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Abstract—Intelligent buildings are getting data-centric – they
archive the historical records of motion detectors, power usages,
HVAC statuses, weather, and any other information in order to
improve their control strategies. The engineering cost of instal-
lation and maintenance of such systems should be minimized as
the system owner has to operate them for several decades: i.e.,
the lifetime of the building. However, there are several design
pitfalls that multiply such engineering costs, which make the
operation heavy burden. This paper identifies those pitfalls and
presents technical challenges that enable lightweight installation
and maintenance. We, then, design facility information access
protocol (FIAP) for data-centric building automation systems.
We carried out FIAP-based system integration into a building
of the University of Tokyo, and demonstrate that FIAP enables
incremental installation for wide varieties of applications with
small engineering costs.

Index Terms—Intelligent Building, Building Automation, Sys-
tem Design, Implementation

I. INTRODUCTION

The data sequences produced by sensors are historical

records, which have not been primarily used for actuation

controls in the traditional building automation systems. How-

ever, we are getting realized that such historical records are

useful for analysing and planning control strategy to make

the building more intelligent. By comparing the history of

motion detection with HVAC (Heating, Ventilation, and Air

Conditioning) working statuses and power usages, we can

analyze how people use electricity, find wastes, and make

plans for improvement. Intelligent building systems are getting

”data-centric” (Fig. 1) for this purpose.

The widely-acknowledged solution for managing such his-

torical records is to integrate web services, databases and

many other technologies into a single building management

system. There are various choices in the design of architec-

ture, interfaces and data models that implement the identified

requirements and use cases. However, if they are designed in

a wrong way, the maintenance of the system becomes burden

for several decades: i.e., for the lifetime of the building. Some

system components become out-of-order. Requirements and

use cases change according to the reconfiguration of floor

Fig. 1. A data-centric building automation system. Storage servers archive the
historical records of power consumption, HVAC status, light control signals,
detected motions and any other information. System operator analyzes the
habitats, and plans the control strategies to make the building more intelligent.

plans. We must be able to re-assemble the system for these

types of accidents and changes with moderate engineering

cost.

This paper presents facility information access protocol

(FIAP) and demonstrates that FIAP-based system integration

avoids design pitfalls that potentially multiply such engineer-

ing cost. The design pitfalls, which we identify in this paper,

are about (1) definition of data schema, (2) interface design,

and (3) data exchange method.

FIAP-based system integration avoids these pitfalls by

taking the following design principles: (1) use simple data

structure as the common data model, and allow definition of

application-specific schema at the system assembly-phase, (2)

generalize interfaces into a single interface, and develop sys-

tem components (e.g., gateways, storages, and user interface

terminals) under the common interface, (3) allow scalable data
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Fig. 2. Pitfalls in the design of data-centric building automation systems. (a) Application-specific data schema and (b) concretely defined interfaces multiply
the engineering cost (i.e., installation and maintenance cost) of the system. (c) Data transfer on a remote procedure call causes failure at large dataset
transmission.

exchange on remote procedure calls (RPC).

This paper is organized as follows. In section II, we identify

the architecture, the pitfalls and the challenges on data-centric

building automation systems. In section III, we present the

design principles of FIAP. We show FIAP-based system inte-

gration in section IV. Section V demonstrates our application.

Section VI addresses related works. We conclude this paper

in section VII.

II. DATA-CENTRIC BUILDING AUTOMATION SYSTEMS

A. Architecture

Fig. 1 shows typical system architecture for data-centric

building automation systems. The gateways translate data

between field-level buses and Internet-side storages or user

interface(UI) terminals. The field-level buses could be Zig-

Bee1, Lonworks2, BACnet3 , 1-Wire4 and any other sensor

actuator networks. The data storages archive the history of data

generated by those sensors and actuators. System operators

access such storages and gateways from their UI-terminals

and (1) obtain the historical records, (2) obtain the current

snapshot and (3) set control schedules.

Some systems calculate statistics of historical records at

gateway-side or storage-side. Daily usage of a room can be

summarized at the gateway-side from the ON/OFF records of

the corresponding motion detector. It can be also summarized

at the storage-side.

1ZigBee provides tiny nodes for wireless sensor networks.
http://www.zigbee.org/

2Lonworks: Local operating networks for building automations.
http://www.lonmark.org/

3BACnet: a data communication protocol for building automation and
control networks. http://www.bacnet.org/

41-Wire. http://www.1wire.org/

Intelligent buildings must archive raw data with enough

time-granularity. We sometimes need to compare the status

of motion detector, door monitor and HVAC. We cannot make

such analysis from aggregated trend data (e.g., daily average).

This analysis basically involves very large dataset transfer

mainly from storages to UI-terminals.

B. Conventional Solution

The widely-applied or conventional solution is to make use

of web services and databases, and to integrate them for their

identified use cases. Gateways with web service interfaces

are available on the market (e.g., BACnetWS5, oBIX6, i.Lon

SmartServer7). Any database management systems (DBMS)

can be customized to archive historical records under their

identified data schema. Some batch jobs can run behind the

database to generate statistics of historical records. Any plat-

forms can be used for developing UI-terminals if it provides

the access interface to the database. Integrated and packaged

products for building energy management system (BEMS) are

also available: e.g., Exaquantum8.

The problem of this solution comes from its proprietariness.

A data-centric building automation system can be developed

with system integrators at the first phase. However, we have

to maintain and reconfigure the system for several decades

after the deployment. Especially if the design falls into the

following pitfalls, such maintenance becomes a huge burden

for the system owner for several decades.

5BACnet web services. http://www.bacnet.org/
6oBIX: Open Building Information Exchange. http://www.obix.org/
7i.Lon Smart Server: Embedded Internet server provided by Echelon.

http://www.echelon.com/
8Exaquantum: a packaged product for energy management provided by

Yokogawa Corporation
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C. Pitfalls

1) Application-specific data schema and implicit data pro-

cessing: It seems quite natural to define application-specific

data schema as a common data model when implementing the

use cases. Fig.2 (a) shows the definition of schemas for power

and switch monitoring applications. System operator wants to

know the power usage and working statuses of the PCs and

the projector. This system implicitly calculates the working

time in the background, based on the status of the switches.

This system is totally customized for this type of applica-

tion. We can expand the number of smart meters and switches,

but we cannot include weather data, motion detector, HVAC

statuses without adding new schemas. Of course, we can do

this. However, this approach multiplies the engineering cost.

The maintenance of the wide varieties of data schema and

related software becomes a burden.

2) Concretely defined interfaces: It seems quite natural

to define multiple interfaces and access methods concretely

for identified use cases by system integrators as Fig.2 (b).

It can surely implement the identified use cases if we could

pay a number of attentions in the design, review, software

development, system test and so on.

However, if we concretely define many interfaces and

develop many subsystems, such engineering cost becomes

multiplied. Besides, we cannot easily extend or change the

implementation of the system on the concretely defined inter-

faces. Such burdens follow for several decades.

3) Data transfer on a remote procedure call: Many plat-

forms support remote-procedure call (RPC) as a web service

for accessing remote objects and it is getting easier to develop

RPC-based communications over the Internet. Data-centric

building automation systems have taken this advantage with

the development of the web service technologies.

RPC-based communication performs well at small dataset

transmission. However, it causes timeout failure or out-of-

memory error if the amount of dataset becomes large as Fig.2

(c) illustrates.

D. Challenges

1) Application-Independent Data Model: In order to use

the system at many applications, the common data model must

be designed independently from application-specific schema.

The least requirement on the data model is (1) that it allows

managing time-series data sequence and (2) that it allows iden-

tifying the sequences. This also omits implicit data processing

inside the system (if we need to process data inside, we should

explicitly specify the processing scheme).

2) Interface Generalization: In order to simplify the man-

agement of interfaces in data-centric building automation

systems, we must design a common interface that can inter-

connect system components. This interface becomes a gen-

eralized interface that can implement gateways, storages, UI-

terminals and any other functionalities.

3) Scalabile Data Transmission: A data-centric building

automation system must be able to transfer very large dataset

from a component to another. Though data transmission on

a single RPC is not scalable, we must make use of RPC-

style communication to get scalability because RPC is well-

supported by many platforms.

III. FACILITY INFORMATION ACCESS PROTOCOL

FIAP defines an application-independent data model for

managing data sequences produced by sensors and actuators.

It generalizes the interface for gateways, storages and UI-

terminals. We also designed the data exchange procedure that

allows scalable data transmission.

A. Management of Data Sequence by Point

A sensor produces a sequence of data. Signals for con-

trolling an actuator also forms a sequence of data. Generally

any entities work in the same manner in data-centric building

automation systems. For example, a data aggregator (e.g.,

hourly-average temperature calculator) generates sequences of

data from their sources.

We define point to identify those sequences in the system.

A point has only a sequence of data, which meaning (e.g.,

information of sensing target) must not be defined here in

the common model. System components such as gateways,

storages and UI-terminals manage them by points in their

memory space or exchange them with others on flows.

More formally, let P be a set of points managed in a

component or transferred on a flow. A point p ∈ P has a set of

time-value pairs, which we denote by V (p). A pair v ∈ V (p)
has time and value. The format looks like as follows.

<point id="p1">

<value time="2011-05-01T00:00:00">35.5</value>

<value time="2011-05-01T00:01:00">35.4</value>

<value time="2011-05-01T00:02:00">35.3</value>

</point>

<point id="p2">

<value time="2011-05-01T00:00:00">true</value>

<value time="2011-05-01T00:01:00">true</value>

<value time="2011-05-01T00:02:00">false</value>

</point>

This data model itself is designed to be generic. It can be

used at power monitoring applications, weather information

gathering, and management of virtual machine working sta-

tuses.

B. Generalization of Gateways, Storages and UI-terminals

FIAP defines a common interface for gateways, storages,

and UI-terminals. They can be inter-connected with other

components with the common interface. The differences of

components come from their implemented functionalities. A

gateway has a data bridge between a field-level bus and FIAP

data model. A storage has a huge capacity of buffers to archive

the history records of data. An UI-terminal has a data bridge

between user interfaces and FIAP data model. Although these

components are implemented differently, they can be inter-

connected by the common interface.
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Fig. 3. FIAP-FETCH procedure takes both advantages of RPC-GET and FILE-READ. (a) RPC-GET works efficiently at small data transfer but involves
heavy load at large data transfer. (b) FILE-READ enables very large data transmission but has overhead at small data transfer. (c) FIAP-FETCH works as
RPC-GET when the size of dataset is small but changes to FILE-READ style when it becomes large.

C. Data Exchange Procedures

FIAP defines three procedures for data exchange among

components. These procedures are (1) WRITE to send data

to other components, (2) FETCH to retrieve data from other

components, (3) TRAP to configure the other components

to notify the change of status. FIAP defines them on RPC

style communication because RPC is well-supported by many

platforms.

1) WRITE: WRITE procedure initiates data transportation

at the sender-side. The client (i.e., the sender) sends a message

formatted as section III.A. The server (i.e., the receiver) returns

”OK” if it accepts. In WRITE procedure, the sender-side can

avoid huge data transmission in one procedure call.

2) FETCH: FETCH procedure initiates data transportation

at the data receiver-side. The receiver-side sends a query with

specifying the range of dataset, but it does not know the

amount of data for the returning data. If the amount of dataset

is not large, the server returns all of them at the response.

However, if the amount exceeds a certain limit, the server

returns only the first subset of the specified dataset with a

cursor, indicating that there is the next subset. If the client

receives a cursor, it requests again with the cursor, and the

server returns the next subset. They repeat this procedure until

all the data transfer finishes.

Fig. 3 shows that FETCH procedure takes both advantages

of RPC-GET and FILE-READ. RPC-GET returns all the

dataset in one procedure call. It has smaller overhead in

communication but it puts heavy load at the server if the

amount is large. FILE-READ is scalable for reading very large

dataset, however, it has overhead for small dataset transfer.

FIAP-FETCH procedure performs well for both small dataset

and large dataset.

3) TRAP: FIAP defines TRAP procedure to dynamically

subscribe event-like data sequences from other components. A

subscriber sends a stream (or trap) query to a notifier. Then,

the notifier sends updated data to the subscriber. The stream

query has a lifetime, and it must be updated by the subscriber.

IV. FIAP-BASED SYSTEM INTEGRATION

In FIAP-based system integration, we assemble individu-

ally developed components (i.e., gateways, storages and UI-

terminals) into a data-centric building automation system. We

configure them to properly exchange data with each other so

that these components can collaboratively work. The system

becomes a diagram of component and flow as Fig. 4. Thus,

we call this assemble process component-flow programming.

Formally, let Ψ = (C,F ) be a component-flow system.

C is a set of components and F is a set of flows between

components. A component c(∈ C) implements functionalities

such as gateways, storages and UI-terminals. A flow f(∈ F )
specifies how and what data shall be exchanged between the

components.

For example, Fig. 4 shows a data-centric building automa-

tion system. It has four components C = {c1, . . . , c4}, and

these components are connected by flows F = {f1, . . . , f4}.

4) Programming of Components: Each component is pro-

grammed as follows.

c1: p1 gives the status of motion detector by true/false.

p2 gives the summarized time of motion detection in

second. p3 gives the status of the lamp by true/false.

The lamp can be controlled at p4 by true/false.

c2: p5 gives the summarized power usage in Wh.

c3: c3 archives the data of any points written to this com-

ponent, and returns the specified range of dataset.

232



Fig. 4. FIAP-based system integration. We assemble individually developed
gateways, storages, and UI-terminals into a data-centric building automation
system, which can be drawn by component-flow diagram.

c4: c4 shows one day history of p2, p3 and p5. It creates

lamp control commands at p4.

5) Programming of Flows: Each flow is programmed as

follows.

f1: c1 sends the latest values of p2 and p3 periodically

to c3 by WRITE procedure.

f2: c2 sends the latest value of p5 periodically to c3 by

WRITE procedure.

f3: c4 retrieves one day history of p2, p3 and p5 from c3

by FETCH procedure when requested by the system

operator.

f4: c4 sends p4 to c1 by WRITE procedure when re-

quested by the system operator.

In this way, the specification of Ψ = (C,F ) determines the

total behavior of the system, which works as a data-centric

building automation system.

Practically, these programming can be made by script-based

configuration. We can make use of text editors or command

line interfaces (CLIs) for configuring the components and

flows just as the conventional Ethernet switches and IP routers.

We do not have to prepare integrated development environ-

ments (e.g., Eclipse, Microsoft Visual Studio) for this purpose.

V. APPLICATION

A. Implementation and Deployment

We have been operating a FIAP system for about one year

from the beginning of 2010 at Engineering Bldg.2 in the

University of Tokyo. It manages 1714 points9, which in detail

are:

• Electricity at distribution boards (908 points)

9The number of points is the number of independent data sequences. E.g.,
The three sequences for voltage(V), current(A) and power(W) of an outlet are
counted as three.

• Electricity at outlets (67 points)

• HVAC working modes (639 points)

• Motion detection and light status (40 points)

• Room environment (36 points)

• Gas and water supply (17 points)

• Weather information (7 points)

The frequency of data recording is configured for each point.

Some points record at every minute, but others at every 30

minute. The total number of data elements in the data storage

for year 2010 was about 430 million records.

1) Benefit from application-independent data schema: We

first implemented storage and UI-terminals, and deployed for

the building. We, then, implemented gateways for BACnet,

oBIX, SNMP and other proprietary systems, and incrementally

applied to the multiple applications as above: i.e., electricity,

HVAC, motion detection, light status, weather. We could in-

clude various applications because FIAP has taken application-

independent data schema for the design principle.

2) Benefit from interface generalization: We had only to

assemble individually developed components into the data-

centric building automation system. Actually, we have im-

plemented gateways, storages, and UI-terminals on many

platforms, including Java (with Axis210), PHP, Microsoft

.NET Framework, Python, Ruby and Linux C. Those imple-

mentations came from different vendors and developers, and

independently packaged as FIAP components. What we had

done for integration is script-based configuration with a text

editor.

3) Lightweight implementation: Application-independent

data schema and interface generalization has certainly reduced

the engineering cost for software design, implementation, test

and so on. The source code for Java platforms is made only

by about 9000 lines with 52 class files (not including auto-

generated codes). This includes the implementation of gateway

(for BACnet), gateway (for oBIX), gateway (for SNMP), stor-

age, and several UI-terminals. They use external libraries of

Axis2 and JDBC11. If we implement more functionalities, the

size of source code will increase, but our prototype indicates

that FIAP is basically lightweight.

The most lightweight implementation is programmed in

C for Linux platform. Though it has only WRITE client

functionality, it is implemented with only 264 lines without

using XML and SOAP libraries.

B. Data Analysis

Fig. 5 is the distributions of temperature of a meeting

room in the building. The room has a motion detector, which

can identify the time in use. Using such information, we

categorized temperature data into four classes: i.e., (1) summer

(in use), (2) summer when not used (vacant), (3) winter (in

use), and (4) winter (vacant). We used dataset for [2010-07-01,

2010-09-30] as summer, and for [2010-01-01, 2010-02-28] ∪
[2010-12-01, 2010-12-31] as winter.

10Axis2: apache web services engine.
11JDBC: Java data base connectivity.
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Fig. 5. Temperature distributions of a meeting room

From this result, we can see that temperature of the meeting

room has been well controlled. When the meeting room was

in use, the average temperature was 27.5 degrees Celsius in

summer, and 22.8 degrees in winter. They did not become too

low in summer or too hot in winter. This means that people

set appropriate temperature for the room. When the meeting

room was vacant, the temperature became higher in summer

and colder in winter. This result indicates that if no body used

the room, the air controller was switched off.

In order to enable this analysis, the analyzer had to read 3

months’ history twice (for winter and summer) for 7 sensors: 6

sensors for motion detector, 1 sensor for temperature. Totally,

there were about 1.5 million records. The FETCH procedure

worked very well for retrieving such large amount of dataset.

VI. RELATED WORK

Researchers from database communities have tried to de-

velop wireless sensor networks [9], [10], [6] with the applica-

tion of database management systems (DBMS) or data stream

management systems (DSMS) [5], [1]. GSN[3] and Daniel J.

Abadi et al.[2] has also studied DBMS-based or DSMS-based

sensor networking over the Internet. The main focus in their

research has been the reduction of data traffic by in-network

data aggregation[8], and the engineering cost was not mainly

focused.

From the system development point of view, DBMS-based

or DSMS-based platform is too general. The system integrator

has to identify the use cases and design the data schema.

They also develop the software for the designed data schema,

and need to maintain the software. As we have identified,

this system integration manner falls into the pitfall as Fig.

2(a), indicating that it multiplies the engineering cost for both

installation and maintenance.

The researches of sensor web [4] have challenged to allow

the management of global environmental data such as weather

information over the Internet. The main goal of their re-

searches seems to allow searching application-specific statuses

from shared ”pre-defined environmental information”. Thus,

the data model presented in IrisNet[7] is designed to tell

whether parking slot is available or not. The main goal of our

research is to propose a system development method which

minimizes engineering cost at the system assembly phase.

Thus, we considered application-independent data model and

interface generalization for the design of individual system

components.

VII. CONCLUSION

We identified three major design pitfalls that multiply the

engineering cost (i.e., installation and maintenance cost) of

data-centric building automation systems. System owners op-

erate their intelligent buildings for several decades. Thus, such

engineering cost must be minimized, otherwise the operation

becomes a burden.

We presented technical challenges that enable lightweight

system integration. The challenges include application inde-

pendent data model, interface generalization, and scalable data

transmission.

We presented the design principles of FIAP and FIAP-based

system integration. We have also developed and deployed

FIAP-based data-centric building automation system in En-

gineering Bldg.2 in the University of Tokyo. This experiment

has shown that FIAP allows incremental installation for wide-

varieties of applications (i.e., electricity, HVAC, motion detec-

tion/lights, room environment, gas and water supply, weather)

with CLI-based configuration.
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