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FHAST: FPGA-Based Acceleration
of BowTiE in Hardware

Edward B. Fernandez, Jason Villarreal, Stefano Lonardi, and Walid A. Najjar

Abstract—While the sequencing capability of modern instruments continues to increase exponentially, the computational problem of
mapping short sequenced reads to a reference genome still constitutes a bottleneck in the analysis pipeline. A variety of mapping tools
(e.g., Bowtie, BWA) is available for general-purpose computer architectures. These tools can take many hours or even days to deliver
mapping results, depending on the number of input reads, the size of the reference genome and the number of allowed mismatches or
insertion/deletions, making the mapping problem an ideal candidate for hardware acceleration. In this paper, we present FHAST
(FPGA hardware accelerated sequence-matching tool), a drop-in replacement for Bowrie that uses a hardware design based on field
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programmable gate arrays (FPGA). Our architecture masks memory latency by executing multiple concurrent hardware threads
accessing memory simultaneously. FHAST is composed by multiple parallel engines to exploit the parallelism available to us on an
FPGA. We have implemented and tested FHAST on the Convey HC-1 and later ported on the Convey HC-2ex, taking advantage of the
large memory bandwidth available to these systems and the shared memory image between hardware and software. A preliminary
version of FHASTrunning on the Convey HC-1 achieved up to 70x speedup compared to BowTie (single-threaded). An improved
version of FHAST running on the Convey HC-2ex FPGAs achieved up to 12x fold speed gain compared to BowTie running eight threads
on an eight-core conventional architecture, while maintaining almost identical mapping accuracy. FHAST is a drop-in replacement for
BowrTiE, so it can be incorporated in any analysis pipeline that uses BowTie (e.g., TopHAT).

Index Terms—Short-read mapping, genome re-sequencing, FPGAs, reconfigurable hardware

1 INTRODUCTION

HE estimated two thousand DNA sequencing instru-

ments in research facilities, universities and hospitals
around the world, have the potential to generate 15 peta-
bytes of data in a year [2]. Sequencing capacity has been
increasing 3x-5x a year, far exceeding Moore’s law. For the
vast majority of sequencing projects, the first step after
cleaning/trimming the reads involves mapping the reads to
the reference genome. The problem of short read alignment or
short read mapping is a computationally intensive operation
that involves matching hundreds of million of short strings
(called reads) against a reference genome, which can reach
in the billion of bases pairs.

Besides the sheer volume of reads to be processed, one of
the challenge of these kind of data intensive applications is
that they are irregular. Traditional techniques for exploiting
locality, such as caching, are not effective for these applica-
tions, hence long memory latencies have an amplified
impact on their performance. One objective of multithreaded
architectures, as proposed in the Tera MTA [3], [4] and later
the Cray XMT [5], is to mask long memory latencies by con-
text switching between concurrent-ready threads in the

e E.B. Fernandez and S. Lonardi are with the Department of Computer
Science and Engineering, University of California, Riverside, CA.

E-mail: ecfernan@yahoo.com, stelo@cs.ucr.edu.

o . Villarreal and W.A. Najjar are with the Department of Computer
Science and Engineering, University of California, Riverside, CA and are
also with Jacquard Computing Inc., Riverside, CA.

E-mail: villarre@gmail .com, najjar@cs.ucr.edu.

Manuscript received 11 June 2014; revised 27 Dec. 2104; accepted 6 Feb. 2015.
Date of publication 23 Feb. 2015; date of current version 5 Oct. 2015.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2015.2405333

processor. Traditional multithreaded architectures have a
fixed data-path, configured by an instruction set, that sup-
ports a pre-determined number of concurrent threads (i.e., a
fixed number of thread register files, etc). FPGAs provide an
opportunity to explore the potentials of customized multi-
threaded architectures where the data-path, control and
registers are tailored to the target computation.

In this paper we propose a customized multithreaded
architecture that is implemented on an FPGA. The structure
of the data-path and the number of thread states are
designed for the specific target application. On this
hardware architecture we have designed a novel short read
alignment tool called FHAST (FPGA hardware accelerated
sequencing-matching tool). FHAST implements the approx-
imate string matching algorithm based on the FM-index
data structure [6], [7] which in turn is based on the
Burrows-Wheeler transform (BWT) [8]. In [9] we have
described the basic algorithm, implemented on a single
FPGA, with no multithreading, for finding exact matches of
reads in the genome. Here we describe a multithreaded
implementation for approximate string matching. The
current implementation of FHAST was designed on the
Convey HC-1 (originally described in [1]) and later ported
on the Convey HC-2ex. Its novel features are: (1) it is multi-
threaded and supports up to 512 concurrently executing
threads on a single accelerator FPGA of the Convey HC-1/
HC-2ex; (2) it supports exact and approximate string match-
ing (up to two mismatches), single-end and paired-end
alignment, and reports any number of matched locations;
(3) it is a drop-in replacement for the popular Bowtie short
read alignment tool [10] (i.e., FHAST’s output format is
exactly the same of BowTiE so it can be used any sequence
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analysis pipeline where BowrTie is used, e.g., ToPHAT for
RNA-Seq). We have compared the execution times of
FHAST against Bowtie (running eight threads on a eight
cores conventional architecture) for zero, one and two mis-
matches on the Convey HC-2ex. The observed speedup of
FHAST compared a eight-threads BowTiE to is up to about
12x. The preliminary (older) version of FHAST running on
the Convey HC-1 achieved a speedup up to 70x compared
to single-threaded BowrTiE.

2 METHODS

The FM-index [6], [7] is a data structure composed by the
Burrows-Wheeler transform [8] of the text database (the
reference genome in this case) and suffix array check-
points [11]. The FM-index allows one to determine
whether a pattern (read) occurs in the text in linear time
in the size of the pattern (see [6], [7] for details). During
the execution of the search, a partially-matched pattern is
described by two pointers to the FM-index (called top and
bottom) that specify the range of locations a suffix of the
pattern appears in the text. These two pointers are
updated at each processed character of the pattern (see
below for the rules). If at any one time the two pointers
are equal or if top is less than bottom, the search is termi-
nated and the algorithm declares that the pattern does
not occur in the text. Instead if the last character in the
pattern is reached, the range between top and bottom
indicates the number of occurrences of that pattern in the
text. We remind the reader that in this application, not
only each read (pattern) needs to be searched in the
genome (text) but also its reverse complement.

We have adapted the FM-index to make it suitable for
FPGA implementation. The first incarnation of our design
was described in [9] (and later refined in [1]). The scheme
[9] only allowed exact matching, and had no multi-
threading. In that scheme the Burrows-Wheeler transform
of the text is represented as two tables, called C-table and
I-table. The I-table is an array with a number of entries
equal to the number of symbols in the alphabet (four in
this case). The I-table stores the position of the first occur-
rence of each character in the text after the text has been
sorted lexicographically. The C-table is a two dimensional
matrix, with a number of rows equal to the length of the
text, and a number of columns equal to the number of
symbols (four in this case). If BTW (text) is the Burrow-
Wheeler transform of the input text (reference genome),
entry (i, j) of the C-Table represents the number of occur-
rences of symbol j in the prefix of BWT (text) of length 1.
Given the I-Table and the C-Table, if s is the current sym-
bol to be processed, the rules to update top and bottom
pointers are as follows

topneu: = C[topcurrem‘,v 5} + I[S]
bottome, = Clbottomeyrrent, ) + 1[8].

In [9] and [1], the C-table and I-table are allocated in
block RAMs and LUTs of the FPGA, respectively. The
main practical limitation of [9] is related to the size of
memory available on the FPGA, which limited the size
of the genome that could be processed. Large genomes
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Fig. 1. The block diagram of the exact string matching architecture (pat-
terns are the short reads, the C-table stores the FM-index of the refer-
ence genome).

(e.g., human genome) had to be split into chunks and
processed in batches. This imposed limits on the achiev-
able speed up of the algorithm because of the overhead
involved in processing multiple chunks. The implemen-
tation described here overcomes this main limitation by
using the external memory to store the C-table and uses
multiple threads to hide long memory latencies.

2.1 Exact String Matching Architecture

In this section we briefly describe the customized multi-
threaded architecture that implements exact string match-
ing in FHAST. As said, each read is processed by an
individual thread.

Fig. 1 shows the block diagram implementing the exact
matching engine using external memory. The implementa-
tion consists of five main blocks, namely fetch, update, send,
receive, and locate. Each block consists of queues that are used
to hide memory latency while performing other tasks. The
C-table and the list of reads are allocated on external mem-
ory. The I-table is allocated on LUTs of the FPGA. The fetch
block requests read from external memory and generates
unique ID for each read, so that the system can track them.

The update block inserts the reads from the fetch block
into the send block. The update block determines if a read
requires further processing or if the read has been deter-
mined to be a match or mismatch.

If the read needs more processing, the update block for-
wards the read to the send block, which issues addresses
to access the C-table for the top and bottom pointers. The
I-table is also accessed simultaneously using the last
character of the read. As addresses are issued to external
memory, the send block places state information of the
read into the receive block. The information in the receive
block waits for data returned from external memory for
further processing. Data is returned from memory in the
same order it was requested.

The send block continuously issues addresses of different
reads to the external memory and read information to the
receive block until the address queue of the external memory
or queue of the receive block is full. This achieves the multi-
threading: multiple reads are waiting in queues for memory
while other reads are processed. When the memory returns
the data, the receive block merges it with the waiting thread
and passes it to the update block.

The update block determines if the processing of a read is
complete. Two conditions can lead to termination. In the
first, the algorithm determines that the read actually occurs
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Fig. 2. The update block uses a block RAM of precomputed addresses to
improve the performance of the string matching engine.

in the text. This happens when the two pointers, after proc-
essing the last character of the read, identify a non-empty
range. In this case the read is passed into the locate block to
report the match. In the second, the algorithm determines
that the read does not occur in the text: in this case the
pointers have an empty range. In both cases, a new read
from the fetch block is introduced to keep the engine full.

The queues are used to store the request to and the
responses from the memory system. As said, the idea
behind the multithreading execution implemented in Fruast
is to mask the memory latency and hence increase the paral-
lelism. The memory system on the Convey machine is fully
buffered and allows several hundred outstanding memory
requests per memory channel. The number of outstanding
memory requests, in a multithreaded system, is a measure
of the effective parallelism. Whenever a queue is close to
being full a stall signal is raised that propagates backwards
stalling all the circuits upstream. This process continues
until the fetching of new reads from memory is stopped.
Such events would increase the execution time. Obviously,
the design aims at avoiding such a situation by making the
queue size large enough. Beyond a certain value, the size of
the queue does not have any effects on the overall execution
time: this is the value chosen for the queue size.

The performance of the hardware implementation
strictly depends on the number of external memory
requests. To reduce this number, the memory addresses are
precomputed for all character combinations up to a specific
length (prefix) such that each combination of characters rep-
resent a range for the C-table. Instead of initializing the
address to the first and last rows of the C-table as indicated
in the modified algorithm, we instead initialize the top and
bottom pointers to the precomputed values.

We store the precomputed values in a block RAM and
use the last I characters to access the precomputed values.
Fig. 2 shows the structure of the update block including pre-
computed addresses. The update block decides if a new or
old pattern is passed to the send block.

2.2 Approximate String Matching Architecture

In order to maintain modularity and future expandability,
our approximate string matching architecture uses multiple
exact matching engines. If n is the number of allowed mis-
matches, the architecture needs n+1 exact matching
engines. Fig. 3 show the architecture that handles up to two
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Fig. 3. Block diagram of approximate matching architecture using
n exact string matching architectures.

mismatches and illustrates the connections between the
three exact matching engines. Engine E, handles exact
string matching and requests reads from external memory.
If a read fails on engine E at some position £, it is passed to
engine 7. Engine FE; receives the read, the value k£ — 1, and
the value of fop and bottom pointers for character £ — 1. The
data is passed to a replace block that searches the pattern
with up to one mismatch. The heuristic search implemented
in the replace block is discussed below. A failing read on
engine F; is passed to engine E, to detect hits with two
mismatches. Reads that pass any of the three matching
engines are moved to the locate block that determines their
location in the genome.

As said, the replace block executes a heuristic to find
approximate matches. If a read failed on engine £, the algo-
rithm creates three copies of the read with the same ID. The
failing character of each copy is replaced by the other three
nucleotide symbols. Each copy becomes a new thread and
it is inserted in the queues of searching blocks. Fig. 4
illustrates the replacement of the failing character by other
characters.

A “copy” flag is set for each new read copy as it is
inserted in the queue of the update block for engine £;. If a
read with the copy flag fails on its first iteration on the new
engine F£;, the read is terminated immediately and it is not
passed to engine E; . If a read with the copy flag succeeds
on its first iteration on engine £;, then the copy flag is reset.
If the reads fails on any of the following iterations, new
copies are created again and passed to engine E; ;.

Fig. 5 shows the block diagram of the replace block
inserted is the update block of engine F;. Engine E; accepts

replaced
character

AAAAACTGGTTCCCTA *"‘,;"

i
/1

AAAAACTGGTTCCCTC ¥ |

AAAAACTGGTTCCCTT J
) /
failing !
character AAAAACTGGTTCCCTG ¥
{ )
|
copies

Fig. 4. A failing character in the read induces three new copies of the
read, where each read has the failing character replaced by one of the
other three nucleotides.
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Fig. 5. Update block including the replace block for approximate
matching.

reads from the replace block instead of the fetch block. The
update block then selects reads from the previous engine
when processing of a read on engine E.

Reads that exit from the matching engines are passed to a
locate block that identifies the location of the occurrences of
the read in the genome. The data passed to the locate block
are the read ID and the values of the two pointers. The
architecture of the locate block is similar to send and receive
blocks. Fig. 6 shows the block diagram of the locate block: it
consists of queues for sending addresses to external mem-
ory and waiting for data returning from memory.

The locate block sends the top pointer as an address to the
suffix array placed in external memory. The external mem-
ory returns the location which is later written to the output
file. If a read exists at multiple locations, the algorithm
sends multiple address requests (until it reaches the bottom
pointer) to the memory for the required locations.

Our approximate string matching heuristics is somewhat
different from that of BowTit [10]. BowTik also uses the exact
matching algorithm based on the FM-index for successively
longer query suffixes of the pattern. However, if the range
between top and bottom pointers becomes empty (i.e., that
suffix does not occur in the text), then BowTiE selects an
already-matched query position and substitute a different
symbol there, introducing a mismatch into the alignment.
BowTie only selects the position(s) which yield a modified
suffix that occurs at least once in the text. The exact-matching
search resumes from just after the substituted position.

Location Loéation

’_|-
X : L

Pattern ID

Read match in Engine 0

(Aiowaw |eusaixa)
AVHYY XI44NS

Read match in Engine 1 H
— H
Read match in Engine 2 H . )

,,,,,,,,,,, Locateblock
Fig. 6. The locate block have send and receive queues similar to send
and receive blocks for finding the location of a read from the FM-index
stored in main memory.
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Fig. 7. The software is responsible on memory allocation and reporting,
while the hardware carries out the approximate searching algorithm.

In contrast, in order to maximize the efficiency of the
backtracking implementation in hardware, FHAST only
substitutes the last symbol where a mismatch occurred. As a
consequence, some of the alignments reported by BowTie can
be missed by FHAST, in particular alignment involving two
mismatches. In order to reduce the number of missed two-
mismatches alignments, we split a read in half, and we use
two additional engines to match them against the reference
genome, starting from the center and working outwards.

3 EXPERIMENTAL RESULTS

In this section we describe the implementation of FHAST on
the Convey Computers HC-1, and later ported on the Con-
vey Computers HC-2ex.

Fig. 7 illustrates the role of the hardware in searching for
the reads on the text. The software performs memory alloca-
tion for the C-table, the suffix array, and the reads. It also
takes care of writing the results to external memory. After
allocating the necessary memory and setting up the copro-
cessor registers, the host CPU calls the coprocessor to per-
form the approximate search algorithm. Software then
writes results to an output file in BowTie format.

We initially conducted our experiments on the Convey
HC-1 hybrid core computing system. The Convey HC-1 is
composed of a dual core Intel Xeon processor running at
2.13 GHz as the host processor and four Xilinx Virtex
5 FPGAs as coprocessor. The Convey HC-2ex has instead
4 Virtex 6 FPGAs (see Fig. 8). Both systems have a memory
with peak bandwidth of 76.8 GB/s and a memory clock rate
of 150 MHz. All processors, both host processor and FPGA
coprocessors, have one shared cache coherent memory. We
implemented a design for a read length up to 101 symbols
that supports up to two mismatches using only one FPGA
in the coprocessor. The design is synthesized with place
and route: on the Xilinx Virtex 5 (XC5VLX330) FPGA, the
designed occupied about 46 percent of the FPGA. We set
the frequency to 150 MHz, that is the maximum operating
frequency of the memory controllers of the Convey HC-1/
HC-2ex.

3.1 Results on the Convey Computers HC-1

In this first set of experiments, we compared the perfor-
mance of FHAST to Bowrttt [10], which is the most popular
tool to map reads to a reference genome, along with BWA.
We executed BowTE on two general-purpose architectures,
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Fig. 8. Architecture of the Convey HC-2ex heterogeneous multiprocessor (figure courtesy of Convey Computers).

that we named below CPU1 and CPU2. CPU1 is the general-
purpose CPU on the Convey HC-1 (2.13 GHz Xeon L540B,
two dual-cores, 6 MB Cache, with 192 GB of RAM). CPU2 is
a 2.27 GHz Xeon E5520, two quad-cores, 8 MB cache, with
24 GB of RAM.

We measured the execution time of FHAST and Bowrle
on a data set composed by 18 million reads where each read
was 101 bases long, against human chromosome 14 (about
107 Mb). Table 1 shows the execution time of FHAST and
Bowrtie (on CPU1 and CPU2) allowing up to mismatches.
The table shows longer execution time for Bowtie than
FHAST. Observe that while there is a significant difference
in the execution time of FHAST between searching exact
and approximate matches, there is no significant difference
between searching for one and two mismatches. The execu-
tion time for BowTiE instead increases significantly as more
mismatches are allowed. Fig. 9 shows the speed up of
FHAST over Bowtie for the two CPUs. Observe that the
highest speed up is achieved in detecting two mismatches.
By masking memory latency, the customized multithread-
ing approach allows us to achieve up to 70x speedup on a
150 MHz FPGA over conventional CPUs.

We have also evaluated FHAST on all four accelerator
FPGAs (AEs) of the Convey HC-1. The execution of FHAST
relies on pre- and post-processing of the read data in soft-
ware. The breakdown of the FHAST execution time, in soft-
ware and hardware, shows the software phases are the
limiting factor but the hardware achieves a near linear
speedup (data not shown).

TABLE 1
Comparing the Execution Time of FHAST and
BowrTig; FHAST is Running on a Single FPGA,
Bowrie on a Single Core; the Data Set was
Composed by 18 Million Reads (101 Bases Each)
Matched against Human Chromosome 14

# mismatches FHAST (sec) BowTiE (sec)
CPU1 CPuU2

0 55 715 404

1 71 1,924 1,142

2 73 5,410 3,698

The multithreaded execution time for BowTtk, using up to
16 cores, and the speedup over a single thread, on the same
data set is shown in Table 2. The execution time of FHAST
on four FPGAs is 138 seconds which is 2.43x lower than that
of BowTie with 16 cores (336 seconds).

3.2 Results on the Convey Computers HC-2ex
On the second round experiments following the publication
of the preliminary version of this manuscript [1], we ported
FHAST on the Convey Computers HC-2ex. In this new set
of experiments, we used the Convey HC-2ex for both the
software (CPU based) as well as the hardware (FPGA
based) implementations. As said, the HC-2ex has four Vir-
tex-6 LX760 FPGAs in the AE, two Intel Xeon processors E5-
2643 four-core 3.3 GHz (used in the software implementa-
tion), and 96 GB shared memory (used by both implementa-
tions). FPGAs are running at 150 MHz. BowTie was run in
multithreaded mode, namely with eight threads on four
cores, which we determined to be the optimal number of
threads for Bowrlk on this architecture.

The only significant hardware change in porting the soft-
ware to the HC-2ex was the addition of two additional
engines to improve the accuracy of FHAST to handle the

80.00

B SpeedupCPU1 [ SpeedupCPU2
70.00

60.00

50.00

40.00

SPEEDUP

30.00

20.00

10.00

0.00
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Fig. 9. Speed up of FHAST compared to BowrTie for exact matches, one
and two mismatches.
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TABLE 2
Multithreaded Execution Time of BowTie: Speedup
over Single Thread

# Threads 1 2 4 8 16
Time (sec) 3,325 1,772 896 501 336
Speedup 1 1.88 3.71 6.64 9.90

two-mismatches case. We noticed in the previous imple-
mentation [1] that the number of hits reported by FHAST
for two mismatches was quite low compared to Bowtie. As
said above, in this new design in order to handle the two-
mismatches case we split a read in half, and we use two
additional engines to match them against the reference
genome, starting from the center and working outwards.
With this heuristics FHAST was able to catch more two-
mismatch hits that were obscured by the prefix calculations,
but incurred additional computational cost. In software we
added more options to FHAST, such as supporting the
fastq format, as well paired-end reads alignment.
End-to-end experimental results are reported in Tables 3-
6. As said, the reported speedup is compared to BowTIE run-
ning on eight threads. The conversion from fastgq to a bit-
stream is done in FHAST in software and incurs a

significant overhead compared to processing raw files.
Tables report the performance of FHAST for both file-
types. Reads for Staphylococcus aureus and Rhodobacter
sphaeroides were obtained from gage.cbcb.umd.edu
[12]. Human reads were obtained from NIH Sequence
Read Archive (accessions ERR231578, ERR231579 and
ERR231582). Staphylococcus aureus’ genome is about
2.8 Mb, Rhodobacter sphaeroides’ genome is 4.6 Mb, and
Homo sapiens’ genome about 3,234 Mb. The observed
speed-up ranges from 0.53 to 11.99X. Observe that (1) for
most of the cases, FHAST’s speedup gets higher as the
number of mismatches increase; (2) FHAST’s advantage
over Bowrtik increases on larger genomes. In general,
FHAST is faster than BowTiE running on eight-threads on
eight-cores conventional architecture.

4 TooL AVAILABILITY

FHAST is available in the public domain and free for aca-
demic use. FHAST can be downloaded from http://www.
cs.ucr.edu/~stelo/pub/Bio-FHAST tar.gz The compressed
archive contains FHAST, some utilities and a user manual.
FHAST runs on Convey Computers HC-1/HC-2ex. As in
BowTie, FHAST requires one to build the ebwt (FM-index)
for the reference genome using the bowtie_build tool.

TABLE 3
Performance Statistics for Staphylococcus Aureus Reads (Reporting All Locations)

0 mismatches

1 mismatch 2 mismatches

Data set format len #reads Speedup  mapped  Speedup  mapped = Speedup  mapped
fragments fastq 101 2,588,208 1.83X 100% 1.68X 99.2% 3.02X 96.9%
shortjump fastq 37 6,988,140 2.55X 100% 1.87X 95.4% 3.68X 91.5%
fragments raw 101 2,588,208 0.87X 100% 0.93X 99.6% 1.83X 98.9%
shortjump raw 37 6,988,140 0.79X 100% 0.64X 98.8% 1.58X 95.9%
TABLE 4
Performance Statistics for Rhodobacter Sphaeroides Reads (Reporting All Locations)
0 mismatches 1 mismatch 2 mismatches
Data set format len #reads Speedup mapped Speedup mapped Speedup mapped
fragments fastq 101 4,101,736 1.65X 100% 1.71X 99.7% 3.37X 98.8%
shortjump fastq 101 4,101,736 1.96X 100% 1.66X 95.3% 3.37X 93.5%
fragments raw 101 4,101,736 0.73X 100% 0.75X 99.9% 1.54X 99.6%
shortjump raw 101 4,101,736 0.79X 100% 0.64X 99.9% 1.44X 99.5%
TABLE 5

Performance Statistics for Human Reads Mapped to Chromosomes 14 (Reporting One Location, Reads are 101 bp);
for Reference, on ERR231578 (Raw), Bowtie Took 193.8s (0 Mismatches), 186.9s (1 Mismatch), 443.7s
(2 Mismatches), while FHasT Took 31.7s (0 Mismatches), 32.7s (1 Mismatch), 37.0s (2 Mismatches)

0 mismatches

1 mismatch 2 mismatches

Data set format #reads Speedup mapped Speedup mapped Speedup mapped
ERR231578 fastq 57,767,429 2.37X 100% 2.36X 99.92% 4.16X 99.12%
ERR231579 fastq 62,851,893 241X 100% 2.33X 99.92% 411X 99.02%
ERR231582 fastq 50,781,875 2.28X 100% 2.33X 99.84% 421X 99.62%
ERR231578 raw 57,394,559 6.12X 100% 5.71X 100% 11.99X 99.22%
ERR231579 raw 62,445,390 6.62X 100% 4.99X 100% 11.75X 99.13%
ERR231582 raw 50,596,558 6.43X 100% 5.45X 100% 11.81X 99.82%
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TABLE 6
Performance Statistics for Human Reads Mapped to the Reference Genome (Reporting One Location, Reads are 101 bp)

0 mismatches 1 mismatch 2 mismatches
Data set format #reads Speedup mapped Speedup mapped Speedup mapped
ERR231578 fastq 57,767,429 1.16X 100% 1.16X 99.92% 3.50X 99.20%
ERR231579 fastq 62,851,893 1.24X 100% 1.09X 99.92% 3.58X 99.18%
ERR231582 fastq 50,781,875 1.08X 100% 1.05X 99.84% 3.25X 99.63%
ERR231578 raw 57,394,559 1.22X 100% 1.04X 100% 7.36X 99.33%
ERR231579 raw 62,445,390 1.24X 100% 1.19X 100% 4.85X 99.31%
ERR231582 raw 50,596,558 1.23X 100% 1.05X 100% 4.53X 99.87%

5 RELATED WORKS

The first use of FPGAs in bioinformatics and computational
biology appeared in early nineties, with the objective to
accelerate DNA sequence alignment [13]. In fact, a signifi-
cant body of work focused on accelerators for dynamic pro-
gramming algorithms such as the Smith-Waterman [14]
algorithm (see, e.g., [15], [16], [17], [18], [19]). For instance,
in [15], the authors use a systolic array to take advantage of
parallelism inherent to the algorithm. In [18], the systolic
array structure is automatically generated using a compiler.
In [19], the Smith-Waterman algorithm is implemented on a
supercomputing platform using FPGAs as coprocessors.
The platform included a highly pipelined system that
reduces FPGA resource utilization.

Algorithms based on “seeds-and-extend that perform
DNA sequence matching (BLAST-like) have also been
explored (see, e.g., [20], [21]). For instance, in [20], the objec-
tive is to accelerate the seed generation phase of BLAST. In
[21], BLAST is implemented on an FPGA with an optimized
verification phase.

Besides using seeds and dynamic programming, finite
automata have also been used for exact sequence matching.
The implementation of the Aho-Corasick algorithm [22] on
FPGAs has been explored in [23] where protein sequences
are matched on a reference genome. A brute force approach
has also been implemented in [9]. In this approach, the pat-
terns to be searched are placed in hardware registers and the
genome is streamed through the hardware infrastructure.

More recently, the focus has shifted to the analysis of
next-generation sequencing data, and specifically to the
problem of mapping short-reads to a reference genome. A
significant number of papers have been published that
either use FPGAs (see, e.g., [1], [9], [24], [25], [25], [26], [27],
[28], [29], [30], [31]) or GPUs (see, e.g., [32], [33]). For
instance in [24], the authors propose a hybrid system for
short read mapping utilizing both FPGA-based hardware
and CPU-based software: the hardware implements parallel
block-wise alignment structure to approximate the conven-
tional dynamic programming algorithm. In general, the
claimed speedups compared to software solution for all the
proposed FPGAs designs in the literature has a wide range
and it is not easy to compare between them because they
are tested on different data sets. As our results demonstrate,
the performance of these systems critically depends on the
size of the reference genome, the number of allowed mis-
matches, the number and the length of the reads. It also
depends on whether we are supposed to return all the hits

or a fixed number of them. The sensitivity of the mapping
tool (i.e., the number of hits found compared to BowTie or
BWA) is also often not reported. In [26], the authors intro-
duce a FPGA-based solution to the short read mapping
problem which achieves a 31x speedup versus BowTIE on
eight CPU cores. In [27], the speedup of their accelerator
over a six-cores CPU ranges from 22.2x to 42.9x. In [28], the
author focus on long reads mapping: their FPGA-based
platform achieves a 1.8x-3.2x speedup versus the BWA-SW
aligner. In [29], the actors claim that their FPGA tool to be
up to 293 times faster than BWA (single-threaded) on an
Intel X5650 CPU and 134 times faster than SOAP3 on an
NVIDIA GTX 580 GPU. In [30], the proposed single FPGA
is populated with specialized filters based on a novel bidi-
rectional backtracking version of the FM-index. Their align-
ment time can be up to 18.1 times faster than BWA running
on dual Intel X5650 CPUs.

A good survey on hardware acceleration for computa-
tional genomics and bioinformatics appeared recently
in [34].

6 CONCLUSION

In this paper we have described and demonstrated an
FPGA-based customized multithreading solution to the
problem of short-read mapping. We compared the FHAST’s
execution time and output results to Bowtie, which is a
widely used tool for sequencing reads. Preliminary experi-
mental results on the Convey Computers Hc-1 show that
FHAST achieves a speedup of up to 70x over Bowte. The
new version that runs on the Convey Computers HC-2ex
has higher sensitivity for higher number of mismatches,
and the speed up compared to BowTE running on eight-
cores is up to 12x. In both cases, allowing more mismatches
increases the speed up compared to Bowrtie. This is because
the execution time of BowTlE dramatically increases while
only a minimal increase in execution time is observed in
FHAST. FHAST could handle even a higher number mis-
matches by adding more engines without any significant
increase in execution time (provided that sufficient area is
available on the FPGAs). The overall performance of
FHAST is somewhat limited by the computational cost of
the software to pre- and post-processing necessary to pre-
pare the data and format the results in the same format as
Bowrie. FHAST is a drop-in replacement for BowTie: it reads
input reads in fastq format, it uses the FM-index produced
by Bowrttg, it handles paired-end read mapping, and produ-
ces the same output format of BowTe.
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