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Abstract

Background: Informatics tools to support the integration and subsequent interrogation of spatiotemporal data

such as clinical data and environmental exposures data are lacking. Such tools are needed to support research in

environmental health and any biomedical field that is challenged by the need for integrated spatiotemporal data to

examine individual-level determinants of health and disease.

Results: We have developed an open-source software application—FHIR PIT (Health Level 7 Fast Healthcare Interoperability

Resources Patient data Integration Tool)—to enable studies on the impact of individual-level environmental exposures on

health and disease. FHIR PIT was motivated by the need to integrate patient data derived from our institution’s clinical

warehouse with a variety of public data sources on environmental exposures and then openly expose the data via ICEES

(Integrated Clinical and Environmental Exposures Service). FHIR PIT consists of transformation steps or building blocks that

can be chained together to form a transformation and integration workflow. Several transformation steps are generic and

thus can be reused. As such, new types of data can be incorporated into the modular FHIR PIT pipeline by simply reusing

generic steps or adding new ones. We validated FHIR PIT in the context of a driving use case designed to investigate the

impact of airborne pollutant exposures on asthma. Specifically, we replicated published findings demonstrating racial

disparities in the impact of airborne pollutants on asthma exacerbations.

Conclusions:While FHIR PIT was developed to support our driving use case on asthma, the software can be used to

integrate any type and number of spatiotemporal data sources at a level of granularity that enables individual-level study.

We expect FHIR PIT to facilitate research in environmental health and numerous other biomedical disciplines.
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Background
Researchers and healthcare practitioners across fields of

biomedicine acknowledge the tremendous impact that

environmental exposures have on health and disease. For

example, airborne pollutant exposures have been linked to

diseases as diverse as asthma [1–6], diabetes [7–9], cardio-

vascular disease [10], dementia [11], mental health disor-

ders [12], obesity [13], liver disease [14], and premature

mortality [15]. Yet, informatics tools to study the inter-

action between environmental exposures and health out-

comes at the level of the individual are largely non-existent.

For instance, the fields of epidemiology and environmental

health focus primarily on population-based correlations be-

tween trends in spatiotemporal exposures and population-

level health outcomes [15]. Longitudinal clinical studies

likewise are limited in their ability to collect subject-level

data on environmental exposures, typically relying on

survey-based self-report [5] or expensive personal monitors

[6]. Electronic health record (EHR)–based research also is

limited because such records do not contain data on envir-

onmental exposures apart from basic demographics.

Herein, we present FHIR PIT (Health Level 7 Fast

Healthcare Interoperability Resources Patient data

Integration Tool) as an open-source software application

designed to overcome challenges in environmental health

research and related fields and provide an innovative solu-

tion to enable investigation into the impact of individual-

level environmental exposures on health and disease.
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Implementation
This work was conducted under a study protocol that

was approved by the Institutional Review Board at the

University of North Carolina at Chapel Hill.

Motivation

FHIR PIT is a complex, custom, open-source software ap-

plication that uses geocodes and time stamps of varying

resolution (e.g., hour, day, year) to automatically integrate

multiple sources of spatiotemporal data, irrespective of the

degree to which the data depend on space and time. FHIR

PIT was motivated by our research and development of the

Integrated Clinical and Environmental Exposures Service

[ICEES [16]. ICEES was developed as part of the Biomedical

Data Translator program in response to a need to openly

expose clinical data that have been integrated at the patient

and visit level with environmental exposures data [17, 18].

FHIR PIT provides the integrated clinical and environmen-

tal exposures data to support ICEES.

Implementation overview and spatiotemporal data sources

For initial research and development of FHIR PIT, clinical

data on patients from UNC Health Care System were

integrated with a variety of public data on environmental ex-

posures, including: airborne pollutant exposures from the US

Environmental Protection Agency; roadway exposures from

the Federal Highway Administration’s Highway Patrol Moni-

toring System, within the US Department of Transportation;

roadway exposures from the US Census Bureau’s Topologic-

ally Integrated Geographic Encoding and Referencing sys-

tem; and socio-environmental exposures from the US

Census Bureau’s American Community Survey. (A graphical

overview of the FHIR PIT integration pipeline can be found

in Fig. 1. A list of currently available feature variables can be

found in Supplementary Table 1. This table and additional

documentation are maintained and regularly updated on the

ICEES OpenAPI.) Importantly, the integration step is con-

ducted within a secure environment and under a protocol

that was approved by our institution’s Institutional Review

Board because data integration necessitates the use of patient

geocodes (i.e., primary home residence), date/time stamps,

and patient identifiers—data elements that are considered

Protected Health Information under the Health Insurance

Portability and Accountability Act (HIPAA).

Multiple integration steps are required to harmonize

across these data sources, which vary in spatiotemporal

Fig. 1 An overview of the integration steps embedded in the FHIR PIT software application pipeline. API = application programming interface; FHIR =

Health Level 7 Fast Healthcare Interoperability Resources; ICEES = Integrated Clinical and Environmental Exposures Service; UI = user interface; US

Census ACS = US Census Bureau’s American Community Survey; US Census Bureau TIGER = US Census Bureau’s Topologically Integrated Geographic

Encoding and Referencing system; US EPA conUS CMAQ= US Environmental Protection Agency’s conUS Community Multiscale Air Quality modeling

data; US DOT FHWA HPMS = US Department of Transportation, Federal Highway Administration, Highway Patrol Monitoring System. Red color =

sensitive, fully identified clinical data; dark blue color = public data on environmental exposures; light blue color = secure, firewall- and Institutional

Review Board–protected integration steps; dark green color = de-identified, binned integrated feature tables; light green color = ICEES OpenAPI. (Note

that data from the National Center for Education Statistics have not yet been integrated using FHIR PIT, but an approach is under development to integrate

data on school exposures with home exposures data and clinical data, thereby addressing issues related to patient mobility and differential exposures. A

simplified version of the FHIR PIT pipeline was published in JAMIA 2019;26(1):1064–1073 and is reprinted in adapted form here with full permission from the

publisher. In contrast to the simplified version of the FHIR PIT pipeline, the version shown here includes and clearly distinguishes all of the data sources and

integration steps that are assembled by the current version of the pipeline.)
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resolution and format of geocodes and time stamps. For

example, patient primary home residence is coded as lati-

tude and longitude in the patient data, whereas the Ameri-

can Community Survey data are provided at the Census

block level. Airborne pollutant exposures are available at

hourly estimates, daily estimates, or annual averages, de-

pending on the exposure entity and source year. Roadway

data are provided as GIS shape files, with latitudes and

longitudes in WGS84 decimal format, which is the World

Geodetic System for expressing latitude and longitude.

Separate software code is required to convert the spatio-

temporal representation of the data used by each data

source into a common format that allows integration

across data sources. In addition, separate mappings are re-

quired to link patient identifiers and geocodes with each

non-clinical data source, thereby supporting the final inte-

gration step that merges the different data sources.

The final product of the FHIR PIT software pipeline is a

set of “integrated feature tables”, with feature variables

binned or recoded and data de-identified according to

§164.514(b) of HIPAA for subsequent open access via the

ICEES OpenAPI.

Implementation details

FHIR PIT consists of several transformation steps or building

blocks that can be chained together to form a transformation

and integration workflow. Several of these transformation

steps are generic, such that they can take in any data that

conform to a certain format. Thus, the incorporation of new

types of data amounts to adding new transformation steps or

reusing generic steps. FHIR PIT is implemented using Apa-

che Spark. Spark is used to easily parallelize and distribute

the data transformation steps. A Python script is used to

simplify the application interface to the transformation steps.

FHIR PIT supports building containers in both Singularity

and Docker. This feature allows the application to run on

different machines and platforms with portability.

Each block in FHIR PIT is implemented as a plugin con-

sisting of a set of Scala classes that can be plugged into the

pipeline. FHIR PIT is configured using a YAML file, and

steps can be switched on or off for rapid re-execution of

the pipeline. The plugins consist of both generic building

blocks such as joining of tables and data set–specific build-

ing blocks such as preprocessing of environmental data

(Table 1). The input and output of each plugin can be con-

figured so that the output of the previous step in a pipeline

configuration can be fed as input for the next step.

One of our goals for implementation of the pipeline

is to enable automatic and rapid re-execution. Given

the extensible number of input files and parameters,

we use the Dhall configuration language to author

configuration files and avoid code duplication. Dhall

code is converted to a YAML file that is then read by

the pipeline. An example YAML configuration of a

step in the FHIR PIT pipeline is provided below, with

fields defined in Table 2.

Writing the entire FHIR PIT pipeline configuration in

YAML would necessitate rewriting the pipeline for every

new calendar year and every new data set. With Dhall,

we are able to create a function in the configuration that

can be instantiated for each new calendar year or data

Table 1 FHIR PIT plugin names and functionalities

Plugin name Functionality

FHIR Consolidates different FHIR resources for each patient
and extracts geocodes

ToVector Extracts features from FHIR

EnvData Preprocesses environmental data source

CSVTable Converts to ICEES integrated feature table

ACS Preprocesses US Census Bureau ACS data source

ACS2 Preprocesses US Census Bureau ACS data source, v2; this
includes a “ur” field for “urban or rural” residence

NearestRoad Preprocesses nearest road data source for US Census
Bureau TIGER data source

NearestRoad2 Preprocesses nearest road data source for US DOT FHWA
HPMS data source

NOOP No operation

Table 2 FHIR PIT field names and functionality

Field name Functionality

name Designates name of given step instance

dependsOn Defines other step instances that given step instance
depends on

skip Determines whether given step instance should be
skipped; if skip is “true”, then this step will not be run;
skip function allows for partial re-execution of pipelines
that have not been completely executed

step Defines the given step instance

step.function Designates the function name for given step instance;
this is usually a class name

step.arguments Delineates specific arguments for given step function;
the arguments vary according to the step function
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set. A simplified version of this function to address add-

itional years is shown below.

To instantiate this for calendar year 2012, we simply

need to specify the following parameter:

envDataSourceStep False "2012"

To extend this function for multiple calendar years, we

specify an additional parameter:

List/map ["2012", "2013", "2014"]

(envDataSourceStep False)

Here, the List/map function takes a list of terms and a

function, applies the function to each element in the list,

and returns a list of values.

Execution of the FHIR PIT pipeline generates a report

of skipped tasks, succeeded tasks, failed tasks, and errors

from failed tasks.

Results
We validated FHIR PIT in the context of our driving use

case for research and development of ICEES: impact of

airborne pollutant exposures on asthma. The validation

data set consisted of ~ 160,000 patients with “asthma-like”

conditions from UNC Health Care System and the envir-

onmental data sources depicted in Fig. 1, focusing initially

on data from calendar year 2010 [19–21]. FHIR PIT was

used to integrate the clinical and environmental data and

then de-identify the data and bin feature variables before

openly exposing the integrated data using ICEES. ICEES

was queried using the following input parameters:

ICEES returned the following JSON output, which is

also displayed in graphical form in Fig. 2.

Fig. 2 Racial disparities in the impact of airborne pollutant exposures on asthma exacerbations. Sample sizes are: N = 6379 African American

patients; and N = 13,176 Caucasian patients. PM2.5 = particulate matter < 2.5-μm in diameter. Levels of PM2.5 exposure were binned in FHIR PIT

using pandas qcut and expressed as ranges. X2 = 28.2841, P < 0.0001 for African Americans; X2 = 47.0133, P < 0.0001 for Caucasians
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These results indicate that the proportion of patients

with two or more annual emergency department or

inpatient visits for respiratory issues was higher among

patients exposed to relatively high average daily levels of

particulate matter < 2.5-μm in diameter (PM2.5) than

among those exposed to relatively low average daily

levels of PM2.5. Moreover, asthma exacerbations, as de-

fined by two or more annual emergency department or

inpatient visits for respiratory issues, were more com-

mon among African Americans than among Caucasians.

We then examined prednisone use in relation to

asthma exacerbations among African Americans and

Caucasians. The ICEES query is shown below.

ICEES returned the following results, which are shown

in tabular form in Table 3.

Table 3 Relationship between prednisone use and asthma

exacerbations, defined as two or more annual ED or inpatient

visits for respiratory issues, among African Americans and

Caucasians

Patients with
< 2 annual
ED/inpatient
visits for
respiratory issues
N (%)

Patients with
≥ 2 annual
ED/inpatient
visits for
respiratory issues
N (%)

Chi square,
P value

African Americans (N = 6379)

Prednisone

No 4536 (89.41%) 1078 (82.54%) X2 = 46.4781,

Yes 537 (10.59%) 228 (17.46%) P < 0.0001

Caucasians (N = 13,176)

Prednisone

No 10,071 (89.99%) 1675 (84.38%) X2 = 54.8241,

Yes 1120 (10.01%) 310 (15.62%) P < 0.0001

Abbreviations: ED, emergency department
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These results indicate that prednisone use was more

common among patients with asthma exacerbations

than among those without asthma exacerbations, as ex-

pected given that prednisone is generally reserved for

patients with severe disease [22]. While this finding was

true for both African Americans and Caucasian, the ef-

fect was more pronounced among African Americans

than among Caucasians.

In sum, we successfully applied FHIR PIT to integrate

clinical and environmental data and then openly expose

the data for interrogation via ICEES, thereby replicating

and extending published literature demonstrating the

impact of exposure to airborne particulate matter on

asthma (e.g., 4) and the existence of racial disparities in

asthma exacerbations [23].

Conclusion
We developed FHIR PIT as an open-source spatiotem-

poral data integration tool. We are currently using FHIR

PIT to generate integrated clinical and environmental

data for open exposure and interrogation via ICEES.

While FHIR PIT was developed and validated in the

context of a driving use case designed to evaluate the

impact of airborne pollutant exposures on asthma, the

software application has broad applicability in any use

case that requires integrated spatiotemporal data for

individual-level analysis. Indeed, we are currently ex-

tending FHIR PIT to support investigations into the im-

pact of environmental exposures on primary ciliary

dyskinesia, drug-induced liver injury, and several add-

itional conditions. We believe that FHIR PIT will facili-

tate research in environmental health and many other

biomedical disciplines.

FHIR PIT is under active development, with new data

types and sources planned for the use cases noted above

and others. The modular design of FHIR PIT will allow

us to rapidly adapt the pipeline for these new data types

and sources and automatically execute the pipeline to

generate new ICEES integrated feature tables, thus pro-

viding flexibility and extensibility. These features will fa-

cilitate the adoption and adaptation of FHIR PIT for use

in other applications and at other institutions.

Availability and requirements

� Project name: FHIR PIT

� Project home page: Software code and instructions

for downloading FHIR PIT can be found at: https://

github.com/NCATS-Tangerine/FHIR-PIT

� Operating system(s): Linux

� Programming language: Scala, Python

� Other requirements: Java 8 or higher

� License: MIT

� Any restrictions to use by non-academics: none
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Supplementary information accompanies this paper at https://doi.org/10.

1186/s12911-020-1056-9.

Additional file 1: Supplementary Table 1. ICEES integrated feature

variable tables (v1.0.0, v2.0.0): variable names, descriptions, and binning

strategy.*
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