussion

The diverse phenotypic changes that occur in different cell

types in response to signaling through the Wnt/b-catenin

pathway are thought to result principally from altered regula-

tion of transcription rates in response to changes in the

nuclear concentration of b-catenin/TCF heterodimers. Conse-

quently, many recent studies have been directed towards the

identification of genes that are represented in mRNA pools at

higher or lower levels when the Wnt/b-catenin pathway is

activated (Conacci-Sorrell et al, 2002; Kielman et al, 2002;

van de Wetering et al., 2002; Willert et al, 2002; Schwartz

et al, 2003; Shimokawa et al, 2003). Since this pathway

governs crucial developmental events and contributes to

neoplasia in a variety of cell lineages in many metazoan

organisms, these studies of transcriptional control are likely

to yield complex results, including the identification of genes

that are secondarily regulated by Wnt/b-catenin signaling.

In this study, we have identified and focused on a small

number of genes that appear to be strongly induced at the

transcriptional level when b-catenin concentrations rise

under several biological circumstances: ectopic expression

of mutant b-catenin in cultured cell lines; mutations affecting

components of the Wnt/b-catenin pathway in cancers arising

in intestinal and ovarian cell types; and developmental events

involving Wnt/b-catenin signaling in normal Xenopus em-

bryos. Our study was designed to identify novel genes

directly regulated by b-catenin that are potentially relevant

to cancer development. To achieve this goal, we employed

microarray technology to identify genes up- and downregu-

lated, directly or indirectly, in human epithelial (293) cells

expressing mutant (stabilized) b-catenin versus control GFP

vector. We then compared this list of genes to a similar list

obtained by assessing gene expression in a well-characterized

set of primary human OEAs with and without Wnt pathway

defects. ChIP assays in 293 cells and experiments in frog

embryos using an inhibitor of translation were then under-

taken to determine whether candidate genes were likely to be

direct or indirect tagets of b-catenin/TCF.

We have chosen for special attention two genes that

have not previously been reported to be regulated by Wnt/

b-catenin signaling, DKK1 and FGF20. These two genes are

highly induced by stabilized b-catenin in both the 293Top cell

system and in OEA primary tumors (Table II). Both of these

genes are expressed at markedly elevated levels in eight of 12

OEAs tumors harboring mutations that deregulate b-catenin,

but neither was induced in the 19 tumors lacking such

Figure 7 Activation of the human FGF20 and DKK1 promoters by
VP16 Xtcf-3 in Xenopus embryos is dependent on intact TCF-binding
sites. (A) VP16 Xtcf-3 activates the human FGF20 promoter. Two-
cell stage embryos were injected in the animal pole with 20 pg
FGF20-luciferase reporter plasmids and 20 pg VP16 Xtcf-3 RNA, and
collected at stage 10 for luciferase assays. Mutating the TCF-binding
sites reduced activation from 5.2- to 2.1-fold. (B) Activation of the
human DKK1 promoter by VP16 Xtcf-3 in Xenopus requires intact
TCF-binding sites. In all, 40 pg of wild-type of mutant mouse DKK1-
luciferase reporter gene were co-injected with 100 pg VP16 Xtcf-RNA
in the animal pole at the two-cell stage and recovered at stage 10.
Mutating the TCF-binding sites reduces activation from 180- to
16-fold. (C) Early activation of the human FGF20 promoter by
Xenopus endogenous factors is dependent on functional TCF sites.
Embryos injected dorsally or ventrally with 40 pg wild-type or
mutant reporter DNA were recovered at stage 9 for luciferase assays.
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mutations. We do not know why some tumors with deregu-

lated b-catenin do not have increased levels of FGF20 or DKK1

RNA. One possible explanation is that these genes are under

the control of other pathways in addition to the Wnt/

b-catenin pathway; therefore, it is the integration of signals

in the nucleus that dictates the outcome in some cases.

Indeed, it has been shown that DKK1 is also regulated by

Bmp signaling and the AP-1 family member c-jun (Grotewold

and Ruther, 2002). Another explanation would be that the

tumors without elevated FGF20 and DKK1 RNAs might have

lower levels of b-catenin activity. Very little is known about

the regulation of FGF-20, but our data from Xenopus experi-

ments (see below) suggest that it is probably complex.

However, in most tumors we studied, activation of the

Wnt/b-catenin pathway correlated with augmented expres-

sion of these two genes.

We have shown, using ChIP assays, that FGF20 and DKK1

are direct targets of b-catenin in 293Top cells. We have also

demonstrated the direct target relationship between the Wnt

pathway and expression of XFGF20 and Xdkk-1 in X. laevis

using a dexamethasone-inducible form of VP16-Xtcf3 in the

presence of dexamethasone and cyclohexamide, and have

defined the minimal region necessary for b-catenin regulation

of the DKK1 promoter in 293 cells using nested deletions.

Mutational analysis of both promoters revealed that they are

dependent on LEF/TCF-binding sites in 293Top cells and

Xenopus embryos.

Our observations in frog embryos demonstrate that Wnt

activation of FGF20 and DKK1 reflects a relation between the

Wnt/b-catenin pathway and these targets during normal

development; thus, upregulation of these is not an anomaly

resulting from highly deregulated b-catenin activity in tumors

and in cultured cells. However, it is unlikely that expression

of these two genes in intact embryos at the late blastula–early

gastrula stages depends on the same Wnt ligand, since

patterns of expression for Xdkk-1 and XFGF20 in late blastula

and early gastrula Xenopus embryos differ markedly. While

Xdkk-1 is present from stage 10 in anterior endomesoderm,

forming the leading edge of the dorsally ingressed cells

during gastrulation (Glinka et al, 1998), we find XFGF20 to

be expressed in the marginal zone, in a territory fated to

become mesoderm after gastrulation. The pattern of XFGF20

expression fits a pattern common to an increasing number of

genes expressed in the marginal zone. These genes, which

have been linked to a zygotic marginal Wnt pathway, include

XmyoD (Hoppler et al, 1996; Hamilton et al, 2001), Xpo

(Hamilton et al, 2001), Xbra (Vonica and Gumbiner, 2002),

and XFGF3 (Schohl and Fagotto, 2003).

The induction of DKK1 by the Wnt/b-catenin pathway is of

particular interest because DKK1 encodes a secretory protein

that serves as a negative regulator of Wnt binding to the LRP

component of the receptor complex (Glinka et al, 1998;

Semenov et al, 2001). This implies that signaling events

initiated by production of Wnt proteins during normal devel-

opment might be terminated by production of this inhibitor.

In contrast, activation of the Wnt/b-catenin pathway during

tumorigenesis by mutations affecting intracellular compo-

nents of the pathway would be resistant to this auto-regula-

tory loop. Although upregulation of DKK1 by mutated

b-catenin in tumors should not affect b-catenin/TCF activity

in cells harboring the oncogenic mutation, it might affect Wnt

signaling to stromal cells, as recently suggested by the

observation that myeloma cells producing DKK-1 are often

associated with lytic bone lesions in patients with multiple

myeloma (Tian et al, 2003).

DKK1 and other genes encoding extracellular inhibitors of

Wnt signaling are not the only means for auto-inhibition of

Wnt signaling. Wnt signaling is also subject to negative

feedback regulation in the cytoplasm. For instance,

Conductin/Axin2, which binds to b-catenin and induces its

degradation, has been shown to be a direct transcriptional

target of b-catenin/TCF (Jho et al, 2002; Leung et al, 2002).

The ubiquitin receptor ligase, b-TrCP, which is involved in

targeting b-catenin to proteosomes, is also activated by

Wnt/b-catenin signaling (Spiegelman et al, 2000). In addi-

tion, Wingless, the Wnt-1 ortholog in Drosophila, induces the

direct expression of naked cuticle, which inhibits Dishevelled

and blocks further signaling (Rousset et al, 2001).

FGF20, the other gene induced by Wnt/b-catenin signaling

that we have studied intensively in this report, belongs to a

large class of genes, the FGFs, encoding secretory proteins

with potent mitogenic and angiogenic roles in embryonic

development, wound healing, and tumor development (re-

viewed in Dickson et al, 2000; Powers et al, 2000).

Furthermore, activation of expression of FGF3, FGF4, and

FGF8 by the mouse mammary tumor virus (MMTV) initiates

tumor development in the mammary glands of infected

female mice, in a manner similar to activation of Wnt

genes. The recently discovered FGF20 gene is expressed

Figure 8 FGF20 siRNA interferes with b-catenin-mediated growth
of RK3E cells in soft agar. (A) Effect of FGF20 siRNAs on RK3E cells.
Top panel: RK3E cells expressing a v5-tagged version rat FGF20 were
transiently transfected with wild-type (lanes A and B) and mutant
(lane C) rat FGF20 siRNAs. Lower panel: semiquantitative RT–PCR
was carried out with RNAs from RK3E-S33YA cells stably trans-
fected with FGF20 siRNAs. (B) Soft agar assay. 105 cells were plated
in 0.4% agarose and incubated for 3 weeks. Cultures were fixed
with 1% paraformaldehyde and stained with 0.1% methylene blue
and counted. RK3E-S33YA cells form colonies in soft agar as
opposed to RK3E cells. Stable RK3E-S33YA cells expressing wild-
type FGF20 siRNAs (siFGF20.A and siFGF20.B) formed colonies at a
lower efficiency than cells expressing the scrambled FGF20 siRNA.
Bar graph at the left represents the number of visible colonies
obtained for each cell line from a typical experiment performed in
triplicates.
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during early embryonic development and exclusively in the

nervous system in adults (Koga et al, 1999; Jeffers et al,

2001). Ectopic overexpression of FGF20, as for other members

of the FGF family, has been shown to transform cells in

culture and make them capable of forming tumors in nude

mice (Jeffers et al, 2001). Some FGFs in addition to FGF20 also

appear to be transcriptional targets for Wnt/b-catenin signal-

ing. FGF4 has recently been reported to be a direct target of

b-catenin (Kratochwil et al, 2002), and FGF9 RNA was

reported to be present at elevated levels in OEAs with

deregulated b-catenin (Schwartz et al, 2003). In Xenopus,

expression of XFGF3 was shown to be regulated by the

maternal b-catenin activity (Schohl and Fagotto, 2003).

Recently, FGF18 was also shown to be a direct target of

b-catenin and upregulated in human colon cancers; further-

more, interference with expression of FGF18 suppresses the

growth of colon cancer cells in culture (Shimokawa et al, 2003).

Based on the evidence of the involvement of FGFs in

tumorigenesis, we have asked whether cell transformation

by mutant b-catenin depends on induction of FGF20. Using

plasmids encoding inhibitory hairpin RNAs directed against

FGF20 RNA, we have found that, when concentrations of

FGF20 RNA and protein are reduced in b-catenin transformed

rat epithelial cells, the capacity to form anchorage-indepen-

dent colony is also reduced (Figure 8). The potential rele-

vance of activated FGF20 in b-catenin-induced cancers is

further supported by our finding that FGF20 is actively

expressed in all five adenomas examined from Min mice,

and by our preliminary observations that a subset of human

colon cancers and cell lines express FGF20 RNA, whereas

normal colon tissues do not (Supplementary data). This is

consistent with a large body of evidence that deregulated

b-catenin signaling is common in such tumors (Polakis,

2000).

FGF20 and members of the FGF family are not the only

presumptive or known proto-oncogenes reported to be in-

duced by Wnt/b-catenin signaling. For example, two well-

established proto-oncogenes, c-MYC (He et al, 1998) and

CCND1 (CyclinD1) (Shtutman et al, 1999; Tetsu and

McCormick, 1999) have been shown to be directly targeted

by b-catenin/TCF complexes in colorectal tumor cell lines

with APC mutations or activating b-catenin mutations. An

oncogenic role for these proto-oncogenes in cancers in which

b-catenin is deregulated is possible but not yet proven. On the

other hand, genetic experiments with CCND1-deficient mice

suggested that Cyclin D1 is not essential for intestinal tumor-

igenesis in animals carrying the Apcmin allele (Wilding et al,

2002). Analogous experiments with FGF20 null mutants

might help to establish the role this gene plays in Wnt/

b-catenin-mediated tumorigenesis in the colon, breast and

other organs. If FGF20 is commonly induced in various

human neoplasms, it might provide a useful marker for

detecting cancer through noninvasive methods; in addition,

if the gene has a functional role in tumorigenesis, it might

also be a useful and accessible therapeutic target.

We concentrated on FGF20 and DKK1 because they were

dramatically upregulated in two different settings—a cultured

human cell line expressing mutant b-catenin and ovarian

tumors with mutations in the Wnt signaling pathway—as

observed when we merged lists of Wnt/b-catenin-regulated

genes generated by studies being undertaken in our two

laboratories. In addition, we chose to study these genes

because FGF20 and DKK1 have not been previously reported

to be directly regulated by this signaling pathway, and

because they are likely to be important targets for transcrip-

tional control in view of their putative roles, respectively, as a

proto-oncogene and an inhibitor of Wnt signaling. We note,

however, that our merged list of regulated genes contains

several other target genes, directly or indirectly regulated by

b-catenin, of potential significance with respect to cell signal-

ing and oncogenesis, including LMO2, ETV5 and WNT11.

Recently, it has been reported that Wnt-11 promotes transfor-

mation of intestinal epithelial cells in culture (Ouko et al,

2004). We are currently investigating, using ChIP assays,

whether these genes are directly regulated by b-catenin.

The strategy of focusing on genes that appear to be

regulated by Wnt/b-catenin signaling in a multiplicity of

settings may have limitations; it is increasingly apparent

that transcriptional control reflects the interactions of multi-

ple factors and that the abundance of these factors varies

among cell types, thereby diversifying the readout of stereo-

typed signaling pathways. For instance, levels of c-MYC RNA

are increased by the Wnt/b-catenin pathway in colorectal

cancer cells, yet no changes were observed in the systems we

used here or in immature CD34þ thymocytes stimulated by

activation of the Wnt/b-catenin pathway (Staal et al, 2004).

However, LMO2, one of the genes most affected by Wnt/

b-catenin signaling in our cell and tumor systems, is also

highly upregulated in thymocytes (Staal et al, 2004). In this

light, it is probable that important regulatory events will

occur uniquely in certain cell types; the challenge will be to

identify the crucial events by determining the functional

consequences of the many changes in gene expression that

result from cell signaling.

Materials and methods

Cell lines and tumor samples
To generate 293Top cells, the kidney embryonic epithelial cell line
293 was first transfected with pcDNA6-tva (Fisher et al, 1999), a
construct expressing the ALV receptor Tva, using stable calcium
phosphate (Stratagene) according to the manufacturer’s instruc-
tions. After selection with 5 mg/ml blastocidin, one clone was
chosen for transfection with the b-catenin luciferase reporter pOT
and a plasmid carrying a neomycin-resistant gene. The pOT reporter
consists of three LEF/TCF-binding sites and a minimal promoter
driving the luciferase gene (Rubinfeld et al, 1993). Cells were then
selected in 5 mg/ml blastocidin and 200 mg/ml Geneticin (Life
Technology, Inc.) and pooled. The rat kidney epithelial cell lines
RK3E, RK3E/S33Y-A, RK3E/S33Y-D, and RK3E/DN132-B were
kindly provided by Dr Eric Fearon (University of Michigan) and
have been described previously (Kolligs et al, 1999; Schwartz et al,
2003). The ovarian endometrioid tumor sample collection has been
described previously in detail (Wu et al, 2001). Quick-frozen human
colon tumors and normal colon mucosa were obtained from the
MSKCC tumor bank collection. Quick-frozen adenomas and normal
small intestinal musosa from Apcmin/þmice were kindly provided
by Dr Bert Vogelstein (John Hopkins University).

Viral constructs and infections
The RCAS-GFP virus has been described previously (Holland,
2000). HA-tagged b-cateninS37A cDNA was excised from pMH-
S37Ab-catenin (Zorn et al, 1999) with Asp718 and Apa1, treated
with T4 polymerase to form blunt ends, and cloned into the Pme1
site of the ALV retroviral vector RCAS-Y (Dunn et al, 2000). To
produce recombinant retroviruses, the retroviral constructs were
transfected into DF-1 chicken fibroblasts as described previously
(Himly et al, 1998; Schaefer-Klein et al, 1998). To transduce
b-cateninS37A and GFP cDNAs into 293Top cells, supernatants from
virus producing DF-1 cells were filtered and diluted 1:1 with fresh
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growth media before infecting cells plated at 10% confluency. This
process was repeated 24 h later.

Data analysis
To analyze the expression data, we used two complementary
methods. Our first approach was to use the MAS 5.1 (Affymetrix)
software to perform a cross-comparison of each experimental
sample (293TopS37A) with each of the four reference samples
(293TopGFP). We selected 2041 genes that demonstrated at least a
two-fold difference in expression in one or more of these
comparisons (list 1). As an alternative, we utilized the Genespring
6.0 (Silicon Genetics) software package to identify genes differen-
tially expressed between 293TopS37A and 293TopGFP samples,
using a parametric test with filtering (Po0.05) on variances
estimated by cross-gene error model (also known as the Rocke-
Lorenzato model; Box et al, 1978; Milliken et al, 1984). With this
second statistical approach, we identified 976 genes that were
differentially regulated (list 2). The intersection of lists 1 and 2
yielded 234 regulated genes (list 3). In all, 77 genes in list 3
demonstrated at least two-fold difference in expression levels.
U133A-generated microarray data from the OEAs were processed

and analyzed as previously reported for data generated using lower
density HuGeneFL arrays (Schwartz et al, 2003). A list of 563 genes
with at least 1.75-fold difference in expression in OEAs with
deregulated b-catenin relative to wild-type tumors (Po0.05) was
obtained.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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