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Abstract

Background: Quantitative knowledge of intracellular fluxes is important for a comprehensive

characterization of metabolic networks and their functional operation. In contrast to direct

assessment of metabolite concentrations, in vivo metabolite fluxes must be inferred indirectly from

measurable quantities in 13C experiments. The required experience, the complicated network

models, large and heterogeneous data sets, and the time-consuming set-up of highly controlled

experimental conditions largely restricted metabolic flux analysis to few expert groups. A

conceptual simplification of flux analysis is the analytical determination of metabolic flux ratios

exclusively from MS data, which can then be used in a second step to estimate absolute in vivo

fluxes.

Results: Here we describe the user-friendly software package FiatFlux that supports flux analysis

for non-expert users. In the first module, ratios of converging fluxes are automatically calculated

from GC-MS-detected 13C-pattern in protein-bound amino acids. Predefined fragmentation

patterns are automatically identified and appropriate statistical data treatment is based on the

comparison of redundant information in the MS spectra. In the second module, absolute

intracellular fluxes may be calculated by a 13C-constrained flux balancing procedure that combines

experimentally determined fluxes in and out of the cell and the above flux ratios. The software is

preconfigured to derive flux ratios and absolute in vivo fluxes from [1-13C] and [U-13C]glucose

experiments and GC-MS analysis of amino acids for a variety of microorganisms.

Conclusion: FiatFlux is an intuitive tool for quantitative investigations of intracellular metabolism

by users that are not familiar with numerical methods or isotopic tracer experiments. The aim of

this open source software is to enable non-specialists to adapt the software to their specific

scientific interests, including other 13C-substrates, labeling mixtures, and organisms.

Background
Genome-wide measurements of cellular mRNA, protein
or metabolite concentrations (or their differential concen-
trations) are current workhorse technologies in functional
genomics and systems biology. For a comprehensive anal-
ysis of metabolic networks, however, typically also knowl-

edge on the molecular traffic between the metabolites is
necessary. These time-dependent in vivo fluxes are the
functional complement to the metabolite concentrations,
but, in contrast to the concentrations, cannot be detected
directly [1]. Instead, intracellular fluxes must be inferred
indirectly from measurable quantities, such as nutrient
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uptake and secretion rates and/or 13C-labeling pattern,
through methods of metabolic flux analysis [2,3].

To reliably identify a unique distribution of intracellular
fluxes, highly controlled culture conditions, extensive
physiological, and 13C-data are a prerequisite [2].
Although many laboratories have access to the necessary
instrumentation, flux analysis remained largely restricted
to a handful of expert groups because flux quantification
required the simultaneous interpretation of physiological
and 13C-data. Briefly, complicated isotopomer models of
metabolism were used to balance the labeling state of
metabolic intermediates or protein-bound amino acids
and to identify a best fit of intracellular fluxes to the avail-
able data. Several (non-open source) software tools for
flux analysis with isotopomer models of varying complex-
ity are available for academic research [4-6], with 13C-
FLUX as the probably most advanced one [7]. Further-
more, software tools for automated processing of raw MS
[8,9] or NMR data for flux anaylsis are available [10], in
the latter case allowing also to calculate flux ratios.
Although valuable biological insights can be obtained by
isotopomer balancing [11-16], the required expertise in
computational analysis and quantitative biology as well
as the complexity of the models restricted broader appli-
cation and wider use as a routine tool.

A conceptual simplification of flux analysis and an appro-
priate analytical throughput was obtained by splitting the
problem in two separate tasks. Firstly, MS-detected 13C
data are analytical interpreted with probabilistic equa-
tions that quantify flux partitioning ratios in so-called
metabolic flux ratio analysis [17], akin to an earlier NMR-
based approach [18]. In the second step, these flux ratios
are used as constraints for a flux balancing calculation in
a comparatively simple metabolic network model to esti-
mate absolute intracellular fluxes from the measured
extracellular fluxes [19,20]. For non-expert users, the
major advantage of this 13C-constrained flux balancing is
the relative simplicity of the employed models, rapid
computation, and a more intuitive data treatment. This
also allows to simplify the experimental set-up because
the flux ratios are calculated from MS data exclusively.
Hence, simple shake flask experiments suffice for standard
analyses – although at the cost of flux resolution – thus
restricting the use of laborious bioreactor experiments to
specific applications. Intuitively, less data suggest less reli-
able flux estimates, which indeed would be the case if an
isotopomer models was used. However, since the flux
ratios are analytically determined in a strictly local data
interpretation and not in a global fitting procedure, most
ratios are from independent measurements and can partly
validate each other. For a more comprehensive treatise of
flux ratio and net flux analysis please see [3,14,19,21].
Recently, 13C-constrained flux balancing was successfully

applied to various microorganisms [22-25] and was also
the key methodology for higher-throughput flux analyses
in our lab [22,26,27].

Based on these conceptual advances, the availability of a
user-friendly and robust software for flux analyses
becomes the major limitation for wider use. Here we
describe the open-source software package FiatFlux that
consists of two separate modules for analytical metabolic
flux ratio analysis and for 13C-constrained flux analysis.
FiatFlux condenses our accumulated knowhow and expe-
rience on metabolic flux analysis, and was used success-
fully for teaching and in collaborations with biologically-
oriented groups.

Implementation
We developed the FiatFlux software on a Matlab basis to
exploit the Optimization toolbox and the open source
environment. FiatFlux consists of two parts with distinct
functions: (i) computation of metabolic flux ratios exclu-
sively from MS data in the RATIO module and (ii) estima-
tion of net carbon fluxes within a comprehensive model
of metabolite balances from measured extracellular
fluxes, previously determined flux ratios, and biomass
requirements in the NETTO module. The two modules are
run independently, calling either the functions ratio.m or
netto.m, respectively.

The RATIO module affords the integration of raw MS data
that are passed to the software using the netCDF standard
(network Common Data Form) [28] (Figure 1). This for-
mat was chosen because it is supported by the proprietary
software of most mass spectrometer manufacturers. From
a netCDF file, FiatFlux generates a matrix with the total
ion counts for each scan (timepoint) and considered m/z
value, and searches automatically for known compounds
based on their predefined fragmentation pattern. For each
recognized analyte, a mass isotopomer distribution vector
MDVα is extracted from the matrix and normalized such
that

where m0 is the fractional abundance of molecules with
monoisotopic mass and mi>0 the abundances of fragments
with heavier masses. The mass isotope distribution vector
specific to the carbon backbone (MDVA) is obtained from
MDVα upon correction (a) for naturally occurring iso-
topes of O, N, H, P, S, Si, and C atoms in the derivatiza-
tion agent [29] and (b) for the presence of unlabeled
biomass in the sample, e.g. the inoculum [17]. The MDVA
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are, in turn, used to estimate by least square fitting the
mass distribution of their precursors (MDVM) in central
carbon metabolism [17], along with covariance matrices
for each MDVM, which are calculated from the experimen-
tal error (i. e. comparison of the MDVA of fragments with
identical carbon skeletons). Faulty MDVα measurements
are diagnosed by visual inspection of the residuals that
result for each MDVA in the MDVM fitting. In the case of
uniformly labeled tracer experiments, diagnosis is based
on the fractional labeling of MDVA (and MDVM) that
should equal that of the substrate [30]. Finally, the flux
ratios are calculated from the MDVM with probabilistic
equations [17]. Standard deviations for each flux ratio are
calculated using the covariance matrices of MDVM by
applying the Gaussian law of error propagation [17]. For
a more complete treatise of the mathematical/analytical
background and the experimental protocols please refer to
[30]. User monitoring and intervention is possible at
every stage from the graphical user interface (Figure 2).

The set of calculable flux ratios is a function of the bio-
chemical reaction network, the carbon substrates and
their corresponding 13C-labeling, and the analyte frag-
ments that can be detected by MS. The software is precon-
figured to derive metabolic flux ratios for a variety of
microorganisms such as yeasts [31,32], Escherichia coli
[17], Bacillus subtilis [23], and others [25] for growth on
[1-13C]glucose, [U-13C]glucose or mixtures thereof. The
preconfigured analytes are the TBDMSTFA-derivatized
proteinogenic amino acids that are typically detected by

robust GC-MS analysis [33]. Notably, FiatFlux is not lim-
ited to glucose substrates and can be extended to cope
with additional analytes, different derivatization agents or
separations, i.e. liquid chromatography or capillary
electrophoresis.

The second module (NETTO) addresses the estimation of
absolute in vivo (net) fluxes through a reaction network.
This is achieved by global material balances derived from
a stoichiometric model and accounting for the withdrawal
of precursors during growth (Figure 3). Because of the
presence of redundant or interconnected pathways, this
system of linear contraints is typically underdetermined
[34]. In so-called 13C-constrained flux balancing [19,20],
additional linearly independent constraints are obtained
from the experimentally determined flux ratios in the
RATIO module that are used to solve the system without
further assumptions on energy or redox balances. NETTO
features a platform to integrate metabolite balances and
13C-derived equality or inequality constraints; i.e. flux
ratios that are exactly determined or for which only reac-
tion bounds are available, respectively [19]. Depending
on the active set of constraints and reactions, the system
may either be underdetermined, determined, or overly
constrained. In underdetermined system, NETTO offers
either to search within the solution space for the flux dis-
tribution that maximizes a particular flux or the product
of an intermediate, or estimate all calculable fluxes using
the procedure outlined by Klamt et al. [35]. Exactly deter-
mined and overly constrained systems are both solved by
a least square optimization using Matlab fmincon func-
tion. This approach permits to simultaneously integrate
equality and reaction bound constraints in the calcula-
tion, and weight the constraints with the experimental
uncertainty [19]. Confidence intervals for each calculated
flux are estimated as a function of the experimental errors
from the Jacobian matrix of the output function. Inequal-
ity constraints (reaction bounds), only contribute to the
error criterion if the flux solution would otherwise exceed
the upper or lower bounds set by the flux ratio data. This
asymmetrical error consideration is described elsewhere
[19]. If the boundary constraint is inactive, the confidence
interval of the resulting flux (e.g. malic enzyme), is a result
of the (stoichiometric) dependence on other fluxes.

In NETTO, metabolic models can be constructed from
scratch and error-prone operations such as introduction
or modification of reactions are executed by the software.
In a text file, the user provides a list of reactions, ratios,
and biomass composition with a user-friendly syntax (Fig-
ure 4). The information is then automatically translated
into properly formatted structures and matrices and saved
in a Matlab m-file, that is called by NETTO during compu-
tation. The graphical user interface of NETTO permits to
freely remove a reaction or modify its reversibility, submit

Procedure for derivation of metabolic flux ratios from raw MS data in RATIO (see text for details)Figure 1
Procedure for derivation of metabolic flux ratios from raw 
MS data in RATIO (see text for details). For each stage of the 
analysis, exemplary data and corresponding computation 
time in seconds are shown on the right and the left, respec-
tively. Times were measured for the analysis of a GC-MS 
sample on a Pentium 4 1.6 GHz processor.

*.FF File

netCDF File

MDV
�

MDVA

MDVM

flux ratios

file conversion

analyte assignment
integration

correction for naturally
occurring isotopes

fitting

ratio estimation

1.62 s

0.04 s

0.61 s

1.29 s

0.10 s

Example

ALA-57: [0.5890 0.1470 0.0738 0.1482 ...

0.0286 0.0118 0.0014 0.0003 0.0000]

ALA-85: [0.6072 0.1391 0.2016 0.0363 ...

0.0136 0.0016 0.0003 0.0000 0.0000]

ALA-57: [0.765 0.038 0.020 0.176]

ALA-85: [0.788 0.024 0.189]

ALA-159:[0.770 0.027 0.203]

PYR : [0.778 0.034 0.022 0.166]

PYR : [0.785 0.029 0.186]

PYR : [0.725 0.108 0.166]

1-3

2-3

1-2

OAA from PEP : 0.79 ± 0.04

PYR from MAL (ub) : 0.13 ± 0.07

PYR from MAL (lb) : 0.03 ± 0.01

Ec UC.CDF (2,400 kB)

Ec UC.FF (236 kB)
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extracellular fluxes or metabolic parameters such as the P/
O respiratory coupling, or define which metabolites have
to be excluded from balancing, for example oxygen or ATP
(Figure 5). Alternatively, default preferences can be
defined in the saved model m-file. Whenever a session of
RATIO is running in parallel, NETTO imports the value for
matching flux ratios.

Both modules offer functions to save all variables and
recover work at a later point. Results are visualized directly
on the graphical user interface and can be stored to text
files or to Microsoft Excel spreadsheets.

Results and discussion
FiatFlux is the first publicly available software for flux
ratio analysis from MS data and, consequently, no com-
parison can be done with other programs. The scientific
value and accuracy of FiatFlux-calculated flux ratios has
already been discussed extensively [14,17,25,26,36,37],
and consistency between net flux estimates obtained
either with 13C-constrained flux balancing as in FiatFlux
or with global isotopomer balancing was demonstrated
previously [19]. Notably, both the calculation of flux
ratios from raw MS data in RATIO and the estimation of
net fluxes in NETTO is typically completed in a few

The main window of RATIOFigure 2
The main window of RATIO. Upon loading of MS data, analytes are first automatically recognized and assigned (A). When nec-
essary, manual assignment of analytes is performed in a different window. The experimental parameters are set by the user (B), 
then MDVM (C) and flux ratios (D) are calculated. Abnormal residuals indicate that the corresponding fragments are outlier, 
and they can be excluded (white) or reactivated (blue) by a single mouse click on the corresponding bar. Finally, the flux ratios, 
the MDVA and the MDVM are exported to a text file or Excel workbook (E).
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seconds (Figure 1). This constitutes a major advantage
compared to isotopomer balancing, since computation
time becomes negligible in relation to the time required
by the user to set the experimental parameters. In addi-
tion, interpretation of MS data and the integration with
measured fluxes are executed independently in FiatFlux.
In contrast to methods of isotopomer balancing, this ena-
bles the user to discern problems arising from bad meas-
urements or from incomplete metabolic models.

In FiatFlux, user supervision is necessary only when MS-
signals are low, saturated, or overlapping. This affects the
ion statistics of the corresponding fragment and results in
relatively high residuals after inferring MDVM from the
MDVA. Since the residuals are graphically represented on
the graphic user interface of RATIO, bad fragments are
rapidly identified and excluded with a single click. Also
when the quality of the fragments has to be diagnosed in
detail, and MDVM fitting and flux ratios estimation have
therefore to be iterated several times, a correct estimate is
obtained within some minutes. Using FiatFlux, a typical
user with moderate experience will be able to determine
intracellular net fluxes for hundreds of samples per day
from previously generated MS data.

The open source nature of FiatFlux, and in particular of
the RATIO module, permits to modify and extend its
capabilities beyond the predefined features. Although the
necessary skills strongly depend on the functionalities to
be modified, fundamental biochemical knowledge of the

reactions investigated is paramount for every user to
understand initial assumptions and critically interpret
outcomes. Provided that metabolism of a new organisms
to be investigated is similar to that of any of the 4 precon-
figured models,, very few adaptations are necessary and
the task is manageable by any biochemically-trained
biologist. In fact, in previous works we already demon-
strated the analysis of about 20 different species with the
4 core models [25,32]. The implementation of new flux

Schematic representation of the analysis workflow in NETTOFigure 3
Schematic representation of the analysis workflow in 
NETTO.

reactions

glucose in: GLC + ATP > G6P

zwf: G6P > 6PG + NADPH

yqjI: 6PG > Ru5P + CO2 + NADPH

gntZ: 6PG > Ru5P + CO2 + NADH

pgi: G6P = F6P

pfk-fbaA:F6P + ATP > 2*T3P

TK1: X5P + R5P = S7P + T3P

Respiration: O2 + 2*NADH > 2*PO*ATP

ratios

Serine from glycolysis = (2*[pfk-fbaA]-2*[TK2]-2*[TA])/

(2*[pfk-fbaA]+[TA]+[TK1])

Gnd-NADPH = [yqjI]/([gntZ]+[yqjI])

MAL from PYR (ub) > [mae]/([TCA]+[mae])

MAL from PYR (lb) < [mae]/([TCA]+[mae])

OAA from PYR = [anaplerosis]/([anaplerosis]+[mdh])

biomass

protein: (0.2573*mu +0.5027)*(289*[R5P]-111*[T3P]+747*[E4P]+ )

DNA: (0.1714*mu+0.0484)*(3077*[R5P]+1800*[PGA]+1277*[OAA]+ )

RNA: 0.026*(3260*[R5P]+1630*[PGA]+1630*[OAA]-10710*[NADH]+ )

...

...

...

...

...

...

...

...

A

B

C

Example of syntax for definition of a model for NETTOFigure 4
Example of syntax for definition of a model for NETTO. (A) Reactions are described with a unique identifier, educts, products 
and an operator to set reversibility. (B) Ratios are entered either as equality constraints (=), upper bounds (>), or lover bounds 
(<), and are defined using the reaction indentifiers. (C) Precursor requirement for biomass formation is expressed with a list of 
growth-rate dependent withdrawals of metabolites in µmol/gCDW. Separate statements are used for each macromolecular 
class such as protein, DNA, etc.

Linear system of constraints:
- mass balances
- flux ratios

Flux ratios from C-labeling
13

model.txt
- reactions
- ratios
- biomass precursors

Measured extracellular rates

* If the system is...
a) underdetermined:

b) exactly determined:

c) overly constrained:

- estimate calculable fluxes
- maximize objective function

- solve analytically

- solve by best fit optimization

Parameters FiatFlux - netto

matrix rank check,
method selection*

computation of net fluxes
error estimation
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ratios or new substrates, however, requires detailed infor-
mation on mapping of atoms in biochemical pathways,
understanding of error propagation, and advanced experi-
ence with Matlab syntax, thus is probably limited to
experts. Hence, at this stage, we decided to restrict free
modification of the preconfigured models by precompil-
ing the corresponding routine. In case a user requires
extensions, we encourage to contact the authors to collab-
orate on a proper integration that ensures correct estima-
tion of metabolic flux ratios and confidence intervals.

Finally, introduction of new GC methods or derivatiza-
tion procedures is very simple, and can be attained by
users with basic familiarity with the Matlab environment.
In principle, the same applies to implementing other sep-
aration techniques, such liquid-phase systems. Currently,
RATIO is not compatible with MS/MS product ion scans.

Conclusion
FiatFlux condenses the know-how developed over years in
our lab and has become our workhorse for quantitative
analyses of microbial central carbon metabolism. The

The graphical user interface of NETTOFigure 5
The graphical user interface of NETTO.
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software is preconfigured for the most widely used sub-
strate (glucose), the most frequently used (and informa-
tive) tracer mixtures, and several model microbes. While
this covers about 80% of all current flux applications, it is,
of course, not complete. The aim of this open source soft-
ware is to enable non-specialists to adapt the software to
their specific scientific interests, including other substrates
and or labeling mixtures. In particular, we aim at biolo-
gists that are not familiar with numerical methods or iso-
topic tracer experiments. In fact, with the availability of
this software, the only burden for such studies remains the
access to a GC-MS instrument. We hope that this transpar-
ent and flexible framework will support further
developments.

Availability
Project name: FiatFlux

Operating system: preferably Microsoft Windows. Some
minor problems were encountered using Matlab's graphic
user interface with Linux.

Programming language: Matlab R14 (The Mathworks).

Other requirements: Matlab Optimization Toolbox

License: source code is freely available from the authors
for academic purposes.

Any restriction to use by non-academics: license required.

Abbreviations
MDVα Mass distribution vector of analyte

MDVA Carbon-specific mass distribution vector of analyte

MDVM Mass distribution vector of metabolite

TBDMSTFA N-(tert-butyldimethelsylil)-N-methyl-trif-
luoroacetamide
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