FHM: Faster High-Utility Itemset Mining using
Estimated Utility Co-occurrence Pruning

Philippe Fournier-Viger!, Cheng-Wei Wu?, Souleymane Zida', Vincent S.
Tseng?

! Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Computer Science and Information Engineering, National Cheng Kung
University, Taiwan
philippe.fournier-vigerQumoncton.ca, silvemoonfox@gmail.com,
esz2233C@umoncton.ca, tseng@mail.ncku.edu.tw

Abstract. High utility itemset mining is a challenging task in frequent
pattern mining, which has wide applications. The state-of-the-art algo-
rithm is HUI-Miner. It adopts a vertical representation and performs a
depth-first search to discover patterns and calculate their utility without
performing costly database scans. Although, this approach is effective,
mining high-utility itemsets remains computationally expensive because
HUI-Miner has to perform a costly join operation for each pattern that is
generated by its search procedure. In this paper, we address this issue by
proposing a novel strategy based on the analysis of item co-occurrences
to reduce the number of join operations that need to be performed. An
extensive experimental study with four real-life datasets shows that the
resulting algorithm named FHM (Fast High-Utility Miner) reduces the
number of join operations by up to 95 % and is up to six times faster
than the state-of-the-art algorithm HUI-Miner.

Keywords: frequent pattern mining, high-utility itemset mining, co-
occurrence pruning, transaction database

1 Introduction

Frequent Itemset Mining (FIM) [1] is a popular data mining task that is essential
to a wide range of applications. Given a transaction database, FIM consists of
discovering frequent itemsets. i.e. groups of items (itemsets) appearing frequently
in transactions [1]. However, an important limitation of FIM is that it assumes
that each item cannot appear more than once in each transaction and that all
items have the same importance (weight, unit profit or value). These assump-
tions often do not hold in real applications. For example, consider a database
of customer transactions containing information about the quantities of items
in each transaction and the unit profit of each item. FIM mining algorithms
would discard this information and may thus discover many frequent itemsets
generating a low profit and fail to discover less frequent itemsets that generate
a high profit.

Fournier-Viger, P., Wu, C.-W_, Zida, S., Tseng, V. S. (2014) FHM: Faster High-Utility ltemset
Mining using Estimated Utility Co-occurrence Pruning. Proc. 21st International Symposium on
Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 83-92.

ph
Text Box
Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S. (2014) FHM: Faster High-Utility Itemset Mining using Estimated Utility Co-occurrence Pruning. Proc. 21st International Symposium on Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 83-92.

To address this issue, the problem of FIM has been redefined as High- Utility
Itemset Mining (HUIM) to consider the case where items can appear more than
once in each transaction and where each item has a weight (e.g. unit profit).
The goal of HUIM is to discover itemsets having a high utility (e.g. generating a
high profit). HUIM has a wide range of applications such as website click stream
analysis, cross-marketing in retail stores and biomedical applications [2,7,10].
HUIM has also inspired several important data mining tasks such as high-utility
sequential pattern mining [11] and high-utility stream mining [9].

The problem of HUIM is widely recognized as more difficult than the problem
of FIM. In FIM, the downward-closure property states that the support of an
itemset is anti-monotonic, that is the supersets of an infrequent itemset are
infrequent and subsets of a frequent itemset are frequent. This property is very
powerful to prune the search space. In HUIM, the utility of an itemset is neither
monotonic or anti-monotonic, that is a high utility itemset may have a superset
or subset with lower, equal or higher utility [1]. Thus techniques to prune the
search space developed in FIM cannot be directly applied in HUIM.

Many studies have been carried to develop efficient HUIM algorithms |[2,
6-8,10]. A popular approach to HUIM is to discover high-utility itemsets in
two phases using the Transaction-Weigthed-Downward closure model [8, 2, 10].
This approach is adopted by algorithms such as Two-Phase [8], IHUP [2] and
UPGrowth [10]. These algorithms first generate a set of candidate high-utility
itemsets by overestimating their utility in Phase 1. Then, in Phase 2, the algo-
rithms perform a database scan to calculate the exact utility of candidates and
filter low-utility itemsets. Recently, a more efficient approach was proposed in
the HUI-Miner algorithm [7] to mine high-utility itemsets directly using a single
phase. HUI-Miner was shown to outperform previous algorithms and is thus the
current best algorithm for HUIM [7]. However, the task of high-utility itemset
mining remains very costly in terms of execution time. Therefore, it remains an
important challenge to design more efficient algorithms for this task.

In this paper, we address this challenge. Our proposal is based on the observa-
tion that although HUI-Miner performs a single phase and thus do not generate
candidates as per the definition of the two-phase model, HUI-Miner explores the
search space of itemsets by generating itemsets and a costly join operation has
to be performed to evaluate the utility of each itemset. To reduce the number
of joins that are performed, we propose a novel pruning strategy named EUCP
(Estimated Utility Cooccurrence Pruning) that can prune itemsets without hav-
ing to perform joins. This strategy is easy to implement and very effective. We
name the proposed algorithm incorporating this strategy FHM (Fast High-utility
Miner). We compare the performance of FHM and HUI-Miner on four real-life
datasets. Results show that FHM performs up to 95 % less join operations than
HUI-Miner and is up to six times faster than HUI-Miner

The rest of this paper is organized as follows. Section 2, 3, 4 and 5 respec-
tively presents the problem definition and related work, the FHM algorithm, the
experimental evaluation and the conclusion.

2 Problem definition and related work

We first introduce important preliminary definitions.

Definition 1 (transaction database). Let I be a set of items (symbols). A
transaction database is a set of transactions D = {Ty,T5,...,T,} such that for
each transaction T, T, € I and T, has a unique identifier ¢ called its Tid. Each
item i € I is associated with a positive number p(i), called its external utility
(e.g. unit profit). For each transaction T, such that ¢ € T, a positive number
q(,T,) is called the internal utility of ¢ (e.g. purchase quantity).

Ezample 1. Consider the database of Fig. 1 (left), which will be used as our run-
ning example. This database contains five transactions (77, T5...T5). Transaction
T, indicates that items a, ¢, e and g appear in this transaction with an internal
utility of respectively 2, 6, 2 and 5. Fig. 1 (right) indicates that the external
utility of these items are respectively 5, 1, 3 and 1.

Definition 2 (utility of an item/itemset in a transaction). The utility of
an item 7 in a transaction T, is denoted as u(%,7T.) and defined as p(i) x ¢(i, T¢.).
The utility of an itemset X (a group of items X C I) in a transaction T is
denoted as u(X,T,) and defined as u(X,T.) = >, x u(i, T¢).

Ezample 2. The utility of item a in T is u(a, T2) = 5 x 2 = 10. The utility of
the itemset {a,c} in Ty is u({a, c}, Ta) = u(a,Tz) + u(c,T2) = 5x 2+ 1 x 6 = 16.

Definition 3 (utility of an itemset in a database). The utility of an item-
set X is denoted as u(X) and defined as u(X) = > 1, ¢ (x) (X, T¢), where g(X)
is the set of transactions containing X.

Ezample 3. The utility of the itemset {a, ¢} is u({a, c}) = u(a)+u(c) = u(a, T1)+
u(a, To) + ula, T3) + u(c, T1) + u(e, To) + u(c, T3) =5+ 10+54+14+ 6+ 1 = 28.

Definition 4 (problem definition). The problem of high-utility itemset min-
ing is to discover all high-utility itemsets. An itemset X is a high-utility itemset
if its utility w(X) is no less than a user-specified minimum utility threshold
manutil given by the user. Otherwise, X is a low-utility itemset.

Ezample 4. If minutil = 30, the high-utility itemsets in the database of our
running example are {b,d}, {a,c,e}, {b,c,d}, {b,c,e}, {b,d, e}, {b,c,d, e} with
respectively a utility of 30, 31, 34, 31, 36, 40 and 30.

It can be demonstrated that the utility measure is not monotonic or anti-
monotonic. In other words, an itemset may have a utility lower, equal or higher
than the utility of its subsets. Therefore, the strategies that are used in FIM
to prune the search space based on the anti-monotonicity of the support can-
not be directly applied to discover high-utility itemsets. Several HUIM algo-
rithms circumvent this problem by overestimating the utility of itemsets using a
measure called the Transaction-Weighted Utilization (TWU) [2, 8, 10], which is
anti-monotonic. The TWU measure is defined as follows.

Definition 5 (transaction utility). The transaction utility (TU) of a trans-
action T, is the sum of the utility of the items from T, in T.. i.e. TU(T.) =

ZxETC u(z, Tp.).

Ezample 5. Fig. 2 (left) shows the TU of transactions 17, 7%, T3, Ty, T5 from our
running example.

Definition 6 (transaction weighted utilization). The transaction-weighted
utilization (TWU) of an itemset X is defined as the sum of the transaction utility
of transactions containing X, i.e. TWU(X) = > 1, ¢, x) TU(Te).

Ezample 6. Fig. 2 (center) shows the TWU of single items a, by, d, e, f, g.
Consider item a. TWU(A) =TU(T1) + TU(T2) + TU(T3) = 8 + 27+ 30 = 65

The TWU measure has three important properties that are used to prune
the search space.

Property 1 (overestimation). The TWU of an itemset X is higher than or equal
to its utility, i.e. TWU(X) > u(X) [8].

Property 2 (antimonotonicity). The TWU measure is anti-monotonic. Let X
and Y be two itemsets. If X C Y, then TWU(X) > TWU(Y) [8].

Property 3 (pruning). Let X be an itemset. If TWU(X) < minutil, then the
itemset X is a low-utility itemset as well as all its supersets. Proof. This directly
follows from Property 1 and Property 2.

Algorithms such as Two-Phase [8], IHUP [2] and UPGrowth [10] utilizes
the aforementionned properties to prune the search space. They operate in two
phases. In Phase 1, they identify candidate high-utility itemsets by calculating
their TWU. In Phase 2, they scan the database to calculate the exact utility
of all candidates found in Phase 1 to eliminate low-utility itemsets. Recently,
an alternative approach was proposed in the HUI-Miner algorithm [7] to mine
high-utility itemsets directly using a single phase. HUI-Miner was shown to out-
perform previous algorithms and is thus the current best algorithm for HUIM [7].
HUI-Miner utilizes a depth-first search to explore the search space of itemsets.
HUI-Miner associate a structure named wutility-list [7] to each pattern. Utility-
lists allow calculating the utility of a pattern quickly by making join operations
with utility-lists of smaller patterns. Utility-lists are defined as follows.

Definition 7 (utility-list). Let > be any total order on items from I. The
utility-list of an itemset X in a database D is a set of tuples such that there is a
tuple (tid, iutil, rutil) for each transaction Ti;q containing X. The iutil element
of a tuple is the utility of X in Ti;q. i.e u(X, Tiq). The rutil element of a tuple
is defined as 3 ;cq, niox U4, Thia)-

Ezample 7. The utility-list of {a} is {(T1, 5, 3)(T2, 10, 17)(T3, 5,25)}. The utility-
list of {e} is {(T%,6,5)(T3,3,5)(Ty, 3,0)}. The utility-list of {a, e} is {(T3, 16, 5),
(T37 Sa 5)}

To discover high-utility itemsets, HUI-Miner perform a single database scan
to create utility-lists of patterns containing single items. Then, larger patterns
are obtained by performing the join operation of utility-lists of smaller patterns.
Pruning the search space is done using the two following properties.

Property 4 (sum of iutils). Let X be an itemset. If the sum of util values in
the utility-list of x is higher than or equal to minutil, then X is a high-utility
itemset. Otherwise, it is a low-utility itemset [7].

Property 5 (sum of iutils and rutils). Let X be an itemset. Let the extensions of
X Dbe the itemsets that can be obtained by appending an item y to X such that
y = 1 for all item ¢ in X. If the sum of ‘util and rutil values in the utility-list
of z is less than minutil, all extensions of X and their transitive extensions are
low-utility itemsets [7].

HUI-Miner is a very efficient algorithm. However, a drawback is that the join
operation to calculate the utility-list of an itemset is very costly. In the next
section, we introduce our novel algorithm, which improves upon HUI-Miner by
being able to eliminate low-utility itemsets without performing join operations.

Tid Transactions Item |a|b|c|d|e|f |9
T, (a,1)(c,1)(d,1) Profit |5 |2 |1]2[|3[|1]1
Tz (a,2)(c,6)(¢.2)(0.5)

Ts | (a1)(b2)(c,1)(d6).(e.1).(f5)

Ty (b,4)(c,3)(d,3)(e,1)

Ts (b,2)(c,2)(e.1)(@.2)

Fig. 1. A transaction database (left) and external utility values (right)

TID | TU Item | TWU Item | a b c d e f

T, 8 a 65 b 30

T, 27 b 61 c 65 | 61

Ts 30 c 96 d 38 | 50 | 58

T, 20 d 58 e 57 | 61 | 77 | 50

Ts 11 e 88 f 30 |30 | 30| 30| 30
f 30 g 27 | 3838 |0 38 [0
g 38

Fig. 2. Transaction utilities (left), TWU values (center) and EUCS (right)

3 The FHM algorithm

In this section, we present our proposal, the FHM algorithm. The main procedure
(Algorithm 1) takes as input a transaction database with utility values and the

manutil threshold. The algorithm first scans the database to calculate the TWU
of each item. Then, the algorithm identifies the set I* of all items having a
TWU no less than minutil (other items are ignored since they cannot be part
of a high-utility itemsets by Property 3). The TWU values of items are then
used to establish a total order > on items, which is the order of ascending TWU
values (as suggested in [7]). A second database scan is then performed. During
this database scan, items in transactions are reordered according to the total
order >, the utility-list of each item ¢ € I* is built and our novel structure
named EUCS (Estimated Utility Co-Occurrence Structure) is built. This latter
structure is defined as a set of triples of the form (a,b,c) € I* x I* x R. A triple
(a,b,c) indicates that TWU({a,b}) = ¢. The EUCS can be implemented as a
triangular matrix as shown in Fig. 2 (right) or as a hashmap of hashmaps where
only tuples of the form (a, b, ¢) such that ¢ # 0 are kept. In our implementation,
we have used this latter representation to be more memory efficient because we
have observed that few items co-occurs with other items. Building the EUCS
is very fast (it is performed with a single database scan) and occupies a small
amount of memory, bounded by |I*| x |I*|, although in practice the size is much
smaller because a limited number of pairs of items co-occurs in transactions (cf.
section 5). After the construction of the EUCS, the depth-first search exploration
of itemsets starts by calling the recursive procedure Search with the empty
itemset (), the set of single items I'*, minutil and the EUCS structure.

Algorithm 1: The FHM algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

Scan D to calculate the TWU of single items;

I* + each item ¢ such that TWU(4¢) < minutil;

Let > be the total order of TWU ascending values on I*;

Scan D to built the utility-list of each item ¢ € I'* and build the EUCS
structure;

5 Search (0, I, minutil, EUCS);

W N =

The Search procedure (Algorithm 2) takes as input (1) an itemset P, (2)
extensions of P having the form Pz meaning that Pz was previously obtained by
appending an item z to P, (3) minutil and (4) the EUCS. The search procedure
operates as follows. For each extension Pz of P, if the sum of the jutil values
of the utility-list of Pz is no less than minutil, then Pz is a high-utility itemset
and it is output (cf. Property 4). Then, if the sum of iutil and rutil values in
the utility-list of Px are no less than minutil, it means that extensions of Px
should be explored (cf.). This is performed by merging Pz with all extensions
Py of P such that y > z to form extensions of the form Pzy containing |Pxz|+1
items. The utility-list of Pzy is then constructed as in HUI-Miner by calling
the Construct procedure (cf. Algorithm 3) to join the utility-lists of P, Px

and Py. This latter procedure is the same as in HUI-Miner [7] and is thus not
detailed here. Then, a recursive call to the Search procedure with Pzy is done
to calculate its utility and explore its extension(s). Since the Search procedure
starts from single items, it recursively explore the search space of itemsets by
appending single items and it only prunes the search space based on Property
5. It can be easily seen based on Property 4 and 5 that this procedure is correct
and complete to discover all high-utility itemsets.

Co-occurrence-based Pruning. The main novelty in FHM is a novel prun-
ing mechanism named EUCP (Estimated Utility Co-occurrence Pruning), which
relies on a new structure, the EUCS. EUCP is based on the observation that
one of the most costly operation in HUI-Miner is the join operation. EUCP is
a pruning strategy to directly eliminate a low-utility extension Pzy and all its
transitive extensions without constructing their utility-list. This is done on line
8 of the Search procedure. The pruning condition is that if there is no tuple
(z,y,c) in EUCS such that ¢ > minutil, then Pzy and all its supersets are
low-utility itemsets and do not need to be explored.

This strategy is correct (only prune low-utility itemsets). The proof is that
by Property 3, if an itemset X contains another itemset Y such that TWU(Y) <
manutil, then X and its supersets are low-utility itemsets.

An important question about the EUCP strategy is: should we not only check
the condition for x,y in each call to Search but also check the condition for all
pairs of distinct items a,b € Pry? The answer is no because the Search pro-
cedure is recursive and therefore all other pairs of items in Pxy have already
been checked in previous recursions of the Search procedure leading to Pzy. For
example, consider an itemset Z = {aj, a2, as,as}. To generate this itemset, the
search procedure had to combine {ay,asas} and {ai,as, a4}, obtained by com-
bining {a1,as} and {a1, a3}, and {a1,a2} and {a;,as}, obtained by combining
single items. It can be easily observed that when generating Z all pairs of items
in Z have been checked by EUCP except {ag, a4}.

4 Experimental Study

We performed experiments to assess the performance of the proposed algorithm.
Experiments were performed on a computer with a third generation 64 bit Core
i5 processor running Windows 7 and 5 GB of free RAM. We compared the per-
formance of FHM with the state-of-the-art algorithm HUI-Miner for high-utility
itemset mining. All memory measurements were done using the Java API. Exper-
iments were carried on four real-life datasets having varied characteristics. The
Chainstore dataset contains 1,112,949 transactions with 46,086 distinct items
and an average transaction length of 7.26 items. The BMS dataset contains
59,601 transactions with 497 distinct items and an average transaction length of
4.85 items. The Kosarak dataset contains 990,000 transactions with 41,270 dis-
tinct items and an average transaction length of 8.09 items. The Retail dataset
contains 88,162 transactions with 16,470 distinct items and an average transac-
tion length of 10,30 items. The Chainstore dataset already contain unit profit

Algorithm 2: The Search procedure

input : P: an itemset, EzxtensionsOfP: a set of extensions of P, the minutil
threshold, the EUC'S structure
output: the set of high-utility itemsets

1 foreach itemset Px € ExtensionsOfP do

2 if SUM(Px.utilitylist.iutils) > minutil then

3 ‘ output Pux;

4 end

5 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.rutils) > minutil then
6 ExtensionsOfPz <+ 0;

7 foreach itemset Py € ExtensionsOfP such that y > x do
8 if I(z,y,c) € EUCS such that ¢ > minutil) then

9 Pzy < Px U Py;

10 Pxy.utilitylist < Construct (P, Pz, Py);

11 EzxtensionsOfPx < ExtensionsOfPr U Pxy;

12 end

13 end

14 Search (Pz, ExtensionsOfPz, minutil);

15 end

16 end

information and purchase quantities. For other datasets, external utilities for
items are generated between 1 and 1,000 by using a log-normal distribution and
quantities of items are generated randomly between 1 and 5, as the settings of
[2,7,10]. The source code of all algorithms and datasets can be downloaded from
http://goo.gl/hDtdt.

Execution time. We first ran the FHM and HUI-Miner algorithms on each
dataset while decreasing the minutil threshold until algorithms became too long
to execute, ran out of memory or a clear winner was observed. For each dataset,
we recorded the execution time, the percentage of candidate pruned by the FHM
algorithm and the total size of the EUCS. The comparison of execution times is
shown in Fig. 3. For Chainstore, BMS, Kosarak and Retail, FHM was respec-
tively up to 6.12 times faster, 6 times faster, 4.33 times faster and 2.3 times
faster than HUI-Miner.

Pruning effectiveness. The percentage of candidates pruned by the FHM
algorithm was 18% to 91%, 87%, 87 % and 31% to 95% for the Chainstore, BMS,
Kosarak and retail datasets. These results show that candidate pruning can be
very effective by pruning up to 95 % of candidates. As expected, when more
pruning was done, the performance gap between FHM and HUI-Miner became
larger.

Memory overhead. We also studied the memory overhead of using the
EUCS structure. We found that for the Chainstore, BMS, Kosarak and Retail
datasets, the memory footprint of EUCS was respectively 10.3 MB, 4.18 MB,

Algorithm 3: The Construct procedure

input : P: an itemset, Pz: the extension of P with an item z, Py: the
extension of P with an item y
output: the utility-list of Pxy

1 UtilityListO f Pzy < 0;
2 foreach tuple ex € Px.utilitylist do
3 if Jey € Py.utilitylist and ex.tid = exy.tid then
4 if Putilitylist # () then
5 Search element e € P.utilitylist such that e.tid = ex.tid.;
6 exy + (ex.tid, ex.iutil + ey.iutil — e.iutil, ey.rutil);
7 end
8 else
9 ‘ exy + (ex.tid, ex.iutil + ey.iutil, ey.rutil);
10 end
11 UtilityListO f Pxy < UtilityListO f Pxy U {exy};
12 end
13 end

14 return UtilityListPzy;

Chainstore BMS
1000
900 "
—&— HUIMiner 900 —&— HUIMiner
800
800
700 —a— FHM
—a— FHM 700
600 —
= Z 600
2 P
2 500 £ s
=] €
5400 2 400
300 4 300
200 200
100 100 m
1200000 1900000 2600000 2260000 2264000 2268000
minutil minutil
Kosarak Retail
1000 350 -
—a— HUIMiner —&— HUIMiner
900 300
800 FHM —a—FHM
700 250
= =
< 600 p 200
% 500 2 150
2 400 2
300 100
200 4
50
100 4
1200000 1400000 1600000 1800000 2000000 0 5000 10000 15000 20000 25000 30000
minutil minutil

Fig. 3. Execution times

1.19 MB and 410 MB. We therefore conclude that the cost of using the EUCP
strategy in terms of memory is low.

5 Conclusion

In this paper, we have presented a novel algorithm for high-utility itemset min-
ing named FHM (Fast High-Utility Miner). This algorithm integrates a novel
strategy named EUCP (Estimated Utility Cooccurrence Pruning) to reduce the
number of joins operations when mining high-utility itemsets using the utility-
list data structure. We have performed an extensive experimental study on four
real-life datasets to compare the performance of FHM with the state-of-the-art
algorithm HUI-Miner. Results show that the pruning strategy reduces the search
space by up to 95 % and that FHM is up to 6 times faster than HUI-Miner. The
source code of all algorithms and datasets used in our experiments can be down-
loaded from http://goo.gl/hDtdt, as part of the SPMF data mining library.

For future work, we are interested in exploring other optimizations for itemset
mining, sequential pattern mining [3, 4] and sequential rule mining [5].

Acknowledgement This work is financed by a National Science and Engineer-
ing Research Council (NSERC) of Canada research grant.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. Int. Conf. Very Large Databases, pp. 487-499, (1994)

2. Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures
for High-utility Pattern Mining in Incremental Databases. In: IEEE Trans. Knowl.
Data Eng. 21(12), pp. 1708-1721 (2009)

3. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Sequen-
tial Pattern Mining Using Co-occurrence Information. In: Proc. 18th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Springer, LNAI, (2014)

4. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V. S.: VMSP: Efficient Vertical
Mining of Maximal Sequential Patterns. In: Proc. 27th Canadian Conference on
Artificial Intelligence, Springer, LNAI, pp. 83-94 (2014)

5. Fournier-Viger, P., Nkambou, R., Tseng, V. S.: RuleGrowth: Mining Sequential
Rules Common to Several Sequences by Pattern-Growth. In: Proc. ACM 26th Sym-
posium on Applied Computing, pp. 954-959 (2011)

6. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discovering
high utility itemsets. In: Data & Knowledge Engineering. 64(1), pp. 198-217 (2008)

7. Liu, M., Qu, J.:Mining High Utility Itemsets without Candidate Generation. In
Proceedings of CIKM12, pp. 55-64 (2012)

8. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. PAKDD 2005, pp. 689-695 (2005)

9. Shie, B.-E., Cheng, J.-H., Chuang, K.-T., Tseng, V. S.: A One-Phase Method for
Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments.
In: Proceedings of IEA/ATE12, pp. 616-626 (2012)

10. Tseng, V. S., Shie, B.-E.;, Wu, C.-W., Yu., P. S.: Efficient Algorithms for Mining
High Utility Itemsets from Transactional Databases. In: IEEE Trans. Knowl. Data
Eng. 25(8), pp. 1772-1786 (2013)

11. Yin, J., Zheng, Z., Cao, L.: USpan: An Efficient Algorithm for Mining High Utility
Sequential Patterns. In: Proceedings of ACM SIG KDD12, pp. 660-668 (2012)

