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Abstract
FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating
proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for
deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR
inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is
first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to
provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for
adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a
family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal
cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their
participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus,
FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to
conventional antimitotic agents.
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Introduction

FGF/FGFR signaling

The fibroblast growth factor (FGF)/FGF receptor (FGFR)
signaling system regulates fundamental developmental

pathways of multiple organ systems and plays an important
role in many physiological and pathological processes in the
adult organism, including the regulation of angiogenesis,
tissue homeostasis, wound repair and neoplastic transfor-
mation by modulating proliferation, differentiation, survi-
val, migration and metabolism of the cells [1–3]. The FGF
family contains 22 members, usually divided into seven
subfamilies according to their shared structural and func-
tional features; eighteen among these, called canonical
FGFs, are paracrine/autocrine proteins that bind and activate
the tyrosine kinase (TK) receptors FGFRs, triggering an
intracellular signaling cascade that mediates their biological
activities [4]. The FGFR family consists of four structurally
related members: FGFR 1, 2, 3 and 4, comprised of an
extracellular domain, a transmembrane domain, and a split
cytoplasmic TK domain [5]. The extracellular portion
contains three immunoglobulin-like (Ig) folds: the IgII and
IgIII domains are necessary for ligand binding while IgI and
the acidic box between Ig-I and Ig-II have an auto-
inhibitory function. Alternative splicing of the IgIII
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extracellular fragment of FGFR1 to 3 may generate iso-
forms that differ in terms of ligand-binding specificity, with
IgIIIb and IgIIIc specifically expressed predominantly in
epithelial and mesenchymal cells, respectively (Fig. 1)
[6–8]. The FGF/FGFR interaction is stabilized by heparan
sulfate proteoglycans (HSPGs), leading to the formation of
FGF/FGFR/HSPG ternary complexes that are essential to
protect FGFs from protease-mediated degradation [9].
Moreover, FGFs interact with HSPGs of the extracellular
matrix, representing a reservoir of the growth factor and
allowing the formation of FGF gradients that are essential
for paracrine signaling [10]. After ligand binding, dimer-
ization of the receptor causes phosphorylation of intracel-
lular tyrosine residues that subsequently activate several
signal transduction pathways [11]. Briefly, the activation of
the intracellular specific adaptor protein FGFR-substrate-2
(FRS2) recruits the adaptor proteins GRB2 and SOS, acti-
vates RAS and the downstream RAF/mitogen-activated
protein kinase (MAPK) pathway, mainly implicated in cell
proliferation [12]. GRB2 in turn recruits GAB1, leading to
the activation of the anti-apoptotic PI3K-AKT pathway [7].
Phosphorylation of phospholipase Cγ leads to the activation
of protein kinase C sustains MAPK and AKT pathways and
plays a role in cell migration. Depending on the cellular
context, several other pathways are also activated by FGFRs
including the p38 MAPK and Jun N-terminal kinase path-
ways, signal transducer and activator of transcription sig-
naling and ribosomal protein S6 kinase 2 [7, 13, 14].
Negative regulation of the FGFR signaling pathway is

mediated via FGF-regulated inhibitory factors such as
Sprouty proteins, MAPK phosphatases MKP3 and SEF
family members that modulate receptor signaling at several
points in the signal transduction cascade. In addition, fol-
lowing activation, FGFRs are internalized and then either
degraded in the proteasome or recycled according to their
level of ubiquitination [6].

FGF/FGFR signaling in adrenal development and
maintenance

The pathways activated by the binding of FGFs to their
receptors are critical for adrenal development and main-
tenance. The transcriptional coactivator CITED2 (Cbp/
p300-interacting transactivator 2), which is important for
the development of the adrenal glands, is regulated by basic
FGF (bFGF, also known as FGF2) involving the MAPK-
pathway in adrenocortical cells [15]. In the 18-day-old rat
embryo [16] and human fetal adrenals [17], FGF2 is
expressed in the fetal zone but appears to be absent from the
definitive cortical zone. With FGF2, FGF1 and FGF9 are
the only FGFs that are expressed in the embryonic adrenal
gland with FGF1 mostly found in the cortex, and FGF2 and
9 preferentially in the capsule [18] (Table 1). FGFs exert
mitogenic effects that are important for adrenal gland
maintenance in the postnatal period [19, 20].
FGF2 stimulated proliferation of cultured fetal and defini-
tive zone cells from midgestation [21]. FGF2 is also
involved in the compensatory adrenal growth response to
unilateral adrenalectomy in the rat [22]. Given the strong
in vitro mitogenic activity of FGF2 on adrenocortical cells,
several authors have analyzed whether it may mediate the
pituitary-dependent adrenal growth. This growth was
wrongly attributed for a long time to ACTH [23–26]. The
discrepancy between pituitary hormone stimulation of
adrenocortical cells proliferation in vivo but not in vitro
could be later explained in that N-terminus proopiomela-
nocortin (POMC)-derived peptides (nPOMC) other than
ACTH are involved in the adrenal growth stimulation [27–
29]. Consistent with this theory this proliferative effect can
be antagonized by ACTH, which promotes cell differ-
entiation by inducing cell cycle arrest and steroidogenesis
in vitro [21, 30–33]. Both FGF2 and nPOMC lead to pro-
liferation through induction of ERK phosphorylation
[34, 35] so it is likely that FGF2 is the mediator of nPOMC
action. Moreover, FGF-2 is also a potent angiogenic and
neurotrophic factor that promotes angiogenesis by directly
acting on endothelial cells and by indirectly upregulating
the expression of vascular endothelial growth factor
(VEGF) [36, 37]. Therefore, its trophic effects could be due
to the stimulation and maintenance of vascularization and
innervation of the adrenal cortex in response to pituitary
stimulation [38, 39]. Looking at the receptors, FGFR1 is

Fig. 1 Changes in FGF to receptor binding specificity depending on
tissue-specific isoform splicing for FGFR 1-3

412 Endocrine (2022) 77:411–418



detected at both mRNA and protein levels in the fetal cortex
as well as in subpopulations of the adult cortex [17, 40].
The highest concentrations of FGFR4 were found in 17–18-
week-old human fetuses’ adrenal glands. No FGFR3 was
detectable in the fetal adrenal, and FGFR1 and FGFR2
mRNAs were expressed at barely detectable levels [41]. In
adult adrenals, steroidogenic cells appeared to express
FGFR2 and FGFR3, whereas all four receptors were
detectable in the microvasculature [42]. Several reports
show that the FGFR2 expression pattern in the fetal adrenal
is localized to the outer cortex, where Wnt/β-catenin sig-
naling is active [18, 43–45] (Table 1). FGFR-1 isoform IIIc
and both FGFR-2 isoforms IIIb and IIIc, are expressed in
both the adrenal cortex and the capsule [18, 46]. Interest-
ingly, different from other endothelial tissues, the
mesenchymal IIIc is the most expressed isoform in the adult
adrenal glands [47]. The prevalence of the IIIc isoforms is
related to the embryogenesis of the adrenocortical tissue,
which originates from the intermediate mesoderm and
undergoes a mesenchymal-epithelial transition to result in
epithelial tissue. However, this epithelial transformation is
incomplete, and the adrenal cortex keeps most of its

mesenchymal characteristics at molecular level [47, 48].
Deletion of FGFR2, results in various degrees of adrenal
hypoplasia after birth. Global knockout of isoform IIIb or
both splice variants of FGFR2 results in embryonic lethality
due to severe malformations [44, 49]. Recently, other
authors found that mice with global deletion of the FGFR2-
IIIb exhibit hypoplastic adrenals with impaired steroido-
genic differentiation due to the reduced adrenal growth and
impaired expression of SF1 and steroidogenic enzymes
[18]. FGFR2 but not FGFR1 is required for expansion of
the adrenocortical primordium by increasing proliferation
and inhibiting the apoptosis in adrenocortical precursor cells
[43]. Together with β-catenin, FGFR2 is also required for
proper adrenal morphology by regulating cell adhesion and
junction dynamics through cadherin expression modulation
[45]. There is a consensus that the FGF/FGFR pathway
plays a crucial role in organogenesis [50] however, there is
no general principle that applies to all tissues; as seen in this
chapter, in the adrenal the downstream mechanisms of this
regulation have not been yet analyzed in as much detail as
in other organs, future studies at molecular level is direly
needed.

Table 1 Overview of expression of select members of the FGF/FGFR pathway presented in this work in different adrenocortical tissues.

Fetal 
adrenal 
gland 

Adult 
adrenal 
gland 

Adrenocor�cal 
carcinoma 

FGF1  [18]  [70]   N/S 
FGF2  [15, 17]  [22]  N/S 
FGF8  [18]  [70]  [70] 
FGF9  [18]  [70]  [70] 
FGF12  N/A  [70]  [70] 
FGF14  N/A  [70]  [70] 
FGF19  N/A  [70]  [70] 
FGF21  [18]  [70]  [70] 
FGFR1  [17, 40]  [40, 42]  [66-70] 
FGFR2 [18, 43-45]  [42] [70]          [73]
FGFR3  [41]  [42]  N/S 
FGFR4  [41]  [42]  [66-70] 
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FGFR dysregulation in cancer

There is compelling evidence that atypical regulation of the
FGF/FGFR system occurs in human tumors due to various
genetic alterations affecting different members of the FGF
or FGFR families. This includes aberrant expression,
amplifications, mutations, translocations, and fusions,
leading to the deregulated activation of ligand-dependent or
ligand-independent FGFR signaling [2, 51]. FGF gene
abnormalities (predominantly gene amplifications) have
been detected in ~14% of human malignancies [52] and a
next-generation sequencing study that evaluated 4853 dif-
ferent tumor specimens showed that FGFR aberrations were
identified in 7.1% of the tumors analyzed [53]. Gene
amplifications were the most identified aberrations, present
in 66% of the samples, often reported in FGFR1 and
FGFR4 with variable frequencies among the different can-
cer types; fusions were predominantly seen in FGFR2 and
FGFR3 [53, 54]. When FGFRs are mutated or amplified,
aberrant activation of downstream pathways results in
mitogenic and antiapoptotic responses in cells. FGF ligands
are also known to promote tumor growth and proliferation
by inducing neo-angiogenesis [55] through indirectly
synergizing VEGF and platelet-derived growth factor
pathways [56]. Some cancer models have highlighted other
potential mechanisms, where FGFs might contribute to the
history of a tumor such as conferring or repressing its ability
to escape the restraints of the local tissue microenvironment
(i.e., progress from precancerous hyperplasia to confirmed
neoplasia) [57]. Furthermore, preclinical studies demon-
strated FGFR crosstalk with other cell surface receptors
such as G-protein-coupled receptors or other receptor TKs
such as epidermal growth factor receptor, opening doors for
possible therapeutic interventions with combination thera-
pies [58]. This possibility was also confirmed in vitro by a
combination of knockdown and selective pharmacological
inhibition studies [2].

Alteration of FGF/FGFR cascade in ACC

Analyses of mutations [59] and mRNA expression [60, 61]
patterns in adrenocortical carcinoma (ACC) have identified
disturbances in FGFR cascade with a range of 0% (for
FGFR1) to 6% (for FGFR4) of cases [62]. Single nucleotide
polymorphism array profiling of adrenocortical tumors has
identified over 160 known oncogenes including FGFR1-3
[63]. Amplifications of FGFR1, FGF9, or FRS2 were dis-
covered in 3 out 28 (10.7%) tumors of patients with ENSAT
tumor stage III–IV by comparative genomic hybridization
[64]. Giordano et al. showed that FGFR1 is among the most
differentially expressed genes in ACC [65]. Using genome-
wide expression studies, FGFR4 overexpression has been
observed in adult but particularly in pediatric adrenocortical

tumors (ACT) [66–68] (Table 1). However, the molecular
mechanisms responsible for FGFR4 upregulation in ACTs
have been assessed only later by Brito et al. [69]. The
authors not only confirmed the previous observations by
demonstrating FGFR4 overexpression in a significant pro-
portion of pediatric (88%) and adult (47%) ACTs, but also
detected FGFR4 amplifications in 13.5% of the pediatric and
30.4% of adult ACTs, suggesting that gene amplification
could be the cause of FGFR4 overexpression, at least in a
subset of tumors [69]. Moreover, in line with previous data
[66], they found a positive correlation between FGFR4 and
IGF2 expression levels, suggesting that FGFR4 and IGF2
belong to a cluster of genes that are simultaneously over-
expressed in ACC. Recently, our group published the results
of 93 FGF pathway-related genes in a large cohort of benign
and malignant adrenocortical tissues, non-adrenal tissues
and cell lines [70] (Table 1). Among the 11 genes expressed
at lower levels in ACC compared to adrenocortical adeno-
mas (ACAs), there were FGF12, FGF14, and FGFR2. The
five genes significantly upregulated in ACCs vs ACAs
encoded for the FGFR1, FGFR4, FGF8, and FGF19. FGF21
was the only analyzed gene that was expressed at sig-
nificantly higher levels in advanced ACC. The expression of
FGFRs was confirmed in a larger cohort of FFPE tissues
using RNA in situ hybridization and correlated with clinical
data confirming that FGFR1 and 4 were overexpressed in
ACC compared to ACA, while FGFR2 was higher expres-
sed in ACA. Moreover, a higher expression of FGFR4 was
found in late ENSAT stages compared to early-stage and in
recurrences/metastases compared to primary tumors [70].
Both FGFR1 and FGFR4 overexpression were significantly
associated with worst prognosis [69, 70]. Some authors
hypothesized that also FGFR2 expression may play a role in
ACC since it regulates the differentiation and the spatial
organization of the adrenal gland and it has also been linked to
the activation of the Wnt/beta-catenin pathway [71], a key
mechanism of adrenocortical tumorigenesis [72]. A pilot study
in 26 ACCs analyzed CTNNB1 mutation status and FGFR2
expression in the same samples. The most striking result was a
subset of tumors with high nuclear FGFR2 expression.
However, although most tumors with the higher nuclear
FGFR2 expression did not harbor a CTNNB1 mutation, the
authors did not find a statistically significant association
between FGFR2 expression and the mutational status of
CTNNB1 or distinct clinical features [73]. Despite evidence of
upregulated FGFR expression in different tumor types, it
remains unclear whether such abnormal receptor expression
represents the underlying molecular cause as a driver of can-
cer, or simply exists as a bystander, or “passenger”, event
within the overall mutational profile of cancer [74].

Similar to the situation in adrenal organogenesis the
knowledge is sparse and fragmented, further studies are
needed to uncover the underlying mechanisms responsible
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for the observed effects of FGF/FGFR on adrenal
tumorigenesis.

FGFR inhibitors

FGFR inhibitors emerge more often as potential targeted
therapeutic agents [75]. Particularly, preclinical studies
suggest that patients presenting genomic alterations are
more likely to be sensitive to FGFR inhibitors [76, 77].
Pemigatinib (PEMAZYRE™) and Infigratinib (TRU-
SELTIQ™) received approval by FDA for the treatment of
advanced unresectable cholangiocarcinoma harboring
FGFR2 fusions or rearrangement, and Erdafitinib (Balversa)
for treatment of metastatic urothelial carcinoma with
FGFR2 and FGFR3 genetic aberrations [58]. The pre-
liminary molecular results would support the use of selec-
tive FGFR inhibitors also for treatment of ACC but, as of
yet, these kinases have not often been targeted in dedicated
trials [78]. A phase II trial including 17 patients with
unresectable ACC, investigated the efficacy of dovitinib, a
multi-kinase inhibitor with nonselective activity against the
FGFR (targeting also colony-stimulating factor 1 receptor/
CSF1R and VEGF) [79], reported only one partial response.
However, 23% of patients achieved stable disease lasting
longer than 6 months. A phase 1/2 study (NCT01752920)
of another pan-FGFR inhibitor, ARQ087, included one
ACC patient with FGFR1 gene amplification who experi-
enced disease stabilization for 3.5 years with a maximum
tumor reduction of 20% post-treatment [80]. Notably,
FGFR inhibitors elicit their antitumoral effects not only
directly on the cancer cells, but also indirectly through
paracrine signaling blockade. Moreover, the simultaneous
inhibition of FGF and CSF1 or VEGF signaling should
enhance the antitumoral effects through targeting also
potential immune evasion and angiogenesis in the tumor
microenvironment [81] so multi-pronged therapy strategies
directed at several targets would probably improve the
modest results obtained until now.

Conclusions

FGF/FGFR signaling regulates the development of the
adrenal gland, enhances proliferation in adrenocortical cells
and, if deregulated, can be regarded as a driver in the for-
mation of many cancer types, including ACC. Several stu-
dies have indeed demonstrated that particularly FGFR 1 and
4 were upregulated in malignant compared to benign ACTs
and that their high expression was significantly associated
with worse patient prognosis, suggesting that they are
potentially interesting therapeutic targets. The knowledge
about FGF/FGFR signaling in adrenocortical tissues is
sparse and fragmented due to a lack of studies on the

molecular mechanisms. Taking inspiration from other stu-
dies performed for other organs and cancers, it appears
mandatory to further investigate the underlying mechanisms
of the FGF/FGFR effects in the healthy and diseased
adrenal. Not only at the expression level but also looking at
FGF/FGFR genetic alterations to better stratify ACC for the
use of FGFR inhibitors in future clinical trials and to
develop effective combinations of FGF/FGFR inhibitors
with other therapies [82]. Thus, the challenge for the future
is to be able to select the right patients for the most suitable
targeted FGFR inhibitors therapy [76].
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