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Abstract

Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very
restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of
FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg388, in different
colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a
significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive
capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFb gene expression levels and an
increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-
signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell
survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated
FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting
using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced
capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in
tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for
colorectal cancer therapy.
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Introduction

The fibroblast growth factors (FGFs) have been implicated in

multiple biological processes during embryo development, wound

healing, haematopoiesis and angiogenesis [1]. They bind to four

FGF receptors (FGFR) designated FGFR1-4 [2]. The FGFRs

structure includes a ligand-binding domain that contains three

different immunoglobulin-like domains (called Ig I, Ig II and Ig

III). The ligand domain is followed by a single transmembrane

domain and an intracellular cytoplasmic tyrosine kinase domain.

FGFR4 displays the most restricted pattern of expression to

embryonic development and tissue repair [3,4] when compared to

the other three FGFRs, and its expression levels decline

postnatally. In adults, FGFR4 is expressed in muscle myofibro-

blasts during regeneration following injury, but not in mature

skeletal muscle [5]. FGF receptors dysregulation has been shown

to play an important role in cancer development and progression.

These alterations have been proposed to occur through overex-

pression, gene amplification or mutation [6].

Previously, our group identified FGFR4 as an autoantibody

target in colorectal cancer (CRC) using protein microarrays [7]. In

addition, we observed a clear overexpression of FGFR4 in

colorectal cancer cell lines (particularly in 2 out of 4 highly

metastatic colorectal cancer cell lines) with a potential association

of FGFR4-expression to late stages colorectal cancer [8]. FGFR4

has been reported to be over-expressed in human breast, prostate,

colon, rhabdomyosarcoma, gastric, pancreatic, hepatocellular and

pituitary adenocarcinomas [4,9,10,11,12,13,14,15], where it can

contribute to tumor progression by multiple mechanisms [4,9].

Moreover, FGFR4 expression levels were associated with meta-

static disease and poor survival in gastric, lung, breast adenocar-

cinoma and rhabdomyosarcoma [16,17,18]. FGFR4 somatic

mutations are infrequent in cancer [11,19,20,21]; Arg388 is the

most common single nucleotide polymorphism (SNP) in FGFR4,

which provokes enhanced stability and prolonged activation of the

receptor. It has been associated with poor prognosis for positive

node breast cancer, high-grade soft-tissue sarcoma, head and neck

and lung squamous cell carcinoma [9,16,18,22,23].

Among the 18 FGF ligands, FGF19 binds preferentially FGFR4

[24], although it binds also FGFR1. Binding occurs in a complex

comprising heparin, FGFR4 and two FGF molecules, which

triggers FGFR dimerization, leading to autophosphorylation of
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multiple tyrosine residues in the intracellular tyrosine kinase

domain [3,25]. FGF19-FGFR4 has been proposed to play a role in

the induction of hepatocyte proliferation and carcinogenesis [26].

Antibodies directed against FGF19 have shown therapeutic

promise in different tumor xenografts [27]. However, blocking

of FGF19 might act on different FGF receptors [28].

We have used different colon cancer samples and cell lines

(SW480, SW620, SW48, KM12C and KM12SM) [29,30,31] to

investigate the presence of SNPs or activating mutations in

FGFR4 and to characterize its biological relevance as oncogene

and therapeutic target in colorectal cancer. KM12C and

KM12SM epithelial cells possess similar genetic background,

differing in their metastatic properties [31]. SW480 and SW620

are two isogenic colorectal cancer cell lines. SW480 was isolated

from a primary Duke’s B tumor of colorectal cancer, whereas

SW620 cell line was isolated from a metastatic lymph node of the

same patient [30]. SW48 colorectal cancer cells was derived from

a tumor at Duke’s C stage [30]. These five cell lines differ also in

FGFR4 protein expression levels [8]. In our study, no new SNPs

or activating mutations were found in FGFR4. However, loss-of-

function experiments revealed a major role of FGFR4 in

tumorigenic properties of colorectal cancer cells, since its depletion

abrogated proliferation, adhesion, migration and invasion.

FGFR4-silencing caused an up-regulation of E-cadherin expres-

sion and down-regulation of Snail and other epithelial-mesenchy-

mal transition (EMT) mediators. Finally, we demonstrated that

FGFR4 targeting was able to block tumor growth in vitro and

in vivo.

Materials and Methods

Ethics Statement
The Ethical Committee of the Consejo Superior de Investiga-

ciones Cientı́ficas (Madrid, Spain) approved the protocols used for

experimental work with mice.

Cell Lines, RNA Extraction, Antibodies and Inhibitors
Colorectal cancer cell lines KM12C and KM12SM [31,32]

were obtained from Dr I. Fidler (MD Anderson). SW480, SW48

and HEK293 cell lines were from ATCC. Cells were grown

according to established protocols [7]. RNA was extracted from

cell lines and 20 paired normal/tumoral tissue from cancer

patients with the RNeasy Mini Kit (Qiagen Inc.) according to the

manufacturer’s protocol. The extracted RNA was quantified with

a NanoDrop ND-1000 spectrophotometer (NanoDrop Technol-

ogies Inc.).

A total of 15 different antibodies were used, including proteins

related to the FGFR4 signaling pathway and control proteins.

Source, clonality, and conditions of usage for every case and

technique are specified in Table S1. FGFR4-specific polyclonal

antibody (sc-124, Santa Cruz Biotechnology) and control GST-

specific polyclonal antibody from GE Healthcare were used for

FGFR4-targeting experiments. FGFR inhibitors were PD173074

(Sigma) and TKI-258 (Novartis). PD173074 is a pan-FGFR

inhibitor that induces apoptosis [33]. TKI-258 is a clinically

relevant, multi-kinase inhibitor, including VEGFR and PDGFR

kinases among others [34]. Other inhibitors were: PP2 (Sigma) for

SRC, JNK Inhibitor II and UO126 (Calbiochem) for MEK1/2.

They were used at 3 mM and 15 mM as previously reported [35].

Vectors, shRNAs, siRNAs and Transfections
pRS vectors containing specific shRNAs (TI378641, TI378642,

TI378643 and TI378644) for FGFR4 (NM_022963) and a control

shRNA non-effective against any human sequence (TR30003)

were from Origene. Stably-transfected cells were obtained by

retroviral infection. Briefly, HEK293FT cells were transfected

with pRS vectors and pNGVL-gag-pol and pNGVL-VSVG

packaging vectors using jetPRIME Transfection Reagent (Poly-

plus). After incubating the cells for 12–15 h in serum-free media,

the media was replaced with DMEM containing 10% FBS and

penicillin/streptomycin. The day after, media containing lentiviral

particles was centrifuged, diluted 1:2–1:10 in DMEM containing

10% FBS and antibiotics and directly added to SW480 and SW48

colorectal cancer cells. After three days of incubation, infected

SW480 and SW48 colorectal cancer cells were selected using

1 mg/ml puromycin (Sigma) for 2–3 weeks. Then, cells were

cultured with 0.5 mg/ml puromycin.

FGFR4 siRNAs and controls were purchased from Sigma. For

siRNA transfections, 56105 cells were seeded in culture plates and

maintained in DMEM with 10% fetal calf serum at 37uC in 5%

CO2 for 24 h. Cells were transfected with 55 pmol siRNA using

2 ml JetPrime Transfection reagent in 200 ml of JetPrime buffer.

Then, 48 h after transfection, cells were analyzed by western blot

and semi-quantitative PCR [35].

Sequence Analysis, Semi-quantitative and Real-time
Quantitative PCR
cDNA was synthesized using the Superscript III First Strand

Synthesis kit (Invitrogen). The primers used to get the FGFR4

sequence were previously described [36]. Briefly, four pairs of

primers (A, B, C and D) were used to get the whole molecule by

PCR in fragments of approximately 1000 bp using the Advantage

2 polymerase (Clontech). Exonuclease I (USB) and shrimp alkaline

phosphatase (USB) were added to the PCR products. They were

directly sequenced in an ABI7002 sequencer (Applied Biosystems).

cDNA was synthesized as before and directly used for semi-

quantitative PCR analysis of TGF-b1 and GAPDH mRNA levels

in colorectal cancer cell lines. PCR reactions were performed

using the following primers; human TGF-b1, sense 59-AC-

CGGCCTTTCCTGCTTCTCA-39, antisense 59-

CGCCCGGGTTATGCTGGTTGT-39; human GAPDH, sense,

59-GGCTGAGAACGGGAAGCTTGT-39, antisense 59-

CGGCCATCACGCCACAGTTTC-39. Specific primers for

FGFR1-3 used to test the specificity of shRNAs and siRNAs

directed against FGFR4 were: FGFR1, sense 59-CACAAGC-

CACGGCGGACT-39, antisense 59-TGATGCTCCAGGTGG-

CAT-39; FGFR2, sense 59-CGTTGCCATTCAAGTGACTG-39,

Table 1. FGFR4 mutational status in colorectal cancer and
control cell lines.

Cell line properties Cell line Mutation

Non metastatic SW480 P136L

Highly-metastatic SW48 V10L

P136L

Low-metastatic KM12C V10L

P136L

G388R

Highly-metastatic KM12SM V10L

P136L

G388R

Pancreatic adenocarcinoma BxPc3 P136L

Human Embrionic Kidney HEK293 –

doi:10.1371/journal.pone.0063695.t001
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antisense 59- GACAAAATCTTCCGCACCATC-39; and

FGFR3, sense 59- CAGTTGGTCTTCGGCAGC-39, antisense

59-TGCTGCCAAACTTGTTCT-39.

For qRT-PCR, reactions were performed using previously

described EMT marker primers [37] and SYBR-Green Master

PCR mix (Applied Biosystems), in triplicate. PCR and data

collection were performed on IQ5 (BioRad). All quantitations

were normalized using human GAPDH. For the semi-quantitative

PCR, the D pair of primers was used to determine the amount of

FGFR4 cDNA, using GAPDH amplification with specific primers

as control [36].

Western Blot Analysis
Protein extracts from colorectal cancer cells were prepared and

quantified with the 2D-Quant kit (GE Healthcare) according to

previously published protocols [7]. Then, 25 mg of each protein

extract were run in parallel using 10% SDS-PAGE. For

immunoblotting, proteins were transferred to nitrocellulose

membranes (Hybond-C extra) using semi-dry equipment (Bio-

Rad). After blocking, membranes were incubated with specific

mono- or polyclonal antibodies against the selected proteins.

Membranes were incubated at optimized dilutions with primary

antibodies followed by incubation with either HRP-anti-mouse

IgG (Pierce) at 1:5000 dilution or HRP-anti-rabbit IgG (Sigma) at

1:5000 dilution. Specific reactive proteins were visualized with

SuperSignal West Pico Maximum Sensitivity Substrate (Pierce).

The abundance of the proteins in western blot assays was

determined by densitometry using Quantity One 1D Analysis

Software v4.6 (Bio-Rad Laboratories).

Cell Adhesion, Invasion, Apoptosis Detection,
Proliferation, and Wound Healing Assays
For cell adhesion assays, 96-well plates were coated with

Matrigel (0.4 mg/mm2) (BD Biosciences) in coating buffer (0.1 M

Figure 1. FGFR4-silencing in colorectal cancer cells decreases tumorigenic and invasive properties of colorectal cancer cells. Four
shRNAs directed against different exons of FGFR4 and a scrambled shRNA were used to obtain stably transfected colorectal cancer cells after
selection with puromycin. In addition, transient siRNA FGFR4-silencing was carried out in SW620 colorectal cancer cells. A. Western blot analysis of
FGFR4 expression in stably transfected SW480 and SW48 cell lines, and transiently-transfected SW620 cells. Tubulin was used as loading control. B.
Semi-quantitative PCR analysis of FGFR1, FGFR2, FGFR3, and FGFR4 expression using specific primers in three different cell lines. GAPDH was used as
control. C. Proliferation was determined by MTT assays after 24 h of culture. Optical density was significantly decreased by FGFR4 knockdown (*,
p,0.01; **, p,0.001). D. Scrambled and silenced cells were grown until confluence and their migratory capabilities were analyzed in a wound-healing
assay every 24 h until confluence. Representative images of the wound-healing assay are shown. Migration speed (mm/h) of scrambled and FGFR4-
silenced cells was calculated as the distance covered in 96 h. E. Cell adhesion to Matrigel of FGFR4-silenced or scrambled cells, after starving cells for
5 h in medium alone. F. SW480 and SW48 scrambled cells showed approximately 2-fold higher invasion than shRNA #41 FGFR4 stably-transfected
cells. Data for all the experiments represent the mean 6 SD of 3 independent experiments. p values of all the experiments are shown.
doi:10.1371/journal.pone.0063695.g001
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NaHCO3 pH: 8.8) overnight at 4uC and, then, incubated with

adhesion medium (0.5% bovine serum albumin in serum-free

DMEM) for 2 h at 37uC to block unspecific binding. Cells were

starved without serum for 5 h and labeled with BCECF-AM

(Molecular Probes) during 30 min at 37uC, detached with 2 mM

EDTA in PBS and resuspended in adhesion medium. Then, 105

cells were added in triplicate to plates and incubated for 30 min.

To remove non-adherent cells, plates were washed twice with

DMEM. Bound cells were lysed using 1% SDS in PBS and the

fluorescence quantified in a Varioskan Flash Multimode Reader

(Thermo Scientific). For Matrigel invasion assays, 86105 SW480

or SW48 cells were re-suspended in invasion medium (serum-free

DMEM containing 0.5% BSA) and loaded onto 8 mm pore-size

filters coated with 35–50 ml of 1:3 dilution of Matrigel (BD

Biosciences) in Transwells (Costar). The lower compartments of

invasion chambers were filled with medium containing 10% FBS

(Gibco). After 22 h of incubation at 37uC, non-invading cells were

removed from the upper surface of the filter, and cells that

migrated through the filter were fixed with 4% paraformaldehyde

(Sigma), stained with crystal violet and the invading cells counted

under a microscope. For wound healing, SW480 and SW48 cells

were seeded in triplicate at a density of 106 cells per well in 24-well

plates. After attachment, a 1 mm-wide wound was produced in the

cell monolayer, the growth medium was replaced and a picture

was taken (day 0) in an Olympus CK40 microscope equipped with

an Olympus DP12 camera at640 magnification. Pictures of the

same field were taken every 24 h.

For apoptosis detection assays, cells were incubated with 1 mM

H2O2 for 16 h without serum. Then, cells were detached and

incubated with FITC labeled-Annexin V (Miltenyi Biotec Inc.)

and propidium iodide according to manufacturer’s instructions,

and analyzed by cytofluorometry (Coulter Epics XL). For cell

proliferation assays, experiments were carried out following

established procedures [38,39]. Briefly, the growth medium was

Figure 2. Alterations in EMT inducers after FGFR4-silencing. A. cDNA synthesized from total RNA from stably and transiently-silenced and
control cells was subjected to qRT-PCR using specific primers for the EMT inducers SNAI1, TWIST1, ZEB1 and CDH1, using GAPDH for normalization.
Data represent the median 6 SD of two experiments. B. Same cDNA was subjected to semi-quantitative RT-PCR analysis to amplify TGFb1, using
GAPDH as control. C. SW480 and SW48 scrambled and FGFR4-silenced cells were lysed and subjected to WB analysis using specific antibodies against
the indicated proteins and EMT markers. The abundance of each protein was quantified by densitometry. Tubulin was used as loading control. D.
Immunofluorescence analysis of E-Cadherin in scrambled and silenced SW480 and SW48 cells. DAPI was used for counterstaining of the nucleus in
blue. E-Cadherin staining was in green.
doi:10.1371/journal.pone.0063695.g002
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changed 24 h after seeding (day 0) and cells were further

incubated during three days. Then, medium was removed and

cells were stained with 100 ml of the chromogenic dye 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma) at

a final concentration of 1 mg/ml in DMEM. The cells were

further incubated for 1 hr at 37uC and 5% CO2. Then, medium

was carefully aspirated and 100 ml of DMSO (Sigma) were added

to each well to disrupt cells. Absorbance was read at 570 nm. All

the experiments were done three times in duplicate. For reduction

of proliferation, cell viability was represented comparing the effect

of anti-FGFR4 or anti-GST (as control) antibodies or specific

inhibitors in comparison to untreated cells (100% of proliferation)

incubated in the same conditions [39].

Confocal Microscopy
Cells were fixed with 1% paraformaldehyde and permeabilised

with PBS-0.5% Triton X-100 prior to the incubation with the

FGFR4 specific antibody or TRITC-phalloidin for 1 h at 37uC.

FGFR4 or E-cadherin antibodies were detected with AlexaFluor

488-labeled anti-rabbit IgG antibody. Cells were observed with a

confocal microscope (TCS-SP5-AOBS-UV, Leica-Microsystems)

after nucleus counterstaining with DAPI. Images were acquired

with a 636 oil immersion objective using the Leica Confocal

Software. Displayed images were captured at the same sections in

the different samples.

In vivo Tumor Xenografts
Swiss nude mice (Charles River) were used for metastasis and

tumor xenograft studies. The Ethical Committee of the Consejo

Superior de Investigaciones Cientı́ficas (Madrid, Spain) approved

the protocols used for experimental work with mice.

For tumor xenografts, mice were injected subcutaneously into

the right flank using 16107 SW48 stably-transfected colorectal

cancer cells in 0.2 mL PBS in Matrigel diluted 1:3. Tumor sizes

were monitored at least twice a week and each animal was

euthanized using a CO2 chamber in accordance to the Guidelines

for Human Endpoints for Animal Use in Biomedical Research.

Statistical Analysis
All statistical analyses, except where indicated, were done with

Microsoft Excel. Data are presented as median 6 standard

deviation. For evaluation of the statistical significance compared

between groups all p values were derived from a two-tailed

statistical test with 95% confidence interval. p values ,0.05 were

considered statistically significant.

Results

FGFR4 Mutational Status in Colorectal Cancer Cell Lines
and Tissue Samples
We investigated FGFR4 mutations in colorectal cancer cell lines

and cancer samples that could contribute to antibody recognition

by overexpression or activation. Total RNA was isolated and

cDNA synthesized by retrotranscription. cDNA was used as

template to determine the presence of mutations.

In total, we found 3 SNPs in the FGFR4 cDNA in 4 colorectal

cancer cell lines and 20 cancer samples (Table 1 and Figure S1).

We observed three mutations in the extracellular and transmem-

brane domain of FGFR4 in patient samples. In addition to well-

characterized Arg388 SNP [9,15], we found V10L localized in the

signal peptide and P136L between immunoglobulin domains 1

and 2 (Figure S1). These two SNPs have been previously

reported without correlation to pathological manifestations

[40,41]. In KM12C and KM12SM colorectal cancer cells, we

observed the presence of the Arg388 SNP, whereas SW480 and

SW48 did not contain this SNP. In 20 colorectal cancer samples,

60% of patients presented the polymorphism Arg388, whereas the

prevalence of the other two mutations was 55% for P136L and

15% for V10L. These data are in agreement with previously

published data, where 50% of tumors present the Arg388 SNP,

53% the polymorphism P136L and 30% of the tumors contain

V10L [9].

We did not find any activating mutation in FGFR4 or any

nucleotide change out of previously reported for FGFR4. Then,

these data suggest that the increased expression of FGFR4 could

be responsible for autoantibody induction in CRC patients and

higher invasion and metastasis in colon cancer.

FGFR4 Knockdown Reduced Adhesion, Migration and
Invasion of Colorectal Cancer Cells
To study the role of FGFR4 overexpression in tumorigenesis

and metastasis, we studied the effect of FGFR4 expression in

SW48, SW480 and SW620 colorectal cancer cell lines, which did

not contain the Arg388 polymorphism. SW480 and SW48 cells

were stably transfected with four shRNAs targeting FGFR4 plus a

control scrambled shRNA. SW620 cells were transiently silenced

with siRNA. shRNA #41 showed the highest decrease in FGFR4

protein expression (Figure 1A) and mRNA levels (Figure 1B) in

both cell types. shRNA #44 was also effective in reducing protein

expression, particularly in SW48 cells. Similar reduction levels

were obtained with transient siRNA silencing in SW620 cells. To

study the effect of FGFR4 silencing on other family members, we

carried out RT-PCR. mRNA levels for FGFR1, FGFR2, and

FGFR3 remained unaltered after FGFR4- silencing, confirming

the specificity for FGFR4 (Fig. 1B). Immunofluorescence analysis

showed that FGFR4 expression was significantly reduced in

SW480 and SW48 after transfection with shRNA 41 vectors,

although some residual staining was observed in the nucleus of

SW48 cells (Figure S2).

To assess the tumorigenic properties, we determined cell

growth, adhesion, migration and invasion of FGFR4-silenced

cells. Using MTT assays, FGFR4-silenced SW480 or SW48 cells

showed a reduced proliferation rate when compared to scrambled

cells (Figure 1C). To investigate the effect of FGFR4 on

migration, FGFR4-silenced SW480 and SW48 cell lines were

seeded in 24-well plates and analyzed by wound healing assays.

FGFR4-silenced cells were unable to close the wound even after

96 h (Figure 1D). The retarded migration was more important

for SW48 (3-fold) than SW480 cells (2-fold). These results are

similar to those reported previously using two different CRC cell

lines, HCT116 and HT29, and different assays [15].

Figure 3. FGFR4 promotes proliferation and cell survival. A. Scrambled and FGFR4-silenced SW480 and SW48 cells were starved, and
incubated with FGF19, heparin, or FGF19 plus heparin for 30 min in DMEM. Then, cells were lysed and subjected to WB analysis using specific
antibodies against phosphorylated and total AKT, ERK1/2 and SRC. Tubulin was used as loading control. B. Cells were incubated in DMEM
supplemented with 10% FBS and antibiotics in presence or absence of H2O2 for 16 hours, and subjected to apoptosis detection assays. Unt.,
untreated cells. Data showed the results for one representative experiment out of three. C. Invasion across Matrigel of scrambled and silenced cells
treated with inhibitors to MEK1/2 (UO126), JNK, and SRC (PP2) as indicated. Data represent the mean 6 SD of 3 independent experiments.
doi:10.1371/journal.pone.0063695.g003
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Figure 4. Impact of FGFR4 targeting using kinase inhibitors on colorectal cancer growth. A. In vitro cell proliferation inhibition assays
were carried out using tyrosine kinase specific inhibitors. Experiments were performed in DMEM supplemented with 10% FBS and antibiotics. After
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In addition, using Matrigel assays, there was an important

decrease in the adhesion and invasion capacity of FGFR4-silenced

cells in both cell lines. SW480 cells decreased their adhesion

capacity in 2.5-fold, whereas SW48 cells showed almost 4-fold

reduction respect to scrambled cells (Figure 1E). Invasion was

approximately 2-fold reduced by FGFR4 knockdown in both cell

lines (Figure 1F). Collectively, these data support an important

role of FGFR4 in tumorigenesis and invasion of colorectal cancer,

being more relevant for metastatic SW48 cells.

FGFR4 Silencing Reduced the Expression of Inducers of
the Mesenchymal Phenotype
Since cell adhesion, migration and invasive capacity of epithelial

cells are associated to the epithelial-mesenchymal transition

(EMT), we decided to investigate alterations in EMT inducers.

After FGFR4 silencing, we studied changes in mRNA expression

levels of Snail1 (SNA1), TWIST1, ZEB1, and E-Cadherin (CDH1)

by real-time PCR or semi-quantitative PCR (TGFb1). In SW480

and SW620, FGFR4 knockdown caused a significant decrease in

EMT inducers TGFb1, SNA1 and TWIST accompanied by a

large increase in the epithelial marker CDH1 (Figure 2A, B).

SW48 cells exhibited a higher reduction in SNA1, TGFb1 and

TWIST1and a smaller increase in CDH1. ZEB1 decrease was

more significant in SW480 than in the metastatic cell lines SW620

and SW48. Epithelial and mesenchymal markers were analyzed at

the protein level by western blot. Snail and E-cadherin confirmed

mRNA results. Vimentin, a mesenchymal marker, was reduced

after FGFR4 silencing in the three cell lines (Figure 2C). Only

minor changes in MT1-MMP expression were detected in SW480

and SW48 cells after FGFR4-silencing. However, we observed a

large increase of MT1-MMP expression in SW620 cells, which

parallels the expression levels of E-cadherin indicative of a

reduction of the mesenchymal phenotype.

The increase in E-cadherin expression, after FGFR4 knock-

down, in adherens junctions and cell-cell contacts was confirmed

by immunofluorescence (Figure 2D). The differences in E-

cadherin expression were more evident in the cell membrane,

suggesting that FGFR4 silencing facilitated the expression of

functional E-cadherin on the cell surface and the reversion to an

epithelial phenotype. Collectively, these data using three different

colorectal cancer cell lines confirm that FGFR4 is an important

effector in EMT. FGFR4 knock-down provokes a reduction in

Snail and an increase in E-cadherin with the consequent effect on

adhesion, migration and invasion.

Signaling Analysis in FGFR4-silenced Cells. Role of FGFR4
in Cell Survival
To determine the effect of FGFR4 activity on downstream

signaling, we analyzed the effect of FGFR4-silencing on signaling

pathways after activation with FGF196 heparin compared with

serum-free medium. After FGFR4 knockdown, activation of

phosphoSRC, phosphoERK1/2 and phosphoAKT were signifi-

cantly lower in SW480 and SW48 (Figure 3A). ERK1 in

particular showed an almost complete reduction. Regarding AKT,

this effect suggests an effect mediated by FGFR4 through AKT on

EMT and cell survival. To test the effect of FGFR4 on survival,

cells were subjected to apoptosis induced by hydrogen peroxide.

FGFR4-silenced cells showed a significant decrease of 20–30% in

72 h of incubation with indicated concentrations, cell viability was determined by a MTT assay at 570 nm and represented as reduction of
proliferation (%). Absorbance of the untreated control cells was taken as 100% of cellular growth and the reduction of the cellular growth calculated
according to the following formula: (relative growth of untreated cells - relative growth of treated cells)/relative growth of untreated cells)6100. Each
column is the average of three independent experiments (each concentration tested in triplicate). Error bars indicate the standard deviation of the
assay. B. Targeting of FGFR4 using kinase inhibitors impairs downstream signaling pathways. Parental SW480 and SW48 cells were incubated with
indicated inhibitors at a concentration of 1.25 mM for 5 h, lysed with 0.5% SDS and subjected to western blot analysis using specific antibodies
against phosphorylated and total AKT, ERK1/2 and SRC. Tubulin was used as loading control.
doi:10.1371/journal.pone.0063695.g004

Figure 5. FGFR4-silencing reduces tumor growth in vivo. A. Scrambled and FGFR4-silenced SW48 cells were subcutaneously xenografted in
swiss nude mice and the growth of the tumors formed by each cell population was followed. The statistical significance for each time point was
determined by unpaired t-test. The comparison of the tumor volumes of the two mouse cohorts was statistically significant. B. Mice were visually and
manually inspected to determine the number of tumors implanted. Implanted tumors were as bar graph. C. At day 100, both groups of animals were
euthanized, and tumors were dissected and photographed. Dissected tumors representative for the both groups are depicted.
doi:10.1371/journal.pone.0063695.g005
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survival in comparison to scrambled cells after hydrogen peroxide

treatment (Figure 3B). Without treatment, scrambled and

FGFR4-silenced SW480 and SW48 colorectal cancer cells showed

similar levels of apoptosis. This FGFR4 effect on cell apoptosis in

response to oxidative stress may play a role in advanced colorectal

cancer, facilitating the survival of metastatic colorectal cancer cells.

To study a synergistic effect to enhance FGFR4 inhibition on

signaling pathways in cell invasion, we used specific inhibitors on

targeted and scrambled cells. UO126 (a MEK1/2 inhibitor

upstream of ERK1/2) and PP2 (SRC inhibitor) reduced the

invasion capacity of SW480 and SW48 cells. This reduction was

much more pronounced in scrambled than in silenced cells

(Figure 3C). The JNK inhibitor caused only a minor effect on the

invasion capacity of scrambled and silenced SW480 and SW48

cells. Collectively, these results indicate that FGFR4-knockdown

caused a significant reduction of SRC and MEK1/2-ERK1/2-

mediated invasion in SW480 and SW48 cells, similar to that

caused by specific inhibitors on scrambled cells.

FGFR4 as Therapeutic Target in Colorectal Cancer
We followed two different strategies to prove the therapeutic

value of FGFR4 in colorectal cancer. First, we tested two kinase

inhibitors PD173074 and TKI-258. Then, we used FGFR4-

silenced cells to study the dependence on FGFR4 for tumor

growth in mouse xenografts. Metastatic cell lines (SW48 and

KM12SM), which express more FGFR4, were more sensitive to

chemical inhibitors than poorly or non-metastatic cell lines

(KM12C, SW480) (Figure 4A). Multi-kinase inhibitor TKI was

more effective than pan-FGFR inhibitor PD to reduce colorectal

cancer proliferation in a dose dependent manner (p value ,0.001),

particularly in metastatic cell lines. At 80 nM concentration,

inhibition was higher in metastatic colorectal cancer cell lines

(20% in SW48 and 60% in KM12SM) than in non-metastatic cells

or control cells. In KM12 cells, TKI inhibition was effective up to

1 nM concentration. Reference cell line HEK293, which expresses

low levels of FGFR4, was inhibited at a lower extent. Inhibition of

cellular growth was associated with inhibition of same downstream

regulators affected by FGFR4-signaling pathways (Figure 4B).

The most significant effects were obtained with TKI-258. We

observed a vast reduction (.90%) in SRC activation, a significant

decrease (50–80%) in phosphoERK1/2 and a weak reduction in

phosphoAKT in both cell lines (Figure 4B). The decrease in the

activation of FGFR4-signaling pathways was similar to that

observed after FGFR4-silencing, confirming the implication of

FGFR4. To confirm FGFR4 specificity, we used commercial anti-

FGFR4 antibodies on SW480 and SW48 colorectal cancer cells.

We observed a significant inhibition of the proliferation, dose-

dependent, in comparison to control cells (p value ,0.01) (Figure

S3). SW480 and SW48 colorectal cancer cell lines showed growth

inhibition after antibody treatment, up to 75% and 60% at

400 nM and 40% and 55% at 100 nM, respectively. Effect of anti-

FGFR4 antibody on control BxPc3 cells, not expressing FGFR4,

was marginal at 400 nM (18%) and negligible at 100 nM.

Finally, we injected scrambled and silenced SW480 and SW48

cells subcutaneously in nude mice to analyze the effect of FGFR4

silencing on tumor growth. Tumor development was significantly

slower in mice injected with FGFR4-silenced SW48 cells

(Figure 5A). By manual and visual inspection, we found that

scrambled SW48 cells were able to form tumors in $90% of

injected mice, whereas FGFR4-silenced SW48 cells formed tumors

in #60% of mice (Figure 5B). SW480 cells did not produce

tumors larger than 100 mm3 (data not shown). After tumor

resection, there was a clear difference in the vascularization and

the final tumor volume of the SW48-induced tumors (Figure 5C).

Scrambled cells produced large spherical tumors, whereas

FGFR4-silenced cells resulted in very small tumors. Moreover,

their whitish aspect suggested a deficiency in angiogenesis when

using silenced cells, as previously reported for FGFR1 and FGFR2

activity in glioma cells [42]. Collectively, targeting of FGFR4 with

different strategies showed a great potential of this receptor as

therapeutic target in colorectal cancer and a potential effect on

angiogenesis.

Discussion

FGFR targeting is becoming increasingly important for

therapeutic purposes in cancer [43,44,45]. Among FGF receptors,

FGFR1-3 have been considerably studied [46], whereas FGFR4

has been relatively less characterized at molecular level and for

therapeutic purposes. Previously, we demonstrated that autoanti-

bodies directed against FGFR4, in combination with other tumor-

associated antigens (TAAs), can be used as early diagnostic

markers of colorectal cancer [7,8,47]. Most of these TAAs were

kinases with significant mutational rate (i.e PIM1, SRC, MST1 or

ACVR2B among others). Although recurrent oncogenic somatic

mutations have been found in FGFR2 and FGFR3 [46], only the

SNP Arg388, present in .50% of the Caucasian ethnic group, was

described in FGFR4. This polymorphism has been associated to

poor prognosis and cancer aggressiveness in different cancers

[4,9,15]. Therefore, our first goal was to investigate the presence of

additional mutations in FGFR4. Sequence analysis showed the

presence of the Arg388 polymorphism in KM12C and KM12SM

colorectal cancer cells, but not in SW480, SW620 or SW48 cells.

Two additional SNPs were found in colorectal cancer cell lines

and patient samples, but no activating mutations were detected.

No correlation was found with progression or aggressiveness. In

contrast, FGFR4 in rhabdomyosarcoma showed activating muta-

tions in 7.5% of patients [17]. Our results suggest that FGFR4

overexpression appears to be a major determinant to influence

tumorigenesis and progression in colorectal cancer. Previous

reports that analyzed the relevance of Arg388 polymorphic alleles

of FGFR4 also required overexpression of FGFR4 [15].

In addition, we define a new role for FGFR4 as regulator of the

epithelial-mesenchymal transition and invasion in colorectal

cancer that makes it an attractive target for therapeutic

intervention. Our conclusions are based on the following

observations i) FGFR4 silencing caused a significant decrease in

proliferation, adhesion, migration and invasion in two different cell

lines, ii) pro-metastatic effects correlated with an important effect

on EMT mediators like Snail, Twist or E-cadherin. FGFR4

silencing by shRNAs and siRNAs caused a recovery of epithelial

markers like E-cadherin, iii) FGFR4 effects were mediated through

SRC, ERK and AKT pathways, with a significant effect on cell

survival, iv) silencing of FGFR4 almost abolished tumor growth in

mice xenografts, and v) small molecule inhibitors and FGFR4

targeting by specific antibodies diminished cell proliferation

in vitro. These results support the use of FGFR4 as therapeutic

target for colorectal cancer. As a side conclusion, we proved that

target proteins of cancer autoantibodies can be useful to identify

new therapeutic targets for cancer intervention.

The EMT process is fundamental for embryonic development

and involves profound phenotypic changes that include loss of cell-

cell adhesion, loss of cell polarity, and the acquisition of migratory

and invasive properties [48]. Association with EMT had been

described for FGFR1, -2 and -3 [49,50,51,52], but there were no

previous data for FGFR4 implication. Particularly little was known

about the relationship between FGFR activity and the transcrip-

tion factors SNAIL, TWIST and ZEB1 that regulate EMT. We

FGFR4 Role in Colorectal Cancer

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e63695



demonstrated that FGFR4 suppression reduces significantly the

levels of TWIST in colon cancer cells, more than those of SNAIL.

ZEB1 was the less affected by FGFR4 silencing. ZEB1 targets

miR200 and basement proteins and seems to be more implicated

in final steps of metastasis. In summary, suppression of FGFR4

expression in colorectal cancer cells produced a reversion of the

mesenchymal to a more epithelial phenotype and the reduction of

tumorigenic properties of colorectal cancer cells. FGFR4 regulates

both the expression and the stability of TGFb, SNAIL and

TWIST genes as well as the MAPK (proliferation) and AKT

(survival) pathways [25].

The relevance of FGFR4 as therapeutic target in CRC was

demonstrated with multikinase inhibitors and specific antibodies,

as previously done for other FGFRs [33,44,53]. In our hands, the

promiscuous kinase inhibitor TKI-258 was much more efficient

than the more selective FGFR inhibitor PD173074. It was also

remarkable that KM12 cells, which contained FGFR4 Arg388

mutation, were extremely sensitive to TKI-258. Remarkably,

drugging FGFR4 by specific inhibitors produced a reduction of

key molecules of the FGFR4 signaling pathway (SRC and ERK1/

2) at the same extent than FGFR4-silenced cells. This similarity of

action points out that FGFR4 should be a critical target in these

cells. The use of specific antibodies for FGFR4 inhibition also

showed a neutralizing effect on colon cancer cells that confirmed

the specificity of the inhibition. Indeed, in a recent report, it has

been described that targeting FGFR4 with an specific monoclonal

antibody inhibited hepatocellular carcinoma growth in a mouse

xenograft model [54]. Together, these results indicate that

targeting of FGFR4 might become a potent therapeutic tool in

colon cancer.

In summary, we have demonstrated a potent oncogenic activity

of FGFR4 in colon cancer cells. Its effect on cell migration and

invasion were related to a clear regulation of EMT mediators like

SNAIL, Twist or E-cadherin. The results obtained with different

approaches for FGFR4 blocking indicate the efficacy of FGFR4-

targeting as therapeutic alternative for colorectal cancer. It might

be applied also to other cancers with high FGFR4 expression

levels. We believe our findings could have direct translation into

clinic by using FGFR4-based therapies.

Supporting Information

Figure S1 FGFR4 mutational status of the CRC cell lines used

in the study. A. Location of the FGFR4 mutations observed in the

colorectal cancer cell lines used in this study. Protein domain

boundaries were defined by the results of a search of the NCBI

Conserved Domain database (NCBI CD-Search). Red, signal

peptide; blue, transmembrane domain. IG, immunoglobulin-like

domain; S, disulfide bond. B. Mutational status of SW480 cells. C.

Mutational status of SW48 cells. D. Mutational status of KM12C

cells. E. Mutational status of KM12SM cells.

(PPTX)

Figure S2 Analysis of the expression of FGFR4 by confocal

microscopy with stably-transfected SW480 and SW48 cells. DAPI

was used to detect the nucleus of the cells in blue. Representative

micrographs show FGFR4 in green and F-actin (TRITC-

phalloidin) in red.

(PPTX)

Figure S3 FGFR4 targeting using anti-FGFR4 antibodies on

colorectal cancer growth. In vitro cell proliferation inhibition assay

using FGFR4 specific antibody or an antibody against GST as

control. Experiments were performed in DMEM supplemented

with 10% FBS and antibiotics. After 72 h of incubation with

indicated concentrations, cell viability was determined by a MTT

assay at 570 nm and represented as reduction of proliferation (%).

Absorbance of the untreated control cells was taken as 100% of

cellular growth and the reduction of the cellular growth calculated

according to the following formula: (relative growth of untreated

cells - relative growth of treated cells)/relative growth of untreated

cells)6100. Each column is the average of three independent

experiments (each concentration tested in triplicate). Error bars

indicate the standard deviation of the assay.

(PPTX)

Table S1.

(XLS)
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