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ABSTRACT

The performance of frequency-hopped (PH) M-ary icequency-shift

keyed (MFSK) signals in partial-band noise has been extensively analyzed in

the open literature. This report extends the previous research to the usually

more effective class of multitone jamming.	Specifically, this report will:

(1)	Categorize several different multitone jamming strategies.

(2)	Analyze the performance of FH/MFSK signaling, both uncoded and with

diversity, assuming a noncoherent energy detection metric with

linear combining and perfect jamming state side information, in the

presence of worst case interference for each of these multitone =fit•

categories.

(3)	Compare the effectiveness of the various multitone jamming

"4techniques, and contrast the results with the partial-band noise:

jamming case.
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I. Introduction

The effectiveness of partial-band noise jamming as an electronic

countermeasure (ECM) against frequency-hopped (FH) M-ary frequency-shift keyed

(MFSK) signals has been widely documented. Houston [1) demonstrated that an

optimized partial-band duty factor can severely degrade uncoded FH/MFSK

transmissions, resulting in an inverse-linear relationship between the bit

error rate (BER) and the signal-to-noise ratio (SNR). Viterbi and Jacobs (2)

showed that most of this jamming advantage can he recovered (and an

exponential BER-SNR dependence restored) through the use of optimized time

diversity, which is a simple repetition code. Later articles explored the

improvements afforded by more sophisticated block and convolutional codes

[e.g. 3-51.

By comparison, the often more effective class of multiple CW (multitone)	='

jamming of FH/MFSK signals has been sparsely treatei in the open literature.

Houston [1) and Trumpis [6) did analyse the performance of uncoded FH/MFSK	=%'

communications in two types of multitone interference, and this work was later

extended to include optimum diversity [7). That is approximately the extent

of the published information available on this subject in the unclassified
r

arena. Recently, however, the author had the opportunity to contribute to a

major new reference text on spread-spectrum communications [8j, including

previously unpublished results on the performance of coded FH/MFSK signals

noncoherently detected in a variety of multitone jamming environments; this

report is a compendium of some of that research.

II. Multitone Jamming Strategies

A practical multitone jammer partitions its total available power J

(referenced to the receiver input) into Q distinct, equal power, random phase

l



CW tones. These are distributed over the spread -spectrum bandwidth Wso

according to one of several. strategies illustrated in Fig. 1. It is assumed

that the jamming tones coincide in frequency with the FH slots, with at most

one tone per slot, and thermal noise is neglected. The power J/Q in each

received jamming tone is related to the received signal power S by

J/Q - S/ a
	

(1)

where, for a given strategy and system parameters, the jammer will optimize

a to maximize the BER. Although one might believe that in the absence of

thermal noise, each jamming tone power must be slightly larger than S to be

effective, corresponding to a . 1- in (1), we will see that there are many

cases where this is not optimum from the jammer's viewpoint.

In a conventional FH/MFSK implementation, a single carrier

frequency is hopped over Wss and the M-ary modulation is effected by a	a >
8` ar

deviation about this carrier. Thus we can talk about M-ary bands in which all

M possible signals on a given hop occupy adjacent, uniformly -spaced FH slots.

t
For ease of representation, Fig. 1 restricts this structure even further to	-R-..,,zz^^!!

non-overlapping, contiguous M-ary bands, although this restriction does not

impact the analysis. Since we will see later that this M-ary band structure

can be exploited by a smart multitone jammer, a more sophisticated (and

expensive) FH/MFSK system might use not one but M frequency synthesizers to

independently hop each MFSK signal [9]; we will assume that independent

hopping is not used in this analysis.

i.
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Under the so-called " band-multitone" strategy of Fig. 1, a jammed

M-ary band contains exactly n jamming tones , I I < n < M, with the implied

assumption that Q /n is an integer . 2 In the less structured "independent-

multitone" implementation, the Q jamming tones are pseudorandomly distributed

uniformly over the available FH slots, without regard for the location of the

M-ary bands; this strategy is equally effective against independently hopped

FH/MFSK systems with no change in the analysis.

For both multitone jamming strategies we have to consider the

possibility that the transmitted signal frequency will itself be jammed on a

given hop. If the phase offset between the signal and jamming tones is m,

the phasor diagram of Fig. 2 shows that the resultant power into the

corresponding energy detector is

S* = S(1 + 2 cos ^/ V(T+ 1/0
	

(2)

1 Houston and Trumpis both restricted their analyses to the special

case of band -multitone jamming with n = 1 and n = M. In particular,

Trumpis referred to the n = M band-multitone case as "partial-band

multitone jamming" by analogy to the partial -band noise scenario.

2 1n practice, if Q/n is not integral, int(Q /n) of the Mary bands will

each contain exactly n ,jamming tones, while one band will contain

Q mod n jamming tones. Assuming Q >> n, the performance for this

structure is essentially the same as that for n = M band multitone:

jamming with Q' - Q jamming tones such that Q"/n is an integer.

rr

q	.
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Extending ( 2) to other cases of interest, the energy detector outputs for the	}

transmitted and untransmitted M-ary symbols, normalized by the signal energy

and conditioned on whether they are tone jammed, are given in Table 1. These	i

expressions will be instrumental in tote performance analysis below,

particularly with regard to the range over which the jammer uhould optimize

the power distribution parameter as

For example, consider the case of uncoded FH /MFSK signaling: if the

data symbol is not jammed and any of the other M-1 symbols is, an error will

always be made if a < 1 but never for a > 1. ( Ties that occur for the

singular case a - 1 can be resolved by an M-sided coin or pessimistically

assigned to the error aide of the ledger.) The only other condition under

which an error can occur is if the data and any other symbol are	 s.:

simultaneously jammed: then, assuming 0 is uniformly distributed, an error	u

will occur with probability	 +^

Pr [cos m < - VT/2] - cos - 1 (Yra—/2)/n	(3)

which is positive for 0 < a < 4. Here then is an example where an error can

occur when each of the jamming tones have up to 6 dB less power than the

received signal.

III. Uncoded Performance

The n 1 band-multitone scheme is the simplest to analyze, and the r, Y,
p`I

uncoded case has been adequately treated by Houston, so we will simply restate	}'r,

his results here. The worst case (WC) performance and corresponding value of

a are given by [1, (34)]

4



BER - 1/2, We - KEb/MNJ ; Eb/NJ < H/K

F

(4)

BER - M/(2KEb/N J), we - 1- ; Eb/NJ > M/K

where E  - S/Rb is the received bit energy when the data bit rate is Rb,

NJ =_ J/W8B (so defined for comparison with the broadband noise jamming

case where NJ is the effective noise power spectral density neglecting

thermal noise), and E b /N, is the common SNR that all of our performance

results will be referenced to; also, K - log 2M Is the number of information

bits per uncoded M-ary symbol. The WC n - 1 band-multitone performance of (4)

is contrasted with broadband noise [10, (8.14)] and WC partial-band noise

jamming (1, (15)-(16)] in Fig. 3. In the WC partial-band noise scenario, the

BER-SNR dependence is inverse-linear for SNRs below a threshold that varies

with K; with WC n - 1 band-multitone jamming, that same type of relationship

arises for all BERs < 1/2 independent of K. For SNRs below the threshold

specified in (4), the entire SS Land Was is saturated with exactly 1 jamming

tone per M-ary band, and the jamming tone power rises above S inversely with

Eb/NJ while the BER is pegged at 1/2. It is evident that the multitone

strategy is significantly more effective than partial-band noise, particularly

for larger values of K (e.g. 4.3 dB better when K - 1 versus 10.5 dB for K -

4). This last observation reflects the fact that the multitone performance

degrades with increasing K , unlike the noise jamming cases.

Next we consider the performance of uncoded FH/MFSK signaling in

band-multitone jamming with n > 1 tones per jammed M-ary band. Since the

spacing between adjacent FH slots is the M-ary symbol rate Rs - Rb/K,

there are N
t - Was

/Ba a•roilable FH frequencies, and N t/M adjacent

M-ary bands in the FH/MFSK structure of Fig. 1. With Q/n of these bands

jammed, the probability that a given band is in fact jammed in

n.

5
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i
u - (Q/n) (N t/M) - aM/(nKE b/Nd )	15)

where we have used (1) and the definition of E b/N
J 
above. If the M-ary

band containing the data symbol on a given hop is jammed, the conditional

probability that one of the n tones hits the data symbol is

M-1	M

e n/M	 (6)

(n- 1
) 	(11)

On a given hop, a symbol error can occur only if the M-ary band containing the

data symbol is jammed (since n > 1, this implies that at .least one of the M-1	̀,- ^;

untransmitted symbols is hit), and

(i) the data symbol is not hit and a< 1, or

(ii) the data symbol io hit and the phase of the jamming tone lies in

the range defined by (3).	 t

Expressing these conditions mathematically, the symbol error rate (SER) is

given by	 "` y
,a

:b

SER	p r( l - n/M) u -1 (1 - a) + n cos -1 ( ^ 2) Mn,	(7)

where u -1 ( • ) is the standard unit step function.

The WC jammer chooses a E (0,4) to maximize the SER subject to

the constraint that the probability u < 1 in (5). It can be verified that

the term a cos 1 (v/2) has the unique interior maximum of 0.525 at a - 2.52	̂!•`

e!^

fr
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over 0 < a < 4. 3 With this result and the relationship BER - M SEP./2(M-1),

the worst case performance must be specified for three distinct range combina-

tions of SNR and n/M:

(i) Eb/NJ < MAK

owc - nKEb/MNJ < 1

BER - (M/2(M-1)( { I - (n/M)(1 - cos -1 (/Zwc72)/vJ I

(].i) Eb/NJ > M/nK and n/M < ( B + 2/3)-I

sac - 1-

BER - M(M - 2n/3)/2nK(M-1)(Eb/NJ)

3Note that for given received powers S and J, a depends on Q via (1).

Furthermore, if we rigorously demand that Q/n be an integer, then a

is restricted to a set of discrete values. Pragmatically, we have

already argued in footnote 2 that if Q >> n (this holds for typical

scenarios with small values of n and large J/S ratios), Q need not be

an integer multiple of n for the analytical results presented here to

be valid. Also, although a cos 1 (r/2) is mathematically maximized

at a- 2.52, the maximum is broad enough to allow nearby values of a

to be almost as effective. Consequently, we need not be concerned

that the optimization regards a as a continuous parameter.

7

(a)

(9)

r` 2



MI ) Eb/NJ > M/nK and (8 + 2/3) -1 < 01 < 1

awc - min(2.52, nKEb/MNJ ) > 1

BER - M 8/2K(M-1)(Eb/NJ)

where

(nKEb/Ku NJ ) cos- 1 ( nKEb- 4MNJ ); M/nK < Eh/NJ < 2.52 M/nK

8=

.525; Eb/NJ > 2.52 M/nK

which implies that (8 + 2/3) -1 C [.84,1]. Note that in the third region

above, (11) says that the BER is independent of n.

So for n/M > .84, there are some conditions under which it is

advantageous for the jammer to allocate less power to each tone than the

received signal power (i.e. a > 1). However, practically speaking,

band-multitone jammers with values of n in this range are not very effective

(e.g. see Fig. 4 for M - 16, which is characteristic of the relative jamming

effectiveness for other values of M). In general, the best band-multitone

strategy is to use n - 1, subject to the assumptions underlying this

analysis. For a more complete discussion of the ramifications of (8)-(11),

the reader is referred to [8].

Finally we consider the relatively simplistic independent-multitone

jamming strategy, which requires no knowledge of the M-ary band structure. In

this category, the probability that a given FH frequency is hit by a jamming

tone is

p - Q/N t = CLIME b/N J )
	

(12)

1

(10)

(11)

i-
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If Q >> M. each symbol in a given M-ary band is essentially indepsndently4

tone jammed with probability p (hence the name for this class of multitone

jamming), so that the probability that a particular M-ary band contains at

least one jamming tone is given by

	

P - 1 - (1 - P) M ° aM/K(Eb/N  J ); P << 1
	

(13)

Note that p in (12) is very small for large E b/NJ , which justifies the

approximation for u in (13); furthermore, this approximation is identical to

the expression in (5) for band-multitone jamming with n - 1. It is argued in

[8[ that it is to the jammer's advantage to hit as many M-ary bands as

possible, implying that u is a measure of tLe jammer's effectiveness.

Consequently, we might expect that the independent- and n - 1 band-multitone

strategies have the same asymptotic effectiveness against uncoded FH/MFSK

signals for large SNEs, and this observation is confirmed below.

On a given hop, a symbol error can occur only if at least one of

the M-1 untransmitted symbols in the M-ary band containing the data symbol is

hit, and

(i)	the data symbol itself is not hit and a < 1, or

4Let J  denote the event that the i th symbol in an M-ary band is tone

jammed. Then Pr[J 1 ] - Q/Nt - P. And Pr[J2 11 1 1 - (Q-1)/(Nt-1) e p - Pr[J21.

if N  > Q >> 1, so that J 1 and J2 are statistically independent.

Continuing in this manner, Pr[JM 1i 1 ,J2 ,...,JM_1 I - (Q-M+1)/(Nt-M+1) s N =

Pr[JM) if N  > Q >> M-1. That is, all of the J i 's are mutually independent.

9

i
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(14)

(ii) the data symbol is hit and the jamming tone phase lies in the

defined by (3).

Consequently,

SER rI - 0 - P) 	l - P) u_ 1 (1 - a) + P cos -1 (T/2)/]

The WC independent-multitone jammer selects a E (0,4) to maximize this SER

subject to the constraint P < 1 in (12). For small SNRs (i.e. E b/NJ < Y

defined in Table 2), we find that aWc < 1, but the maximization in (14) must

he computed numerically for each combination of K and E b /N 1 . However, for

larger SNRs, it can be shown that a	I- and the performance is specified by
we 

BER - 1M/2(M-1)1 ^i - II _ 1/K(E b/NJ )1
19-11

	11 - 2/3K(Eb/NJ )1; Eb/NJ 2. y	(15)

ay'. 7

Note that for KEb/N J >> 1, (15) reduces to the inverse-linear relationship

of (4) for n - 1 band-multitone jamming, an observation that is reinforced in

Fig. 5. So, as promised above based on the figure of merit u, for the low	̂..

BERs that: typify most practical applications, these two ECM strategies are

r

equally effective against uncoded, noncoherently detected FH/MFSK signals.

A summary of tae relative effectiveness of all of the WC noise and

tone jammers for uncoded FH/MFSK signaling is shown in Fig. 4 for M - 16.	#('w

From the communicator's standpoint, the n - 1 band- and independent-multitone

strategies are superior; partial-band noise is on a par with band-multitone

jamming for n - M/2; and n - M band-multitone jamming is inferior (even	+

I"I ,
worse than broadband noise for low SNRs). Furthermore, all of the WC jammers	

s

asymptotically exhibit the inverse-linear performance characteristic for

sufficiently large SNRs.

10



q	IV. Performance With Diversity

Whether confronted by a WC partial-band noise or multitone jammer,

we know that the performance of uncoded FH/MFSK communication systems is

severely degraded. The reason is that eaci , M-ary symbol is sent on a single

hop, allowing an average power-limited jammer to concentrate its available

1	power over a relatively small portion of the entire spread-spectrum bandwidth

Wes: although a correspondingly small fraction of the data transmissions

I

are hit, that data suffers a very high conditional error rate. An effective

countermeasure against such jammers is to introduce coding redundancy so that

data decisions are based on multiple hops. This causes the jammer to spread

its power so as to hit a larger portion of W sa ; ultimately the effect is to

force the jammer to retreat back towards the original broadband noise jamming

strategy, thereby restoring the desired exponential performance characteristic.

One of the simplest albeit effective coding techniques is time

diversity or repetition coding. Each M-ary symbol is partitioned into L

equal-duration subsymbols or "chips," each with energy E c = KEb/L. These

Ichips are transmitted on different hops using fast frequency hopping (FFH) or

slow frequency hopping (SFH) with pseudorandom interleaving [3, Fig. 2].

(Denoting the hop rate by R h and the chip rate by R c = LRa = LRb/K,

our convention is that FFH implies that R c - Rh while SFH defines the

multiple-chip-per-hop condition R  > R h .) To maintain orthogonality

between adjacent energy detectors, the spacing of the FH frequency slots is

now R  instead of R  in the uncoded case of Fig. 1, and the number of

available FH slots is now reduced to N
t o Was/LRa•

We assume that the receiver has perfect jamming state side

information: that is, it can somehow determine with certainty whether a given

hop is jammed. A chip is declared to be jammed when two or more of the energy

11
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detector outputs is high [6], since, having neglected thermal noise, the M-1

energy detectors not tuned to the received MFSK signal will have outputs that

are identically zero. Consequently, if any of the L chips comprising an M-ary

symbol is not jammed, an error-free M-ary decisicn is made; otherwise select

the largest of the symbol metrics [7, (18) or 8, (2.57)]

f	L

j A i m	eij; I< i C M	 (16)

l	°1	JJ

where e ij is the energy detector output for the i th M-ary chip on the

jth diversity transmission. The suboptimum linear sum metric of (16)	̂...

prcduces a noncoherent combining loss for large amounts of divesity L [e.g. 3	Fkri;^

and 81. Since exact BER calculations based on this metric do not generally

yield closed-form expressions, our approach is to compute exponentially-tight	>'

Chernoff upperbounds [2, 3, 7, and 81; optimizations of the diversity L and	I.

the jammer parameter a based on these bounds should be regarded as close

approximations and more accurately identified as "quasi-optimum" [2, p,289].	.`.'

Now consider the performance of FH/MFSK signals with diversity in

band-multitone jamming. Since N t is reduced by a factor of L, the

probability that a given M-ary band is jammed on a particular diversity.'w'

transmission must be an appropriately modified version of (5); i.e.

u = a LM/(nKEb/NJ )	 (17)

i
L £{

Restricting our attention initially to the n	1 band-multitone'`,'s'.

strategy, a necessary set of conditions for a symbol error to occur when the	1.

12
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square-law metric: of (16) is used in conjuction with perfect jamming state

side infoination is thats

(i) all L hope are tone jammed,

(ii) the data frequency is not hit by the single jamming tone on each

hop (actually, this constraint is redundant with the convention we

have adopted that more than one energy detector output must be high

for a hop to be considered jammed),

(iii) and a < 1.

The probability of this event, denoted by .R - ( Hl , H2 , ..., HL ) where

H' is the event that the j th hop is jammed, is

Pr[H1 - [ y(M-1)/M1 L = [aL(M-1)/(KE b/NJ) 1 L; a < 1
	

(18)

For the special case of binary (K - 1 or M = 2) signaling, we can	>?'

still compute the exact performance. The BER is synonymous with Pr[H] above,
4.r

and the WC jammer wants to me.ximize a subject to y < 1:

5 I fact, we know that the correct symbol will produce a high energy	[

detector output on all L diversity transmissions. If we were to incorporate `p

this criterion into the symbol decision process instead of simply using the

detection metric of (16), we would create an additional necessary condition

for a symbol error to occur:

(iv) the same incorrect symbol would have to be tone jammed on each

diversity transmission.

13
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DER - ! 1', awe , (Eb/N
J
)/2L; Eb/NJ < 2L

(19)

HER - [L/( EbINJ)[L, we ' 1_; E b/NJ > 2L

This is plotted in Fig. 6 for various values of L. The horizontal portion of

each piecewise linear curve for a particular value of L (specified by the

first line in (19)) is the so-called " saturation region" for which each

available M-ary ( binary) band contains I ts quota of one jamming tone (i.e.

P e 1) and the power in each received jamming tone exceeds S ( i.e. a < 1).

Notice that the HER in the saturation region can be made arbitrarily small by	1

choosing a sufficiently large L for a given E b /N l . However, in practical

i

implementations, the optimum diversity L opt is determined by minimizing the

unsaturated expression for the EER (i.e. the second line) in (19). ( Please	s

refer to [8[ for an extensive discussion of thfit consideration.) Furthermore,	j

although L clearly should be restricted to integer values, it is more	? ws

convenient to regard it as a continuous variable and to perform the minimi-

zation by the usual technique of differentiating the EER with respect to L and	I 4L41

setting the result to zero. Since it can be shown that the corresponding

minimum is relatively insensitive to small deviations in L about L opt as in

the case of partial-band noise jamming [ e.g. 2, 3 , and 8[, there is a

negligible performance degradation when the continuous parameter "opt is	r"

truncated to the nearest integer. Adopting this approach with ( 19), we find

that the performance optimized from both the ECM and ECCM ( electronic

counter-countermeasure) vantage points is specified by
i;

14	 ^;



DER - exp(-L 
opt 

)r 
we 

- 1- 9 Lopt - e-1Eb/Ni; Eb/NJ > e

DER - (Eb /N
J )-1 ' we ' 1-r Lopt - 1; 2 < Eb/NJ < e	(20)

DER - 1/2, we - Eb/2ND , Lopt - 1; E b/N
i
 < 2

Note in (20) that for Eb/Nj < e the optimum communication strategy for the

given scenario is to have no diversity (i.e. L opt - 1), and the saturation

region is reached for Eb/N1 < 2. We have seen before how effective simple

time diversity can be for FH/MFSK signals against WC partial-band noise jammers,

restoring the desired exponential BER-SNR relationship 121. Based on (20),

Fig. 7 demonstrates that optimum diversity provides the same dramatic perform-

ance gains for FH/BFSK ( binary FSK) communications in a WC n - 1 band-multi-

tone environment. For example, at DER = 10 5 , the improvement relative to

L - 1 is 35 dB, and the performance is only 1.6 dB worse than in broadband

noise.

Next we consider larger size alphabets (K > 1), still with n = 1	's-5

band-multitone jamming. We noted previously that with perfect jamming state

side information, an error can only be made if all L diversity chips are

jammed, a condition we denoted by the event H. Conditioned on H, which

implies that one of the M-1 untransmitted symbols is hit on each of the 1,

diversity hops, the linear sum energy detection metric for the correct symbol

has the value LEc . For an error to occur, one of the other M-1 metrics must

exceed this value, which requires that a < I. If we operated under the

common belief that each jamming tune must have a received power slightly in

h
excess of S to be effective (i.e. a = 1_), an error could be made only if

the same untransmitted symbol was hit on all L hops (see footnote 5 for

15



	

w.,	
another case where this condition would be required); the probability of this	J

	

N e	

1 ^
event could be computed exactly. However, by allowing the jammer the

additional freedom to optimize a over (0,1), there are many more error

	

°.t	events and the pragmatic approach is to use the union / Chernoff bound technique

12, 3, or 81•

Without loss of generality, suppose symbol l is sent, and, for

	

t '.	simplicity, assume an error is made if any of the M - 1 other metrics equals or

kexceeds N. Conditioned on H, the probability of this occurrence is

Pr	U	̂̂̂ > A l^^H^ C (M-1) Pr A2 - A l > 01.0
1-2	 JJJ

L	1
M:k. a (M-1)	Pr (e 2j -e 1j )	> 01H 

J
(21) -}

L

< ( M-1) (E {exp[a(e 2j -e lj )1IH j} ^L ;	A> 0

I

i ry Y

The first line of (21) is an application of the union bound, while the third h

line uses the Chernoff bound with Chernoff parameter A and recognizes that

the e ij 'a are identically distributed for i > 1.	Conditioned on the jth
r

I.
hop being jammed (Hj ), the normalized chip energy detector outputs e lj and

e2j have the followin g probabilities: 

Pr[e1	m	11Hj 1	1j

(22)

/(M-1);	X	1/a

5^
Pr[e2 j	=	X 11 Hj ]	

^1,

(M-2)/(M-1); X	0

so that
I

16 ^'



Pr[e2j-e1j - JNj) - X

	

I(M-2)/(M-1);

1/(M-1); X - 1/a - 1	

(23)

Applying (18), (21), and (23), and the usual relationship between SER and BER,

we have

M

BER - (M/2(M-1)) Pr[R) Pr	(Ai > A,)l 

R1i-2 \\	//

(24)

< (M/2) r(M - 2 + a
A/a

) aLe 
A 
(KEb/NJ)1L

First the Chernoff bound in (24) is tightened by minimizing the bound over

A > 0, yielding the expression

BER < (M/2) { [(M-2) a/(1-0)'71 a L/(KEb/NJ) 1 L	(25)

since M > 2, and provided that a > 1/(M-1) so that the minimizing A > 0.

The WC n - 1 band-multitone jammer wants to maximize this BER over

1/(M-1) < a < 1 subject to u < 1; the resulting performance for arbitrary

diversity L has the form [8, (2.90))

BER < (M/2)[6L/(Eb IN J)] L , We - ao ; Eb/NJ > C L

S
(26)

BER C (M/2)I[(M-2)wc/(1-we)J1 we
 we

M

1

L, 
we 

- KEb/LMNJ;

LM/K(M-1) < Eb/NJ < C L

17



where ao , 8, and 4 s a0M/K are listed in Table 3. The upperbound of

(26) is illustrated in Figs. 8-9 for several values of K and L (note the

impact of the lower limit on the range of E hIN J in Fig. 8). Although

combinatorlally difficult, an exact performance analysis for FH/MFSK signals

(K ) 1) with arbitrary diversity in WC n - i bond-multitone jamming is

presented in 18). It proves that the upperbound results of (26) are

pessimistic by several dB for small L - 2, but are accurate to within about

1/2 dB for L > 10 18, Figs. 2.42-2.43).

Just as we observed in the binary (K - 1) signaling case, it can be

proved from the second line of (26) that the BER can be made arbitrarily small

for sufficiently large amounts of diversity L 18, (2.91)). However, in

practice it is more reasonable to choose the value of L that minimizes the

first line of the bound in 126):

BER < (M/2) exp(-L
opt ), awc	o,

 Lo 
pt . d E

b/N
J ; E

b/NJ > Y	(27)

where 6 - I/ Be and Y - 1/d (this lower limit on the range of Eb/NJ r,„

ensures that Lupt > 1) are also given in Table 3.	(Of course, since the

parameters
ac

 and Lopt are based on upperbounds, they should more

correctly be labelled quasi-optimum, as argued earlier.)	For values of

Eb/NJ below Y, Lopt 1; in this domain, the BER upperbound of (26)

can be used with L 1, although the exact BER is specified by (8)-(I1) in the

absence of diversity. The effectiveness of optimum diversity against WC n - I

band-multitone jamming is shown in Figs. 10-11 for K - 2 and 4. As a

benchmark, at BER - 1075, the improvement relative to L - 1 is approximately

36 dB at K - 2 and 38 dB at K - 4, although the performance is significantly

I

18
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worse than in broadband noise for larger values of K. The exact performance

analysis for optimum diversity in 181 shows that the upperbound o2 (27) in

accurate to within about 1/2 d8 for 2 < K C 4 18, Fig. 2.461.

The performance of Fll/MFSK signals with optimum diversity In WC

n - 1 band-multitone jamming is summarized in Fig. 12 for 1 < K < 5. Note

that from the communicator's viewpoint, the beet performance is achieved with

4-ary FSK.

We now consider band-multitone jamming for 2 < n < M. Recall that

all L diversity chips must be jammed (event H) for a symbol error to be made.

Recall further that, by convention, a diversity chip is considered to be jammed

only if two or more of the M energy detector outputs are high. For n - 1 band-

multitone jamming, the expression in (18) for the probability that H occurs

contains the factor (M-1)/M to delete those situations when the single jamming	nA

tone hits the data chip on a given hop; with n > 2, this factor is no longer

y^
needed so that

Pr(H1 - P L - [aLM/`nKE b/NJ ']
L
	(28)

We will again use the union/Chernoff approach, which requires detection metric

statistics only for the transmitted data ( assumed to be symbol 1 without loss

of generality) and one of the other M-1 symbols ( e.g. symbol 2), and only for

a single diversity chip transmission (see (21)). Therefore, we need the sta-

tistics of the differenced energy detector output e 2j- e lj conditioned on

H j . Referring to Table 1 and incorporating the joint likelihood that either

or both symbols 1 and 2 are hit when the N-ary band is jammed, we find that	{

19	 LI
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^: 1

q`

.:.
Pr[o2J o lj n X 

H i , 01
{

F°}

(n-' X	-1/(n)2)M( M-1
- T cos m

4ti°

Y^

(

M-2M	n M-n

n-1 	(n)	M(M-1 )' X	-1
- 1 - 2"

a	
cos

n (29)

i

n M-n	1

MM-1 "X	a

'

(M-M)(Mln-1);

^ti2)/ 
1(

n n^

X	
-1 1 y

r As in (21) and (24), the union/Chernoff BER upperbound has the form°

I r

BER < (M/2) Pr[H]	(E lexp @(e
21-

e
Y,

1 ^)1j9^)
ll 111

(30)`

° (M/2) FL

where, using (28) and (29) and averaging over the uniformly distributed random

phase

F n [oL a 
1
/nK(M-1)(E b/N

J
)1 {n(n-1) I0(2hlra)

+ n(M-n) a 1/0	[I0(2A/M + 11 + (M-n)(M-n-1)i (31)
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A

with 10( •) denoting the zeroeth order modified Bessel function of the

first kind. Because F contains Bessel functions, the minimization of the

bound over the Chernoff parameter A cannot be expressed in closed form.

However, using numerical techniques to minimize F over a > 0 and

subsequently to maximize it over of (0,4), the performance in WC jamming

with diversity L is given by (8, (2.111))

4ER < (M/2) (BL/(Eb/NJ)11, we
	

ao; Eb/NJ > S L	(32)	1

where ao ,	B, and C - aaM/nK are listed in Table 4 for selected

values of K and n.	It is noted in (8] that in the saturation regioni

Eb/NJ < 4 L where U - 1, we . nKEb/LMNJ and F must be

minimized numerically over a > 0 for eachch value of E b/NJ .	Consequently, o;

a closed form expression for the BER upperbound does not exist in this region

(which is not of practical interest in any case).	It is also shown in (8]

that the performance in (32) improves as n increases for a given combination
A'

of K, L, and Eb /N 1 , indicating that it is to the jammer's advantage to

keep n small so as to jam the largest num,	r of M-ary bands.

_	4x

Minimizing (32) over L > 1, the performance with optimum diversity

has the same form as (27) with different values of 6 and Y as shown in

Table 4 18, (2.113)].	Since 6 increases monotonically with n for each value

of K in Table 4, the implication is that jamming effectiveness against FH/MFSK

signals with optimum diversity improves as n becomes smaller.

Finally, we consider independent-multitone jamming.	With

L-diversity, the probability that a given FH slot is hit by a jamming tone is

given by a modified version of (12):

21
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P n aL/(KE b/NJ) - a L*	 (33)

where we have introduced the normalized diversity L* - L/(KEb/NJ ). With

perfect jamming state side information, a symbol error can occur only if at

least one of the M-1 untransmitted chips is hit by a jamming tone on each

diversity hop. The likelihood of this happening on the jth hop iw

Pr(Hi I - 1 - (1- p )M-1 = e	 (34)

Independent of H j , the transmitted symbol on the j th hop is hit with

probability p; however, conditioned on Hj , a particular untransmitted

symbol on that hop is hit with probability p/e. Referring once again to

the normalized energy detector outputs in Table 1, and assuming symbol I is

sent, we can write

Pr[e 2j -e Ij = XJ HV f)

P2/ e; X = -1 - 2 cos O/ YS

P(1 - p/e); X = -1 - I/a - 2 cos 0/ V15—

_
	

(35)

J

a
U

S
f

(1-P) P/C; X = 1/a - 1

0-00 - P/ C); X = -1
^y

b

Note from (34) that

22



C - P - 0-P) [ I - (1-P) 14
- 2]	

(36)

Then the union/Chernoff BER upperbound has the form of (30) with

F - J' [aL* 10(2a/3a) + (I - aL*) a 1/a]

(37)

X {aL* + e-' /(l  (1 - aL*) [1 - (1 - aL*)M-2]}

Now we want to minimize F over a > 0 and maximize the result over

a E (0,4); unfortunately, since L* depends on L, K, and E b/NJ , the joint

optimization must be computed numerically for each combination of these

parameters. However, we can derive a closed form expression for the BER

upperbound with optimum diversity. First we rewrite (30), replacing L by the

normalized diversity L*:	 -ry

BER < (M / 2) exp [-L*K ln ( 1/F) ^Eb/NJ
)]	

( 38)	"'wFr

ti

and determine the WC jamming solution with optimum normalized diversity.

Operating with the positive exponential coefficient L*K ln ( 1/F), where F

depends on K in (37), we want to maximize this expression over a > 0, then

minimize it over a E (0,4), and finally maximize it over L*. Denoting the

jointly optimized coefficient by d, it is argued in (8] that the

corresponding performance is specified by

BER < (14 / 2) exp ( -6E b/N J ), Lopt	L*optKEb /
N J; E

b/NJ > Y	(39)

_rt
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where a
wc ,

 L*opt, 6, and Y = 1/L* optK are listed in Table 5. Note

that the WC independent-multitone jammer is not uniquely defined for K - 1:

[BJ examines the details behind this observation.

As with all of the other multitone jamming strategies, optimum

y	diversity is extremely effective at combatting WC independent-multitone

jamming; this is illustrated in Fig. 13 for K - 3. The best asymptotic

performance for small BERs is achieved with K - 3, which has the largest value

of 6 in Table 5; this is graphically underscored in Fig. 14.

V. Overview of Multitone lamming Effectiveness

Having been immersed in the analytical details of the performance

of FH/MFSK communications in the presence of a variety of multitone jammers,

let us now step back and compare the bottom-line effectiveness of these ECM

strategies along with partial-band noise. For sufficiently large SNRs, the

performance upperbounds for all of these WC jamming/optimum diversity

scenarios have the generic asymptotic form

(M/4) exp(-6Eb/N J ); noise jamming [2, (16) and (17)j

BER <
	

(40;

(M/2) exp(-6Eb/N J ); multitone jamming

where 6 is enumerated in Table 6. With the reminders that the conclusions

that follow are based on exponentially tight bounds rather than exact

calculations, that they assume a noncoherent caip detection metric with linear

combining and perfect jamming state side information, and that we regard a

smaller value of 6 as a measure of superior jamming effectiveness, it would

appear that the WC n = 1 band-multitone jammer is the best (nonadaptive) ECM

i

s

i

,a

i
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strategy against FH/MFSK signals with optimum diversity, at least for K > 2.

(By nonadaptive, we are excluding repeat-back and similar classes of jammers

that base their responses on real-time intercepted measurements of their

target signals.) Even in the K - 1 binary signaling case, since the n - 1

Land-multitone coefficient d is based on an exact performance calculation

while the partial-band noise counterpart is pessimistically low due to the

union/Chernoff bound, it is conceivable that the multitone scheme may actually

be the winner.

Although we saw that, in the absence of diversity, independent-

multitone jamming is asymptotically equivalent to n = l band-multitone

jamming, Table 6 shows that this equivalence disappears with the addition of

P

optimum diversity. This dichotomy is related to the assumption of perfect

jamming state information which forces the independent-multitone jammer to use

a larger value of p to try to jam all L diversity chips of a given data

transmission 18, (2.127) and accompanying discussion]. Table 6 also

reiterates the relative impotence of the n - M band-multitone structure.	 '

Figure 15 is a graphical illustration of Table 6 for K = 3, which
1

is representative of the relative effectiveness of these jammers for other

alphabet sizes.

VI. Conclusions

We have analyzed the performance of FH/MFSK signals, with and

without diversity, in a variety of multitone jamming environments, and we have

observed that, at least for a receiver that can derive perfect jamming side

information, the class of n = 1 band-multitone jammers is superior to all

other nonadaptive ECM strategies, including partial-band noise. Although we

did not consider other detection metrics in this paper, the analytical

25	 I



a	techniques presented can be readily applied to many others of practical

interest; our intention was to be instructive rather than exhaustive.

We have seen that diversity transmission can dramatically reduce

the effectiveness of WC jammers, restoring the exponential relationship

between the BER and the SNR. Yet, time diversity is only a simple repetition

'	code, and there are many block and convolutional codes that are much more

powerful. The interested reader is referred to [4[, which examines the

performance of FH/MFSK modulation with a variety of channel codes in WC

partial-band noise, and [8[, which considers WC multitone jammers as well.

ti;
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TABLE 1

NORMALIZED ENERGY DETECTOR OUTPUTP FOR FH/MFSK SIGNALS

IN MULTITONE JAMMING

Normalized Energy Detector Outputs

If Tone Jammed	If not Jammed

Transmitted	 1 + 2 cos Q/ i—u+ 1/a	 1	 /

M-ary Symbol

Any of the M-1	1/a	 0

Other Symbols

TABLE 2

LOWER LIMIT ON SNR IN (15)

K	 Y. dB	 i
TY

1	 1.54	 9Jfc^°

2	 0.45	 +

3	 0.54
e -.

4	1.26

TABLE 3

PARAMETERS ASSOCIATED WITH PERFORMANCE UPPERBOUNDS OF (26) AND (27)

FOR FH/MFSK SIGNALS WITH DIVERSITY IN WORST CASE N 1 Y _M

BAND MULTITONE JAMMING

K	%	 B	 6	 6	Y. dB

v

2	.683	.7945	1.366	.4631	3.34	 }^

3	.527	.8188	1.405	.4493	3.48	 E`'
Nib

4	.427	.9583	1.708	.3839	4.16	 ?

5	.356	1.2204	2.278	.3014	5.21j'

29	 11,111"l-



TABLE 4

PARAMETERS ASSOCIATED WITH PERFORMANCE UPPERBOUNDS OF (27) AND (32)

FOR FH/MFSK SIGNALS WITH DIVERSITY IN WORST CASE BAND-MULTITONE

JAMMING WITH n e 12,MJ TONES PER JAMMED M-ARY BAND

K	n	al,	B	4	6	y, dB

1	2	2.395	1.1381	2.395	0.3232	4.91

d

2 1.072 0.6305 1.072 0.5835 2.34

2 3 1.745 0.5784 1.163 0.6361 1.96

4 2.395 0.5691 1.197 0.6465 1.89

2 0.701 0.5767 0.935 0.6379 1.95

3 0.898 0.4723 0.798 0.7790 1008
4 1.169 0.4237 0.779 0.8682 0.61

3 5 1.488 0.4009 0.794 0.9177 0.37

f, 1.804 0.3894 0.802 0.9446 0.25

7 2.106 0.3832 0.802 0.9601 0.18

8 2.394 0.3794 0.798 0.9697 0.13

2 0.535 0.6354 1.070 0.5790 2.37

3 0.625 0.5023 0.833 0.7324 1.35

4 0.716 0.4297 0.716 0.8560 0.68

5 0.816 0.3844 0.653 0.9571 0.19

4 6 0.931 0.3541 0.621 1.0388 -0.17

7 1.064 0.3335 0.608 1.1031 -0.43 -a+'

8 1.213 0.3193 0.607 1.1523 -0.62

l2 1.827 0.2933 0.609 1.2545 -0.98

16 2.394 0.2845 0.598 1.2929 -1.12

5 2 0.430 0.7771 1.376 0.4734 3.25

32 2.395 0.2276 0.479 1.6162 -2.08

TABLE 5

PARAMETERS ASSOCIATED WITH PERFORMANCE UPPERBOUND OF (39)

FOR FH/MFSK SIGNALS WITH OPTIMUM DIVERSITY IN

WORST CASE INDEPENDENT-MULTITONE JAMMING

K pWc L*opt
6 d8

1 1.283 or 2.552 .291 .3679 5.36

2 0.793 .354 .5495 1.50

3 0.537 .282 .5760
li

0.73

4 0.395 .213 .5243 0.70

5 0.298 .158 .4379 1.02

30 i
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TABLE 6

OVERVIEW OF DER UPPERBOUND EXPONENTIAL COEFFICIENTS

FOR FH/MFSK SIGNALS WITH OPTIMUM DIVERSITY

IN DIFFERENT TYPES OF WORST CASE JAMMING

HER Bound Exponential Coefficient 6
Type of Jammer

K	1	K- 2	K- 3	K w 4	K= 5

Broadband Noise	.5000	1.0000	1.5000	2.0000	2.5000

Partial-Dana Noise	.2500	.5000	.7500	1.0000	1.2500

Independent-Multitone .3679 .5495 .5760 .5242 .4379

n-1 Band-Multitone .3679* .4631 .4493 .3839 .3014

n-2 Band-Multitone .3232 .5835 .6379 .5790 .4734

n-M Band-Multitone	.3232	.6465
	

9697	1.2929	1.6162

* coefficient for exact DER
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M=4

INDEPENDENT	 n = 2 BAND

X

X	 X
(JAMMING TONE)

X
MRS	NOT JAMMED

X

a,t

WSS = Nt Is	NOT JAMMED	 NOT JAMMED

.•4,^y

++pk

Its

X	 X a^

X

X X

Fig. 1. Multitone jamming strategies: the "independent -multitone" scheme

pseudorandomly distributes the jamming tones uniformly over the N 

available FH slots within the spread-spectrum bandwidth W as ; the

"band-multitone" structure places exactly n tones (illustrated above	!'_

R

for , n = 2) in each jammed M-ary band ( shown for M=4) of bandwidth

MRs , where R  is the M-ary symbol rate.
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Fig. 2. Phasor representation of the situation in which an FH/MFSK data

signal with received power S is hit by a jamming tone with received

power S/a and uniformly distributed relative phase m, producing a

resultant CW signal with power S*.
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Fig. 4. Comparison of relative effectiveness of various WC jamming strategies

against uncoded, noncoherently detected FH/MFSK signals (illustrated

for M - 16 or K - 1092M = 4).
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Fig. 5. Comparison of WC independent- and n - 1 band-multitone jamming

strategies against uncoded FH/MFSK signals; the two schemes are

equally effective for high SNRs (low BERs), where the SNR above is

the ratio of the received bit energy E b to the effective jamming

noise power spectral density NJ.
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probability u that a band is jammed is precisely 1.
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Fig. 7. Effectiveness of optimum diversity ( L opt ) against WC n = 1 band-

multitone jamming for FH/BFSK signaling. For example, at BER =

10- 1 , improvement relative to no-diversity ( L = 1) system is 35 dB,

while performance is only 1.6 dB worse than in broadband noise.

38



100

J

K n 21 WC No
t

 BAND-HULTITONE

Ln5

^.	..........: ............	......	.	..:........

Ln2

I`	 L•20

10-1

10 
2

O
C
Waa

W 30-3

10-4

Ln !0

..........:........... .............	........,;...... \ ...

10-5
4	6	8	10	12	14

SHR, DS
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Fig. 9. Same as Fig. 8, except for FH/16-ary signals.
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Fig. 10. Effectiveness of (quasi-) optimum diversity (BER upperbound labelled

Lopt above) against WC n = 1 band-multitone ,jamming for FH/4-ary

FSK signals. At the benchmark BER of 10 -5 , the gain relative to

L = 1 is at least 35.8 dB (since we are comparing a BER upperbound at

Lopt with an exact BER at L = 1), and the performance is degraded

less than 3.6 dB relative to broadband noise.

41



too

10-1

IN

L OPT

(UPPERBOUND)	\

...... :......	......	...L.1..........:........	.....	:

'	WC No
t
 BAND-MULTITONE ^*	\

	

BROADBAND NOISE	 \ 4

10-5

5	10	15	20	25	30	35	40	45	50	55

SNR, DB

Fig. 11. Same as Fig. 10, but for FH/16-ary FSK signals. Optimum diversity

provides at least 37.5 dB performance improvement over L = 1

implementation, and is no more than 7.4 dB worse than in broadband

noise at BER - 10-5.
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Fig. 12. Overview of performance upperbounds for FH /MFSK signals with optimum

diversity in WC n = I band-multitone jamming (BER for K = 1092M = 1

case is exact). Note that the best performance is achieved for K = 2.
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Fig. 14. Comparison of performance of FH /MFSK signals with optimum diversity

in WC independent-multitone damming as a function of K - 1092M.

Best asymptotic performance for small BERs (i.e., large Eb/Ni ) is

achieved with K = 8.
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Fig. 15. Relative performance of FH/8-ary FSK signals with optimum diversity

in various WC jamming environments. It should be noted that the

optimum diversity for a given SNR varies with the type of jamming.
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