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ABSTRACT

The performance of frequency-nopped (FH) M=-ary fcequency-shift

keyed (MFSK) signals in partial-band noise has been extensively analyzed in

the open literature. This report extends the previous reseatrch to the usually

more effective class of multitone jamming., Specifically, this report will:

(0
(2}

(3)

Categorize several different multitone jamming strategies,

Analyze the performance of FH/MFSK signaling, both uncoded and with
diversity, assuming a noncoherent energy detection metric with
linear combining and perfect jamming state side information, in the
presence of worst case interference for each of these multitone
categories,

Compare the effectiveness of the various multitone jamming
techniques, and contrast the results with the partial-band noise

jJamming case.
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1. Introduction

The effectiveness of partial=-band noise jamming as an electronic
countermeasure (ECM) against frequency-hopped (FH) M-ary frequency-shift keyed
(MFSK) signals has been widely documented. Houston [1) demonstrated that an
optimized partial-band duty factor can severely degrade uncoded FH/MFSK
trensmissions, resulting in an inverse-linear relationship between the bit
error rate {BER) and the signal-to-noise ratio (SNR). Viterbi and Jacobs (2]
showed that most of this jamring advantage can be recovered (and an
exponential BER-SNR dependence restored) through the use of optimized time
diversity, which i8 a simple repetition code. Later articles explored the
improvements afforded by more sophisticated block and convolutional codes
[e.g. 3~5].

By comparlson, the often more effective class of multiple CW {multitone)
jamming of FH/MFSK sigiials has been sparsely treated in the open literature.
Houston [1] and Trumpis [6]) did analyse the performance of uncoded FH/MFSK
communications in two types of multitone interference, and this work was later
extended to include optimum diversity [7]. That is approximately the extent
of the published information available on this subject in the unclassified
arena. Recently, however, the author had the opportunity to contribute to a
major new reference text on spread-spectrum communications [8], includiqg
previously unpublished results on the performance of coded FH/MFSK signals
noncoherently detected in a variety of multitone jamming environments; this

report 1s a compendium of some of that research.

II, Multitone Jamming Strategles

A practical multitone jammer partitions its total available power J

(referenced to the receiver input) into Q distinct, equal power, random phase
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CW tones. These are distributed over the spresd-spectrum bandwidth wﬂm
according to one of several strategies illusctrated in Fig. 1. It is assumed
that the jamming tones coincide in frequency with the FH slots, with at most
one tone per slot, and thermal noise is neglected. The power J/Q in each

recelved jamming tone is related to the received signal power § by

J/Q = §/a (1)

where, for a given strategy and system parameters, the jammer will optimize
a to maximize the BER. Although one might believe that in the absence of
thermal noise, each jamming tone power must be slightly larger than S to be
effective, corresponding to a= 1_ in (1), we will see that there are many
cages where this is not optimum from the jammer“s viewpoint.

In a conventional FH/MFSK implementation, a single carrier
frequency is hopped over was and the M-ary modulation is effected by a
deviation about this carrier. Thus we can talk about M-ary bands in which all
M possible signals on a given hop occupy adjacent, uniformly-spaced FH slots.
For ease of represeatation, Fig. 1 restricts this structure even further to
non=-overlapping, contiguous M-ary bands, although this restriction does not
impact the analysis. Since we will see later that this M=-ary band structure
can be exploited by a smart multitone jammer, a more sophisticated (and
expensive) FH/MFSK system might use not one but M frequency synthesizers to
independently hop each MFSK signal [9]; we will assume that independent

hopping is not used in this analysis.

C Repo




Under the so-called "band-multitone" strategy of Fig. 1, a jammer
M-ary band contains exactly n jamming tones.l I £ n<M, with the implied
assumption that Q/n is an lnteger.z In the less structured "independent-
multitone" implementation, the Q jamming tones are pseudorandomly distributed
uniformly over the available FH slots, without regard for the location of the
M~ary bands; this strategy is equally effective against independently hopped
FH/MFSK systems with no change in the analysis,

For both multitone jamming strateglies we have to consider the
possibility that the transmitted signal frequency will itself be jammed on a
given hop. If the phase offset between the signal and jamming tones is ¢,
the phasor diagram of Fig. 2 shows that the resultant power into the

corresponding energy detector fis

% = S(1 + 2 cos ¢/ Ve + 1/a) (2)

1Ilouston and Trumpis both restricted their analyses to the special
case of band-multitone jamming with n =1 and n = M. In particular,
Trumpis referred to the n = M band-multitone case as "partial-band

multitone jamming'" by analogy to the partial-band noise scenario,

21'.n practice, if Q/n is not integral, int{(Q/n) of the M~ary bands will
each contain exactly n jamming tones, while one band will contain
{} mod n jamming tones. Assuming Q >> n, the performance for this
structure is essentially the same as that for n = M band multitonc

jamming with Q@ ~ Q jamming tones such that Q"/n is an integer.




Ll

IR L PR - S R R

e T e L P P S i i S PR ST

L3 - PGy ey W gl . A ST AP B - . . o
!{IIHIH.IH.SEJEIHEH‘;&JL:& e e i i wans P R, .. -

Extending (2) to other caees of interest, the energy detector outputs for the
transmitted and untransmitted M-ary aymbols, normalized by the slgnal energy
and conditioned on whether they cre tone jammed, are given in Table 1. These
oxpressions wili be instrumental in tiie performance analysis below,
particularly with regard to the range over which the jJammer should optimize
the power distribution parameter a,

For example, consider the case of uncoded FH/MFSK signaling: if the
data symbol is not jammed and any of the other M-1 symbols is, an error will
always be made if a < 1 but never for a > l. (Ties that occur for the
singular case @ = ] can be resolved by an M-sided coin or peesimistically
assigned to the error side of the ledger.) The only other condition under
which an error can occur is if the data and any other symbcl are
simultaneously jammed: then, assuming ¢ is unf{formly distributed, an error

will occur with probability

Pr [cos ¢ < - V&/2] = cos™ (Va/2)/m (3)
which 18 positive for 0 { « < 4. Here then {5 an example where an error can
occur when each of the jamming tones have up to 6 dB less power than the

received signal.

II1I. Uncoded Performance

The n = } band-multitone scheme 18 the simplest to analyze, and the

uncoded case has been adequately treated by Houston, so we will simply restate

his results here. The worst case (WC) performance and corresponding value of

o are given by [1, (34)]




BER = 1/2, a . = KE /MN,; E /N, < i/K
(4)
BER = M/C2KE/N ), o = 1_j E/N; > M/K

where Eb - S/Rb is the received bit energy when the data bit rate is Rb’

NJ E J/HBB (so defined ror comparison with the broadband noise jamming

case where q, is the effective noise power spectral density neglecting

thermal noise), and Eb/NW is the common SNR that all of our performance
results will be referenced to; also, K = logzu is the number of information
bits per uncoded M-~ary symbol. The WC n = ]| band~multitone purformance of (4)
ias contrasted with broadband noise [10, (B.14)] and WC partial-band noise
Jamming (1, (15)-(16)] in Fig, 3. 1In the WC partial-band noise scenario, the
BER-SNR dependence is inverse~linear for SNRs below a threshold that varies
with K; with WC n = ) band-multitone jamming, that same type of relationship

arises for all BERs < 1/2 independent of K. For SNRs below the threshold

specified in (4), the entire SS Land wss is saturated with exactly 1 jamming
tone per M-ary band, and the jamming tone power rises above S inversely with
Eb/NJ while the BER is pegged at 1/2, It is evident that the multitone
strategy is significancly more effective than partial-band noise, particularly
for larger values of K (e.g. 4.3 dB better when K = 1 versus 10,5 dB for K =
4). This last observation reflects the fact that the multitone performance

degrades with increasing K unlike the noise jamming cases.

Next we consider the performance of uncoded FH/MFSK signaling in
band-multitone jamming with n > | tones per jammed M-ary band. Since the
spacing between adjacent FH slots is the M-ary symbol rate R.8 = Rb/K.
there are N, = WEB/Bu awvailable FH frequencies, and Nt/M adjacent
M-ary bands in the FH/MFSK structure of Fig. 1. With Q/n of these bands
jammed, the probability that a given band is in fact jammed in

5
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ue (Q/n) (N./M) = aM/(nKE, /N ;) {5)

where we have used (1) and the definition of Eb/NJ above., If the M-ary
band containing the data symbol on a given hop is jammed, the conditional

probability that one of the n tones hits the data symbol is

M-1 M
( ( ) = n/M (6)
n-1} n

On a given hop, a symbol error can occur only if the M-ary band containing the

data symbol is jammed (since n > |, this implies that at least one of the M-l

untransmitted symbols is hit), and
(1) the data symbol is not hit and a < 1, or

{11) the data symhol is hit and the phase of the jamming tone lies in

the range defined by (3},

Expressing these conditions mathematically, the symbol error rate (SER) is

given by

SER = [(l - n/M) u_l(l - o) +n cos-l( Yo/ 2) Mn] (7)

where u_,(¢) 1s the standard unit step function.
The WC jammer chocses o € (0,4} to maximize the SER subject to
the constraint that the probability v < 1 in (5). It can be verified that

the term a coa-l(JE72) has the unique interior maximum of 0.525 at a = 2,52

f=)3




3

over 0 ¢ a < 4, With this reeult and the relationship BER = M SER/2(M-1),

the woret case performance must be specified for three distinct range combina-

tions of SNR and n/M:

(4) Ep/Ny < M/nK

ae = NKER/MNj < 1

(8)
BER = [M/2(M-1)] {1 - (n/M){1 - cos™}(Vagc/2)/n) |
(11) Ep/Ny > M/oK and n/M < (B + 2/3)7}
%o * 1o
(9)

BER = M(M - 20n/3)/2nK(M-1){Ey/Nj)

3Note that for given received powers § and J, a depends on Q via (1).

Furthermore, if we rigorously demand that Q/n be an integer, then a
is restricted to a set of discrete values. Pragmatically, we have
already argued in footnote 2 that if Q >> n (this holds for typical
scenarios with small values of n and large J/S ratios), Q need not be
an integer multiple of n for the analytical results presented here to
be valid. Also, although a coa-l(/372) is mathematically maximized
at o = 2,52, the maximum 1s broad enough to allow nearby values of a
to be almost as effective. Consequently, we need not be concerned

that the optimization regards o as a continuous parameter.




(1) Ep/Ny > M/nK and (B + 2/3)"L ¢ w/M <)

aye = min(2,52, nKEL/MN3) > 1

(10)
BER = M B/2K(M-1)(Ep/N3)
vhere
(nKEy/MiN;) cos™l(/mKE,/4MN;); M/nK < Ep/Ny < 2452 M/nK
g (11)

+525; Eb/NJ.Z 2,52 M/nkK

which implies that (B + 2/3)-l ¢ [.84,1]. Note that in the third region
ashove, (11) says that the BER is independent of n.

So for n/M > .84, there are some conditions under which it is
advantageous for the jammer to allocate less power to each tone than the
received signal power (i.e. o > 1). However, practically speaking,
band-multitone jammers with values of n in this range are not very effective
{(e.g. see Fig. 4 for M = 16, which is characteristic of the relative jamming

effectiveness for other values of M). In general, the best band-multitone

strategy is to use n = 1, subject to the assumptions underlying this

analysis. For a more complete discussion of the ramifications of (8)-(11),
the reader is referred to [8].

Finally we consider the relatively simplistic independent-multito
jamming strategy, which requires no knowledge of the M-ary band structure.
this category, the probability that a given FH fcrequency is hit by a jamming

tone is

p = Q/Nt = u/K(Eb/NJ) ' (12)

ne
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If Q >> M, each symbol in a given M=-ary band is easentially independently&
tone jammed with probability p (hence the name for this class of multitone
jemming), so that the probability that a particular M-ary band contains at

least one jamming tone is given by

pesl=(-p)Mz aM/K(E,/N,); o << 1 (13)

Note that p in (12) is very small for large Eb/NJ' which justifies the
approximation for u in (13); furthermore, this approximation ies identical to
the expression in (5) for band-multitone jamming with n = 1, It is argued in
[8] that it is to the jammer's advantage to hit as many M-ary bands as
possible, implying that y is a measure of tle jammer'‘'s effectiveness.

Consequently, we might expect that the independent~ and n = 1 band-multitone

strategies have the same asymptotic effectiveness against uncoded FH/MFSK

signals for large SNRs, and thie observation is confirmed below.

On a given hop, a symbol error can occur only if at least one of
the M=1 untransmitted symbols in the M-ary band containing the data symbol is
hit, and

(1) the data symbol itself is not hit and a < 1, or

4Let Ji denote the event that the 1th symbol in an M=-ary band is tone

jammed. Then Pr[Jll = Q/Nt = p, And Pr[leJl] = (Q-l)/(Nt-l) g p o Pr[le.
1f N > Q >> 1, so that J, and J, are statistically independent.
Continuing in this manner, Pr[JMIJl,JZ....,JM_ll = (Q-M+l)/(Nt-M+1) E o=

Pr[JRJ if Nt > Q> M-1. That is, all of the Ji‘s are mutually independent.




(1£) the data symbol is hit and the jamming tone phaee iies in the range
defined by (3).

Consequently,

a - - i u
e . L . . L e e ereme e e v s P W r—.

SER = [l - (1l - p)M_l] El - p) u_l(l -a)+p cos-l(fEYZ)lﬂ] (14)

The WC independent-multitone jammer selects a € (0,4) to maximize this SER
subject to the constraint p < 1 in (12). For small SNRs (i.e. Eb/NJ < ¥
defined in Table 2), we find that LI < 1, but the maximization in (1l4) must
be computed numerically for each combination of K and Eb/NJ' However, for
larger SNRs, it can be shown that 8o © 1. and the performance is specified by

BER = (W/208-D)] {1 - 01 1/KGE N

[1 - 2/3KCE /N DTG B /Ny 2 Y (15)
Note that for KEb/NJ > 1, (15) reduces to the inverse-linear relationship
of (4) for n = 1 band-multitone jamming, an observation that is reinforced in
Fig. 5. So, as promised above based on the figure of merit u, for the low
BERs that typify most practical applications, these two ECM strategies are
equally effective against uncoded, noncoherently detected FH/MFSK signals.

A summary of tue rzlative effectiveness of all of the WC nolse and
tone jammers for uncoded FH/MFSK signaling is shown in Fig. 4 for M = 16.
From the communicator‘'s standpoint, the n = 1 band- and independent-multitone
strategies are superior; partial-band noise is on a par with band-multitone
jamming for n ~ M/2; and n = M band-multitone jamming is inferior (even
worse than broadband noise for low SNRs). Furthermore, all of the WC jammers
asymptotically exhibit the inverse~linear perfbrmance characteristic for

suffliciently large SNRs.

10
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IV, Performance With Diversity

Whether cenfronted by a WC partial-band noise or multitone jammer,
we know that the performance of uncoded FH/MFSK communication systems is
severely degraded., The reason is that eaci* M-ary symbol is sent on a single
hop, allowing an average power-limited jammer to concentrate its available
power over a relatively small portion of the entire spread-spectrum bandwidth
wss: although a correspondingly small fraction of the data transmissions
are hit, that data suffers a very high conditional error rate. An effective
countermeasure against such jammers is to introduce coding redundancy so that
data decisfons are based on multiple hops. This causes the jammer to spread
its power so as to hit a larger portion of wss; ultimately the effect is to
force the jammer to retreat back towards the original broadband noise jamming
strategy, thereby restoring the desired exponential performance characteristic.

One of the simplest albeit effective coding techniques is time
diversity or repetition coding. Each M-ary symbol is partitioned into L
equal-duration subsymbols or "chips," each with energy E, = KEb/L. These
chips are transmitted on different hops using fast frequency hopping (FFH) or
slow frequency hopping (SFH) with pseudorandom interleaving [3, Fig. 2].
(Denoting the hop rate by R, and the chip rate by R = LR = LRb/K.
our convention {s that FFH implies that Rc = Rh while SFH definea the
multiple-chip~-per~hop condition Rc > Rh.) To maintain orthogonality
between adjacent energy detectors, the spacing of the FH frequency slots is
now Rc instead of R8 in the uncoded case of Fig. 1, and the number of
avallable FH slots is now reduced to Nt = WBS/LRH.

We assume that the recelver has perfect jamming state side

information: that is, it can somehow determine with certainty whether a given

hop is jammed. A chip is declared to be jammed when twe or more of the energy

11
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detector outputs is high {6}, since, having neglected thermal noise, the M-l

energy detectors not tuned to the received MFSK signal will have outputs that
are identically zero. Consequently, if any of the L chips comprieing an M-ary
symbol is not jammed, an error-free M-ary decisicn is made; otherwise select

the largest of the symbol metrics {7, (18) or 8, (2.57))

L
lni-ﬁeij;lﬁiiml {(16)
where eij is the energy detector output for the ith M=-ary chip on the

jth diversity transmission. The suboptimum linear sum metric of (16)

prcduces a noncoherent combining loss for large amounts of divesity L [e.g., 3
and 8], Since exact BER calculations based on this metric do not generally
yield closed-form expressions, our approach is to compute exponentially-tight
Chernoff upperbounds (2, 3, 7, and 8]; optimizations of the diversity L and
the jammer parameter a based on these bounds should be regarded as close
approximations and more accurately identified as "quasi-optimum" [2, p.289].
Now consider the performance of FH/MFSK signals with diversity in
band-multitone jamming. Since N, is reduced by a factor of L, the
probability that a given M-ary band is jammed on a particular diveraity

transmission must be an appropriately modified version of (5); i.e,
uo=a LMI(nKEb/NJ) a7

Restricting our attention initially to the n = } band-multitone

strategy, a necessary set of conditions for a symbol error to occur when the

i2

:
}
’
L
|

R T
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square-law metric of (16) is used in conjuction with perfect jamming state
side infoi nwation is thats

(1) sll L hops are tone jammed,

(11) the dats frequency is not hit by the single jamming tone on each
hop (actually, this constraint is redundant with the convention we
have adopted that more then one energy detector output must be high
for a hop to be considered jammed),

(141) and a < I.

The probability of this event, denoted by H = (Hl, Hz, ooy HL) where

H, is the event that the jth hop 15 jammed, is

]

Pe(H) = [Wm-1)/M]" = [oL(n-1)/(KE/N DI a< 1 (18)

For the special case of binary (K = 1 or M = 2) signaling, we can
still compute the exact performance. The BER is synonymous with Pr[H] above,

and the WC jammer wants to meximize a subject to u< 1:

51n fact, we know that the correct symbol will produce a high energy

detector output on all L diversity transmissions. If we were to incorporate
this criterion into the symbol decision process instead of simply using the
detection metric of (16), we would create an additional necessary condition

for a symbol error to occur:

(iv) the same incorrect symbol would have to be tone jammed on ezch

diversity transmission.

13
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BER = 2 7, L (Eb/NJ)IZL. Eb/NJ < 2L

(19)
L
BER = [L/(E,/N))IY, o, = 15 E/N; > 20,

This 18 plotted in Fig. 6 for various values of L., The horizontal portion of
each plecewise linear curve for a pariicular value of L (specified by the
first line in (19)) is rhe so-called "saturation region" for which each
available M=-ary (binary) band contains its quota of one jamming tone (i.e.
#=1) and the power in each received jamming tone exceeds S (i.e. a< 1).

Notice that the BER in the saturation region can be made arbitrarily small by

choosing a sufficiently large L for a given Eb/NI' However, in practical

implementations, the optimum diversity LOpt is determined by minimizing the
unsaturated expression for the BER (i.e. the second line) in (19), (Please
refer to [{8] for an extensive discussion of this consideration.) Furthermore,
although L clearly should be restricted to integer values, it is more
convenient to regard it as a continuous variable and to perform the minimi-
zation by the usual technique of differentiating the BER with respect to L and
setring the result to zero. Since 1t can be shown that the corresponding

minimum is relatively insensitive to small deviations in L about L0 as 1n

pt
the case of partial-band noise jamming [e.g. 2, 3 , and 8], there is a
negligible performance degradation when the continuous parameter prt is
truncated to the nearest integer. Adopting this approach with (19), we find
that the performance optimized from both the ECM and ECCM (electronic

counter-countermeasure) vantage points is specified by
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- ~1 ¢
BER = exp(-L__ ), a e Eb/NJ. Eb/NJ 2 e

we - Lo

opt pt

-1 .
BER = (E /N7, =l L, 1} 2K E/N; < e (20)

%e pt ©

BER = 1/2, «

e ™ Eb/ZNJ. Lope = | Bb/NJ <2

pt
Note in (20) that for Ep/N; £ e the optimum communication strategy for the
given scenario is to have no diversity (i.e. Lopt = 1), and the saturation
region 18 reached for Eb/NJ € 2. We have seen before how effective simple

time diversity can be for FH/MFSK signals against WC partial-band noise jammers,
restoring the desired exponential BER-SNR relationship (2). Based on (20),

Fig., 7 demonstrates that coptimum diversity provides the same dramatic perform-
ance gains for FH/BFSK (binary FSK) communications in a WC n = 1 band-multi~

5. the improvement relative to

tone environment. For example, at BER = 10~
L =1 is 35 dB, and the performance is only 1.6 dB worse than in broadband
noise.

Next we consider larger size alphabets (K > 1), still withn =1
band-multitone jamming. We noted previously that with perfect jamming state
side information, an error can only be made if all L diversity chips are
jammed, a condition we denoted by the event H. Conditioned on H, which
implies that one of the M-1 untransmitted symbols 18 hit on each of the I
diversity hops, the linear sum energy detection metric for the correct symbol
has the value LEc. For an error to occur, one of the othef M-1 metrics must
exceed this value, which requires that a < 1. If we operated under the
common belief that each jamming tore must have a received power slightly in
excess of S to be effective (1.e. a = 1_), an error could be made only if

the same untransmitted symbol was hit on all L hops (see footnote 5 for

15
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another case where this condition would be required); the probability of this
event could be computed exactly. However, by allowing the jammer the
additional freedom to optimize a over (0,1), there are many more error
cvents and the pragmatic approach is to use the union/Chernoff bound technique
|2, 3, or 8].

Without loss of generality, suppose symbol 1 i8 sent, and, for
simplicity, assume an error is made if any of the M-l other metrics equals or

aexceeds Al. Conditioned on H, the probability of this occurrence is

M
Pr [ U (ni > Al)lﬂ]s (M-1) Pr[“z = A2 Ol.‘i]
1=2

L
= (M~1) Pr [jz-:l (eZ;j_elj) 2 Olj_[] (21)
< (M-1) (E {exp[k(ezj—elj)]|ﬂj} )L; A0
The first line of (21) is an application of the union bound, while the third

line uses the Chernoff bound with Chernoff parameter A and recognizes that

“s are identically distributed for i > 1. Conditioned on the jth

the eij
hop being jammed (Hj), the normalized chip energy detector outputs e1j and
c-JZ-1 have the following probabilities:

Prie,, = 1|H,}] =1

(22)

1/(M~1); X = 1/a
Priegs = X|Hj] = :
(M-2)/(M~1); X = 0O

so that

16



1/(M=1); X = 1/a =1

Priepi~eyy = X{Hy) = (23)
3™ l ) [(H—Z)/(H-l); X= =]

Applying (18), (21), and (23), and the usual relationship between SER and BER,

we have

M
BER = (M/2(M-1)] Pr(H) Pr [u A > "‘i)lﬂ]

i=2
(24)
Ma -A L
<o for-2+ 6% ae™ gy
First the Chernoff bound in (24) is tightened by minimizing the bound over
A > 0, yielding the expression
l=-a L
eR < u/2) | [own) o/1-w]' vcke,mp | (25)
since M > 2, and provided that a > 1/(M-1) so that the minimizing X > 0.
The WC n = ] band~multitone jammer wants to maximize this BER over
1/(M=1) € a < 1 subject to u < 1l; the resulting performance for arbitrary
diversity L has the form [8, (2.90))
L .
’ (26)

BER _S (M/2) l[(M-Z)ch/( l-awc)]l-mwc awa]L' u.wc = KEb/LMNJ;

LM/K(M-1) < E /N, € & L

17
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where a , B, and ¢ = qu/K are listed in Table 3, The upperbound of

(26) is illustrated in Figs. 8-9 for several values of K and L (note the
impact of the lower limit on the range of Eh/NJ in Fig. 8). Although
combinatorially difficult, an exact performance analysis for FH/MFSK signals
(K > 1) with arbitrary diversity in WC n = | band-multitone jamming is
presented in [B8), 1t proves that the upperbound results of (26) arc
pessimistic by several dB for small L ~ 2, but are accurate to within about
1/2 dB for L 5 10 {8, Figs. 2.42-2.43],

Just as we observed in the binary (K = 1) signaling case, it can be
proved from the second line of (26) that the BER can be made arbitrarily small
for sufficiently large amounts of diversity L (8, {2.91)]). However, in
practice it is more reasonable to choose the value of L that minimizes the

first line of the bound in {26):

BER < (M/2) exp(—Lopt). %o ™ %o Loop = 8 Ey/Hys Bp/N 2 v (27)

where 6 = |/Be and v = 1/6 (this lower limit on the range of E'b/NJ

ensures that Lu t 2_1) are also given in Table 3. (Of course, since the

P

parameters a . and Lo are based on upperbounds, they should more

pt
correctly be labelled quasi-optimum, 28 argued earlier.) For values of

Eb/NJ below v, L = 1; in cthis domain, the BER upperbound of (26)

opt
can be used with L = 1, although the exact BER is specified by (8)-{(11) in the
absence of diversity. The effectiveness of optimum diversity against WC n = 1
band-multitope jamming is shown in Figs. 10-1] for K = 2 and 4. A8 a
benchmark, at BER = 10_5, the improvement relative to L = ]| is approximately

36 dB at K = 2 and 38 dB at K = 4, although the performance is significantly

18



worse than in broadband noise for larger values of K. The exact performance
analysis for optimum diverseity in [8] shows that the upperbound oZ (27) is
accurate to within about }/2 dB for 2 < K < 4 (8, Fig. 2.46].

The performance of FH/MFSK signals with optimum diversity f{n WC
n = | band-multitone jamming is summarlized in Fig. 12 for 1 { K { 5. Note
that from the communicator's viewpoint, the best performance is achieved with
4=-ary FSK.

We now consider band-multitone jamming for 2 { n { M. Recall that
all L diversity chips must be jommed (event H) for a symbol error to be made.
Recall further that, by convention, a diversity chip i8 considered to be jammed
only Lf two or more of the M energy detector outputs are high, For n = | band-
multitone jamming, the expression in (18) for the probability that H occurs
contains the factor (M=1)/M to delete those situations when the single jamming
tone hits the data chip on a given hop; with n > 2, this factor 15 no longer

needed so that
L L
Pr(H) = n" = [uLM/(nKEb/MJ)] (28)

We will again use the union/Chernoff approach, which requires detection metric
statistics only for the transmitted data (assumed to be symbol 1 without loss
of generality) and one of the other M-l symbols (e.g. symbol 2), and only for
a single diversity chip transmission (see (21)}. Therefore, we need the sta-
tistics of the differenced energy detector output Ezj-elj conditioned on

Hj' Referring to Table 1 and incorporating the joint likelihood that either

or both symbols 1 and 2 are hit when the M=-ary band is jammed, we find that
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(n-2)/(n)' MZM-I;; X==1 - gecos ¢

M-2 M\ = n(M-n) 1 2
(n-l)/ (n) M(H-1)° * "l =g - Vacos ¢

- [ (29)

(m—z) / (m) Y 1 VNN
n n M(M-1) '

As in {(21) and (24), the union/Chernoff BER upperbound has the form

BER < (M/2) Pr(H| (E [exp[A(ezj-elj)]IHj] )L
(30)
. (M/2) P

where, uaing (28) and (29) and averaging over the uniformly distributed random

phase ¢,
F = [aL e"‘/nx(»i-l)(zb/NJ)l {n(n-1) I,(2A/VG)

& n@e-n) &M% (1 (AT + 1] + (Men) (Hen-1)} (31)

20



with 10(') denoting the zeroeth order modified Beesel function of the
first kind. Because F contains Bessel functions, the minimization of the
bound over the Chernoff parameter A cannot be expressed in closed form.
However, using n;merical techniques to minimize F over X > O and

subsequently to maximize it over a € (0,4), the performance in WC jamming

with diversity L is given by (8, (2.111)}

3ER < (M/2) [BL/CE/N 1", o = a; B /NS 2 6L (32)
where a B, and ¢ = ubM/nK are listed in Table 4 for selected
values of K and n, It is noted in (8] that in the saturation region
Eh/NJ ¢ ¢ L where u= 1, a." nKEb/LMNJ and ¥ must be
minimized numerically over A 2 O for each value of Eb/NJ. Consequently,
a closed form expression for the BER upperbound does not exist in this region
(which is not of practical interest in any case). It is also shown in [8]
that the performance in (32) improves as n increases for a given combination
of K, L, and Eb/Nl‘ indicating that it is to the jammer’s advantage to
keep n small so as to jam the largest num, r of M-ary bands.

Minimizing (32) over L > 1, the performance with optimum diversity
has the same form as (27) with different values of & and Y as shown 1in
Table 4 [8, (2.113)]. Since ¢ increases ﬁonotonically with n for each value
of K in Table 4, the implication is that jamming effectiveness against FH/MFSK
signals with optimum diversity improves as n becomes smaller.

Finally, we consider independent-multitone jamming. With
L-diversity, the probability that a given FH slot is hit by a jamming tone is

given by a modified version of (12):

21




S p=aL/(KE,/N) = oL (33)

N where we have introduced the normalized diversity L* = L/(KEb/QJ). With

- perfect jamming state side information, a symbol error can occur only if at
%7 least ome of the M-] untransmitted chips is hit by a jamming tone on each
diversity hop., The likelihood of this happening on the jth hop 14

prif) = 1 - (-p)"" s (34)

Independent of HJ, the transmitted symbol on the jth hop is hit with

probability p; however, conditioned on Hj' a particular untransmitted

symbol on that hop is hit with probability p/e. Referring once again to

the normalized energy detector outputs in Table |, and assuming symbol 1 is

sent, we can write

Prler-elj = XIHj, $]

pzle; X=-~1-2cos ¢/Va

p(l - p/e); X = =1 ~1/a=2 cos ¢//a

= ¢ . (35)

(1~p) pfe; X = 1/a =1

| (l=p)}(1 - p/e); X = -1

Note from (34) that

22
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4=
e -p = (1-p) [x - (1=p) 2] (36)
Then the union/Chernoff BER upperbound has the form of (30) with

F = e-k [aL* IO(ZANQ) + (1 = al*) e “0']

(37
x {aL* Fe M (1 - an) [1 - - ul.*)“'z]]

Now we want to minimize F over A > 0 and maximize the result over
a € (0,4); unfortunately, since L* depends on L, K, and Eb/NJ, the joint
optimization must be computed numerically for each combination of these
parameters. However, we can derive a closed form expression for the BER

upperbound with optimum diversity. First we rewrite (30), replacing L by the

normalized diversity L¥%:

BER < (M/2) exp [-L*K In(1/F) (Eb/NJ)] (38)

and determine the WC jamming solution with optimum normalized diversity.
Operating with the positive exponential coefficient L*K 1n(1/F), where F
depends on K in (37), we want to maximize this expression over A > 0, then
minimize it over a € (0,4), and finally maximize it over L¥. Denoting the
jointly optimized coefficient by §, it is argued in [8] that the

corresponding performance is specified by

BER £ (1/2) exp(—GEb/NJ), Lopt = L*optK'Eb/NJ; Eb/NJ 2 {(39)
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] where @t L opt”* §, and Y l/L*optK are listed in Table 5. Note

¥ that the WC independent-multitone jammer fe not uniquely defined for K = l:
? [B] examines the detulils behind this obeervation.

3

As with all of the other multitone jamming strategies, optimum
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diversity is extremely effective at combatting WC independent=-multitone
jamming; this is fllustrated in Fig., 13 for K = 3. The best asymptotic
performance for snall BERs is achieved with K = 3, which has the largest value

of 6 in Table 5; this is graphically underscored in Fig. 14,

V. Overview of Multitone Jamming Effectiveness

Having been immersed in the analytlical detalls of the performance
of FH/MFSK communications in the presence of a variety of multitone jammers,
let us now step back and compare the bottom-line effectiveness of these ECM

strategies along with partial-band noise, For sufficiently large SNRs, the

performance upperbounds for all of these WC jamming/optimum diversity

scenarios have the generic asymptotic form

(M/4) exp(-GEb/NJ); noise jamming [2, (16) and (17))

BER £ _ (40}

(M/2) exp(—GEb/NJ); multitone jamming

where § 1s enumerated in Table 6. With the reminders that the conclusions

fi that follow are based on exponentially tight bounds rather than exact
calculations, that they assume a noncoherent ciip detection metric with linear
combining and perfect jamming state side information, and that we regard a

smaller value of § as a measure of superior jamming effectiveness, 1t would

appear that the WC n = 1 band-multitone jammer is the best (nonadaptive) ECM
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strategy against FH/MFSK signals with optimum diversity, at least for K > 2.

(By nonadaptive, we are excluding repeat-back and similar classes of jammers
that base their responses on real-time intercepted measurements of their
target signals.) Even in the K = | binary signaling case, since the n = |
band-multitone coefficient & is based on an exact performance calculation
while the partial-band noise counterpart is pessimistically low due to the
union/Chernoff bound, it is conceivable that the multitone scheme may actually
be the winner.

Although we saw that, in the ahsence of diversity, independent-
multitone jamming is asymptotically equivalent to n = | band-multitone
jamming, Table 6 shows that this equivalence disappears with the addition of
optimum diversity. This dichotomy is related to the assumption of perfect
jamming state information which forces the independent-multitone jammer to use
a 1a}ger value of p to try to jam all L diversity chips of a given data
transmission [8, (2.127) and accompanying discussion]. Table 6 also
reiterates the relative impotence of the n = M band-multitone structure,

Figure 15 is a graphical illustration of Table 6 for K = 3, which
is representative of the relative effectiveness of these jammers for other

alphabet sizes.

VI. Conclusions

We have analyzed the performance of FH/MFSK signals, with and
without diversity, in a variety of multitone jamming environments, and we have
observed that, at least for a receiver that can derive perfect jamming side
information, the class of n = | band-multitone jammers is superior to all
other nonadaptive ECM strategies, including partial-band noise. Although we

did not consider other detection metrics in this paper, the analytical
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techniques presented can be readily applied to many others of practical
interest; our intention was to be instructlive rather than exhaustlve.

We have seen that diversity transmission can dramatically reduca
the effectiveness of WC jammers, restoring the exponential relationship
between the BER and the SNR. Yet, time diversity is only a simple repetition
code, and there are many block and convolutional codes that are much more
powerful, The interested reader is referred to [4], which examines the
performance of FH/MFSK modulation with a variety of channel codes in WC

partial-band noise, and [8], which considers WC multitone jammers as well,
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TABLE 1

NORMALIZED ENERGY DETECTOR OUTPUT® FOR FH/MPSK SIGNALS

Transmitted
M~ary Symbol

IN MULTITONE JAMMING

Normalized Energy Detector Qutputs

1f Tone Jammed

1f not Jammed

1 +2cos ¢/v@+ l/a

Any of the M=)
Other Symbols

PARAMETERS ASSOCIATED WITH PERFORMANCE UPPERBOUNDS OF (26) AND (27)

1/a

TABLE 2

LOWER LIMIT ON SNR IN (15)

K ¥, dB
1 1.54
2 0.45
3 0.54
4 1.26
TABLE 3

FOR FH/MFSK SIGNALS WITH DIVERSITY IN WORST CASE N = 1
BAND MULTITONE JAMMING

K Gy B 4 6 Y, dB
2 .683 « 7945 1.366 + 4631 3.34
3 #3527 .8188 1.405 4493 3.48
4 427 +9583 1.708 .3839 4,16
5 +356 1.,2204 2.278 «3014 5.21
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PARAMETERS ASSOCIATED WITH PERFORMANCE UPPERBOUNDS OF (27) AND (32)
FOR FH/MFSK SIGNALS WITH DIVERSITY IN WORST CASE BAND-MULTITONE

TABLE 4

JAMMING WITH n € [2,M] TONES PER JAMMED M=~ARY BAND

K n %, B < $ Y, dB
1 2 2,395 1.1381 2.395 0.3232 4.91
2 1.072 0.6305 1.072 0.5835 2.34

2 3 1.745 0.5784 1.163 0.6361 1.96
4 2,395 0.5691 1.197 0.6465 1.89

2 0.701 0.5767 0.935 0.6379 1.95

3 0.898 0.4723 0.798 0.7790 1.08

b 1.169 0.4237 0.779 0,8682 0.61

3 5 1,488 0.4009 0.794 0.9177 0.37
£ 1.804 0.3894 0.802 0.9446 0.25

7 2,106 0.3832 0.802 0.9601 0.18

8 2,394 0.3794 0.798 0.9697 0.13

2 0.535 0.6354 1,070 0.5790 2.37

3 0.625 0.5023 0.833 0.7324 1.35

4 0.716 0.4297 0.716 0.8560 0,638

5 0.816 0.3844 0.653 0.9571 0.19

4 6 0,931 0.3541 0.621 1.0388 -0.17
7 1,064 0.3335 0.608 1.1031 -0.43

8 1.213 0.3193 0.607 1.1523 ~0.62

12 1.827 0.2933 0.609 1.2345 -0.98

16 2,394 0.2845 0.598 1.2929 “l.12

5 0,430 0.7771 1.376 0.4734 3.25
32 2,395 0.2276 0.479 1.6162 -2.08

TABLE 5

PARAMETERS ASSOCLIATED WITH PERFORMANCE UPPERBOUND OF (39)

FOR FH/MFSK SIGNALS WITH OPTIMUM DIVERSITY IN
WORST CASE INDEPENDENT-MULTITONE JAMMING

K tye L¥gpt 8 Y, dB

1 1.283 or 2.552 .291 .3679 5,36

2 0.793 . 354 . 5495 1.50

3 0.537 .282 .5760 0.73

4 0.395 .213 .5243 0.70

5 0.298 .158 .4379 1.02
30
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Y,

OVERVIEW OF BER UPPERBOUND EXPONENTIAL COEFFICIENTS
FOR FH/MFSK SIGNALS WITH OPTIMUM DIVERSITY

sk R I R R N

TABLE 6

IN DIFFERENT TYPES OF WORST CASE JAMMING

Type of Jammer

BER Bound Exponential Coefficient &

K=1 K= 2 K=23 K= 4 K=25

Broadband Noise « 5000 1.0000 1.5000 2.0000 2. 5000
Partial-Bana Noise + 2500 » 5000 « 7500 1,0000 1.2500
Independent-Multitone .3679 + 5495 « 5760 +5242 + 4379
n=l Band-Multitone « 3679% +4631 493 +3839 « 3014
n=2 Band~Multitone +3232 «5835 «6379 «5790 4734
n=M Band-Multitone «3232 «6465 . 9697 1.2929 1.6162

%* coefficient for exact BER
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! INDEPENDENT n=2 BAND
s L X
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- (JAMMING TONE)

I
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me, | NOT JAMMED
i :
|
| NOT JAMMED NOT JAMMED
-
2 R =
....&_. X X
» X
| f
- X X

Figo l.

Multitone jamming strategies: the "independent-multitone" scheme
pseudorandomly distributes the jamming tones uniformly over the Nt
available FH slots within the spread-spectrum bandwidth wss; the
"band~multitone”" structure places exactly n tones (illustrated above
for n = 2) in each jammed M-ary band (shown for M=4) of bandwidth

MRS, where Rs is the M-ary symbol rate.
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Fig- 2.

v25/a sin¢

V2§ v25/a cos¢

Phasor representation of the situation in which an FH/MFSK data
signal with received power § {8 hit by a jamming tone with received
power S/a and uniformly distributed relative phase ¢, producing a

resultant CW signal with power B5¥%.
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Fig. 3. Advantage of worst case (WC) n = 1 band-multitone strategy over WC

partial-band noise and broadband jamming of uncoded FH/MFSK signals.
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i
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Fig. 4.

0 +5 +10 +1§ +20 +23
8NR, Db

Comparison of relative effectiveness of various WC jamming strategiles
against uncoded, noncoherently detected FH/MFSK signals (illustrated

for M= J6or K = logzM = 4),
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Fig. 5. Comparison of WC independent~ and n = ] band=-multitone jamming

strategies against uncoded FH/MFSK signals; the two schemes are
equally effective for high SNRs (low BERs), where the SNR above is

the ratio of the received bit energy E. to the effective jamming

b
noise power spectral density NJ.
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Performance upperbounds for FH/4-ary FSK signals with diversity L

chips/4-ary symbol in WC n

1 band-multitone jamming.

39

16



T S

LLARE LB L]

K = 43 WC N=1 BAND-MULY]TONE

LLLE LB L | T

LR I

- T S S

LU R L B

-+

ITTT RN S|

M1k D B 3

mwrrri

----------

TIIN B st} 4 4 bthb.. 1.1 .
- [ »
] [ | []
=] o Q
-l - -
ONNC8Y3ddN ¥3Q

-
=]
=

10

10

12

10

SNR.

except for FH/l6~ary signals.

8

Same as Fig.

Figo 9.

<
<t



S . SR, N 4373 I, Wy S SR, S R '

T ¥ T T T T =
: . K.z :
s ]
. - :
............... e 1 1ttt e b et et e
o, . ' ' -
N . :
. \ : L] -
\O L] -
~ . o
r\ .
. ‘\\\ N -
............... S e e
....... ) 4 -:*.--c--' :
VLst . 4
: N n
: ’ . _——i!\, -
WUC N=1 BAND-MULTITONE * ! ‘\\ X -
: . . . ~ .
....................................................... \ L
N . -
+ \ . :
' o s
) ' . . . ~ -
BROADBAND NOISE ' : ‘ ‘ \\ -
! X i i ! | ™
20 25 30 I35 40 45 20

SNR., DB

Fig. 10. Effectiveness of (quasi~) optimum diversity (BER upperbound labelled

Lopt above) against WC n = | band-multitone jamming for FH/4-ary
5

FSK signals. At the benchmark BER of 10 -, the gain relative to

L =1 is at least 35.8 dB (since we are comparing a BER upperbound at
Lopt with an exact BER at L = 1), and the performance is degraded
less than 3.6 dB relative to broadband noise.
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Fig. 1l. Same as Fig. 10, but for FH/16~ary FSK signals. Optimum diversity
prcvides at least 37.5 dB performance improvement over L = ]

implementeation, and is no more than 7.4 dB worse than {n broadband

noise at BER = 1077,
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Fig. 13. Effectiveness of diversity against WC independent-multitone jamming
for FH/8~ary FSK signals. Improvement with optimum diversity Lopt
relative to L = 1 exceeds 37.8 dB, and performance is degraded less

than 4.4 dB relative to broadbrnd noise jamming, at BER = 10-5.
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Fig. 14. Comparison of performance of FH/MFSK signals with optimum diversity
in WC independent-multitone jamming as a function of K = logZM.
Best asymptotic performance for small BERs (i.e., large Eb/NJ) is

achieved with K = 8,
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Fig. 15. Relative performance of FH/8-ary FSK signals with optimum diversity
in various WC jamming environments. It should be noted that the

optimum diversity for a given SNR varies with the type of jamming.
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