
ORIGINAL RESEARCH
published: 01 September 2021
doi: 10.3389/fninf.2021.727859

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 727859

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Tze Meng Low,

Carnegie Mellon University,

United States

Panagiotis Hadjidoukas,

IBM, Switzerland

*Correspondence:

Cecilia Hernández

cecihernandez@udec.cl

Received: 19 June 2021

Accepted: 10 August 2021

Published: 01 September 2021

Citation:

Goicovich I, Olivares P, Román C,

Vázquez A, Poupon C, Mangin J-F,

Guevara P and Hernández C (2021)

Fiber Clustering Acceleration With a

Modified Kmeans++ Algorithm Using

Data Parallelism.

Front. Neuroinform. 15:727859.

doi: 10.3389/fninf.2021.727859

Fiber Clustering Acceleration With a
Modified Kmeans++ Algorithm Using
Data Parallelism
Isaac Goicovich 1, Paulo Olivares 2, Claudio Román 1, Andrea Vázquez 2, Cyril Poupon 3,

Jean-François Mangin 3, Pamela Guevara 1 and Cecilia Hernández 2,4*

1Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile, 2Department of Computer Science,

Universidad de Concepción, Concepción, Chile, 3Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette,

France, 4Center for Biotechnology and Bioengineering, Santiago, Chile

Fiber clustering methods are typically used in brain research to study the organization

of white matter bundles from large diffusion MRI tractography datasets. These methods

enable exploratory bundle inspection using visualization and other methods that require

identifying brain white matter structures in individuals or a population. Some applications,

such as real-time visualization and inter-subject clustering, need fast and high-quality

intra-subject clustering algorithms. This work proposes a parallel algorithm using a

General Purpose Graphics Processing Unit (GPGPU) for fiber clustering based on the

FFClust algorithm. The proposed GPGPU implementation exploits data parallelism using

both multicore and GPU fine-grained parallelism present in commodity architectures,

including current laptops and desktop computers. Our approach implements all FFClust

steps in parallel, improving execution times in all of them. In addition, our parallel

approach includes a parallel Kmeans++ algorithm implementation and defines a new

variant of Kmeans++ to reduce the impact of choosing outliers as initial centroids. The

results show that our approach provides clustering quality results very similar to FFClust,

and it requires an execution time of 3.5 s for processing about a million fibers, achieving

a speedup of 11.5 times compared to FFClust.

Keywords: fiber clustering, white matter bundle, parallel computing, data parallelism, GPGPU—CUDA

1. INTRODUCTION

In order to discover relevant information in tractography datasets, the research community has
proposed several unsupervised approaches based on clustering algorithms to identify the white
matter (WM) main structures based on shapes and streamline point positions. Some schemes
used well known clustering algorithms such as spectral clustering (O’Donnell and Westin, 2007;
O’Donnell et al., 2017), hierarchical clustering (Guevara et al., 2011b, 2012; Siless et al., 2018),
label fusion clustering (Jin et al., 2014), and fuzzy c-means (Li et al., 2010). Recent methods use
sampling, variation of distance metrics, multi-core parallelism, and different algorithm approaches
and representations (Garyfallidis et al., 2012, 2014, 2016; Vázquez et al., 2020).

Several applications that use fiber clustering algorithms include multi or inter-subject clustering
(Dodero et al., 2015; Huerta et al., 2020), WM atlas construction (Guevara et al., 2017; Román
et al., 2017; Zhang et al., 2018), bundle segmentation based on atlases (Guevara et al., 2012; Jin
et al., 2014; Labra et al., 2017), and connectivity-based cortical parcellations (Moreno-Dominguez
et al., 2014). Some approaches combine clusteringmethods with anatomical information to identify

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.727859
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.727859&domain=pdf&date_stamp=2021-09-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cecihernandez@udec.cl
https://doi.org/10.3389/fninf.2021.727859
https://www.frontiersin.org/articles/10.3389/fninf.2021.727859/full

Goicovich et al. A Parallel Fiber Clustering Algorithm

known bundles (Li et al., 2010; Yoo et al., 2015; Garyfallidis
et al., 2018). In addition, researchers use visualization tools
for improving the understanding and interpretation of
tractographies and segmented fiber bundles (Garyfallidis
et al., 2012; Guevara et al., 2015; Combrisson et al., 2019).
However, most of the clustering algorithms based on traditional
clustering methods applied on large datasets are usually
computationally expensive. Hence, recent works have proposed
clustering schemes to improve computational time while
maintaining high-quality results (Garyfallidis et al., 2012, 2014,
2016; Vázquez et al., 2020).

With the increase in data volumes and parallel architectures,
parallel computing has become a powerful paradigm to
improve performance in various applications. Building
parallel clustering algorithms include different platforms
and strategies. Some strategies use sampling (Guha et al.,
2001), data partitioning and the MapReduce paradigm
(Dean and Ghemawat, 2008; Banharnsakun, 2017). Data
partitioning improves performance by executing clustering
algorithms in data partitions in parallel and combining
their results to produce global clusters (Dafir et al., 2020).
In recent years, GPUs have gained increased attention
because their massive parallel architecture can accelerate
data intensive applications. Today, accelerated approaches
combine multicore and GPUs present in modern laptops and
desktop computers to build GPGPU applications. Some parallel
traditional clustering algorithms based on data partitioning on
GPGPUs include Kmeans and fuzzy c-Kmeans (Fakhi et al.,
2017; Jamel and Akay, 2019), CUDA Kmeans (Giuroiu and
keng Liao, 2015; Cuomo et al., 2019), clustering based on
density G-DBSCAN (Andrade et al., 2013), and hierarchical
clustering (Chen et al., 2017). A recent survey (Dafir et al.,
2020) provides a discussion of parallel clustering algorithms
and platforms.

For applications based on tractography datasets, some
methods introduce parallelism using GPUs to improve
the execution times for visualization of bundles and
streamlines (Guevara et al., 2015; Combrisson et al., 2019),
visualization of fused DTI/HARDI data (Prckovska et al.,
2011), efficient tractography compression, storage, and
visualization (Haehn et al., 2020), fiber segmentation (Ros
et al., 2011; Labra et al., 2017), dMRI non-linear model
fitting and probabilistic tractography calculation (Hernandez-
Fernandez et al., 2019), geodesic fiber tracking (van Aart
et al., 2011), and connectome pruning (Kumar et al.,
2019).

In the context of fiber clustering, FFClust is a state-of-the-
art fast method that builds high-quality clusters (Vázquez et al.,
2020). The algorithm consists of four steps where it combines
data parallelism onmulticore architectures using local clustering,
information aggregation, refinement, and graph representation
to produce global clusters.

This work proposes a GPGPU parallel algorithm for
FFClust. The parallel algorithm exploits multicore and GPU
fine-grained parallelism. The proposed method provides
a variation of the Kmeans++ algorithm, includes highly
parallel patterns, memory optimization using constant,

shared, and coalescing memory for high performance. The
algorithms are implemented in C++, the thrust library, and
the Compute Unified Device Architecture (CUDA) language.
The experimental evaluation shows that our approach obtains
clustering results with a quality that is similar to FFClust.
In addition, it can attain an execution time of 3.5 s for
about a million fibers, achieving a speedup of 11.5 times
compared to FFClust. As far as we know, this is the first fiber
clustering method that takes advantage of both multicore
and GPU architectures, and it is the fastest streamline cluster
algorithm in the research community, making it appealing for
a variety of applications, including multi-subject clustering,
WM bundle atlases, connectivity-based parcellation, and
visualization tools.

2. MATERIALS AND METHODS

2.1. Tractography Datasets
This study uses the ARCHI database (Schmitt et al., 2012)
containing high-quality MRI data acquiered on a Tim Trio 3T
MRI systemwith a 12-channel head coil (Siemens, Erlangen). The
MRI protocol includes a T1-weighted image at 1 mm isotropic
spatial resolution using an MPRAGE sequence, a B0 field map
to correct artifacts, and a single-shell HARDI SS-EPI sequence
with 60 optimized diffusion weighted directions, b = 1, 500
s/mm2 and isotropic spatial resolution of 1.7 mm. The HARDI
dataset was corrected for artifacts produced by eddy currents,
susceptibility effects, spikes, and noise. Then, the analytic q-
ball diffusion model (Descoteaux et al., 2007) was calculated.
A robust brain white matter propagation mask based on a
T1-weighted segmentation was also calculated (Guevara et al.,
2011a) and whole-brain regularized streamline deterministic
tractography (Perrin et al., 2005) was computed on the diffusion-
weighted (DW) space, based on the propagation mask, using a
step of 0.2 mm and a maximum curvature angle of 30◦. We
used the BrainVISA / Connectomist-2.0 software to processed
all data (Duclap et al., 2012). Resulting tractography datasets
contain about one million fibers per subject (1,019,160 fibers on
average). Also, we performed a post-processing step to resample
all fibers using 21 equidistant 3D points. Therefore, each fiber
consists of 21 3D points. Several previous approaches used
the same representation (Guevara et al., 2012; Vázquez et al.,
2020).

2.2. Background
2.2.1. FFClust
The FFClust algorithm consists of four steps described next
and shown in Figure 1. The scheme uses the Euclidean distance
expressed in dP (Equation 1) for fiber 3D points, and Euclidean
distance between fibers as given in Equations (2), (3), and
(4). The dME distance is the minimum of the maximum
Euclidean distance between the corresponding points of two
fibers, considering fibers stored in direct (dE), and reverse
or flipped (dEF) order in memory. Both storing orders are
considered for a pair of fibers since for whole-brain tractography

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 1 | FFClust method with its four steps. Step 1: Building data point clusters, Step 2: Generating preliminary fiber clusters, Step 3: Reassignment of small to

large preliminary clusters, Step 4: Building final clusters.

it is not possible to have a unique valid orientation for all fibers.

dP(ai, bi) = ||ai − bi||

=

√

(aix − bix)
2 + (aiy − biy)

2 + (aiz − biz)
2 (1)

dE(a, b) = maxi∈21(dP(ai, bi)) (2)

dEF(a, b) = dE(a, b
F) = dE(a

F , b) (3)

dME(a, b) = min(dE(a, b), dEF(a, b)) (4)

Step 1: Building data point clusters. This step applies the
Minibatch Kmeans (MK) (Sculley, 2010) on a subset of 3D
fiber data points independently, using a different number of
clusters depending on the position in the sequence of the 21 3D
points in the fibers. The algorithm defines Kpc as the number of
clusters used in the middle data point position and Kpo as the
number of clusters in the other selected data point positions.
The value for Kpc is 200 and for Kpo is 300; and the chosen
data points positions are 1, 4, 11, 18, 21 (the two extreme points,
the central points and two intermediate points). Therefore, the
number of clusters chosen for the data point position 11 is 200,
and the number of clusters for the point positions 1, 4, 18, 21
is 300. The algorithm used the Elbow method to obtain the
number of clusters Kpc and Kpo experimentally. At the end of

this step, after applying MK on the five selected data points
positions independently, all data points belonging to the specific
positions are classified as belonging to a cluster identified by
its membership. Figure 1 (Step 1) shows an example of cluster
points for the selected positions 1, 4, 11, 18, 21 of fibers p, q, r, s,
and the point cluster memberships obtained byMK are identified
by labels A,B,C,D,E, F,G,H, I.

Step 2: Generating preliminary fiber clusters. This step builds
preliminary fiber clusters using a dictionary data structure that
groups all fibers sharing the same point cluster memberships
obtained in Step 1. Figure 1 (Step 2) displays an example with
two preliminary clusters. One is given by fibers p, q sharing the
cluster point memberships A,B,C,D,E and the other contains
fibers r, s sharing memberships F,G,C,H, I. The main caveat of
Step 1 and Step 2 is that some close fibers might be classified
incorrectly in different preliminary clusters because, in memory,
some fibers reside in direct order and others in reverse order. The
Step 3 of the algorithm addresses this problem by merging such
preliminary clusters.

Step 3: Reassignment of small to large preliminary clusters. In
this step, FFClust divides all preliminary clusters into two sets,
a set with all clusters with six or more fibers (SL) and a set
with small clusters containing all clusters with fewer than six
fibers (SS). Then, the step defines a distance threshold dRmax,

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

computes cluster centroids using arithmetic mean of fiber points,
and reassigns each small cluster to the closest large preliminary
cluster if the distance dME between cluster centroids is less than
dRmax. The dME distance captures preliminary clusters consisting
of close fibers that reside in memory with different orientation
order. The value for the threshold dRmax is defined experimentally
at 6mm. At the end of the step, we obtain candidate clusters along
with their centroids. Figure 1 (Step 3) displays an example of this
reassignment, where the small preliminary cluster pc1 is merged
into the large preliminary cluster pcz forming a candidate cluster
because the dME distance between their centroids is lower than
the threshold dRmax. Similarly, preliminary cluster pc2 is merged
into pcx. Not merged preliminary clusters containing more than
two fibers such as pcr and pcy also become candidate clusters. At
the end of this step, preliminary clusters with one or two fibers
are discarded as noise.

Step 4: Building final clusters. The last step performs the final
refinement process and produces the merging of the candidate
fiber clusters obtained in Step 3. This step first builds groups
defined by the membership of the middle point of fibers obtained
in Step 1. Then a graph representation is defined for each group.
In the graph representation, each centroid of a candidate cluster
is represented as a vertex, and an edge is defined if two vertices
have a maximum distance dME below the threshold dMmax. This
threshold is set at 6 mm. After building the graph, the algorithm
finds all maximal cliques, sorts them by decreasing size, and
merges candidate clusters belonging to the same maximal clique.
Note that candidate clusters are merged according to the first
processed maximal clique. Figure 1 (Step 4) depicts a high-level
overview of the step, including an example of candidate cluster
centroids, graph representation, maximal cliques, and merge to
produce the final clusters. In the example, there is one group
with six candidate cluster centroids represented by a graph with
six vertices (vi, i ∈ [1, 6]) and seven edges (ej, j ∈ [1, 7]).
There are two maximal cliques in the graph; one has the vertices
v1, v3, v4, v5, and the other has vertices v2, v6. Then, candidate
clusters C1,C3,C4,C5 are merged into one final cluster (blue
cluster), and candidate clusters C2,C6 into another final cluster
(orange cluster).

2.2.2. Kmeans Algorithm
This work uses the Kmeans method instead of the MK algorithm
in the Step 1 of FFClust. Kmeans is a well-known unsupervised
partition-based clustering algorithm that classifies input data
points into K partitions based on a distance metric. The
algorithm is iterative and consists of the following steps.

1. Choose K random centroids from data points
2. Repeat until convergence or number of iterations

a. Assign each data point to the cluster with minimum
distance to centroid

b. Compute centroids based on partitions produced in
previous step

The Kmeans algorithm has two main phases described in points
2.a and 2.b. The 2.a phase, where each data point finds its closest
centroid, has a sequential time complexity of O(NKd), where N

is the number of data points, K is the number of clusters, and
d the data point dimension. The 2.b phase of the algorithm,
where each cluster recomputes its centroid, has a sequential time
complexity of O(N + K). Note that typically N >> K, then
the time complexity ratio between phase 2.a and 2.b is O(Kd),
which means that phase 2.a grows faster than 2.b and therefore
parallelizing phase 2.a has more impact on the speedup. Phase
2.a provides high parallelism since there is no data dependency,
where each processor can compute the distance of a data point to
the K cluster centroids and associate the data point to the cluster
id with the minimum distance. Thus, this phase is bounded by
the number of available parallel processors. The parallel time
complexity of this phase is given by O(NKd/np), where np is the
number of processors. Observe that the ratio between the parallel
2.a phase and sequential 2.b is O(NKd/np(N + K)), and if N >>

K, which is the usual case, it is simplified to O(Kd/np). Then, it
is crucial to accelerate phase 2.a. As observed, the parallelism is
limited by the number of available processors. Given this analysis,
we define a parallel algorithm using GPU parallelism since it
allows to exploit more parallelism using more threads than using
a multi-core CPU.

Kmeans++ is a variation of Kmeans that improves the quality
of the clusters. The algorithm is identical to Kmeans, except for
the initialization of the K centroids. Kmeans++ selects the K
initial centroids that are farther apart, starting from a random
point. This selection intends to avoid the incorrect division of
clusters. Using Kmeans++ cluster centroid initialization also
exploits parallelism in the GPU as described in section 2.3.

2.3. Parallel Algorithms for FFClust
This section describes the parallel algorithms performed in each
of the steps of FFClust. Figure 2 shows the data flow of our
parallelization scheme.

2.3.1. Parallel Algorithms for Step 1 of FFClust
As mentioned in the previous section, Step 1 of FFClust
applies the MK algorithm, which uses random samples to
reduce the execution time. Instead of MK, this work studies
algorithms based on Kmeans and Kmeans++ using all the data
points. In particular, this study provides parallel algorithms
for Kmeans++ based on the CUDA Kmeans (Giuroiu and
keng Liao, 2015). As this step has the longest execution time,
our parallel approach considers different alternatives. The first
alternative uses a parallel algorithm for Kmeans, the second uses
Kmeans++, and the third alternative proposes a variation of
Kmeans++. All these implementations use coalescing memory
access patterns, constant, and shared memory in the GPU to
improve performance.

2.3.2. Step 1.a. Building Point Clustering Using

Parallel Kmeans
For this alternative, we use the basic algorithm of parallel Kmeans
proposed by Wei-keng Liao and Serban Giuroiu (Giuroiu and
keng Liao, 2015). We applied it on the same fiber point
positions that FFClust uses in its Step 1, that is, the positions
{1, 4, 11, 18, 21} with Kpc = 200 and Kpo = 300.

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 2 | Data flow and parallelism in GPU kernels. Step 1: Parallel point clustering, using Kmeans with point retraction computation with CUDA kernels based on

parallel map and maximum and minimum reduction operations. Step 2: Building preliminary fiber clusters using parallel sort_by_key and reduce_by_key operations

from thrust library. Step 3: Building candidate fiber clusters by reassignment of small to large preliminary clusters using point filters with CUDA kernels. Step 4:

Building final fiber clusters with graph representation using OpenMP thread parallelism. Candidate clusters are separated in groups, where each group shares the fiber

center point membership of Step 1, and then each thread creates and process a graph to produce the final clusters.

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

Algorithm 1: Kmeans++ algorithm.

Require: T, tractography dataset on fiber data point
Require: k, number of clusters, dP
1: C1 ← getRandomPoint(T)
2: for i = 1 to |T| do ⊲ with parallel MAP
3: D[i] = dP(xi,C1)
4: end for

5: for j = 2 to k do
6: i = max{D[j]} ⊲ get position of maximum value in D

with parallel max Reduction operation
7: Cj = xi
8: for i = 1 to |T| do ⊲ Update D with parallel MAP
9: D[i] = min{D[i], dP(xi,Cs)}, xi ∈ T, s ∈ [1, j]
10: end for

11: end for

12: return Cs, s ∈ [1, k]

2.3.3. Step 1.b. Building Point Clustering Using

Parallel Kmeans++
This step describes the Kmeans++ algorithm, aiming to improve
the selection of initial centroids used by the basic Kmeans
algorithm. The basic Kmeans algorithm chooses initial centroids
at random. The problem with this initialization is that final
clusters might produce clusters incorrectly partitioned. On the
other hand, Kmeans++ aims to select the initial centroids
from data points that are far away from one another. This
scheme aims to select data points from different clusters
as initial centroids, which aids in building better clusters
than Kmeans.

Algorithm 1 shows the main algorithm for implementing
Kmeans++. For a selected position in all fibers in the tractography
dataset T, the algorithm first defines an initial centroid C1 by
choosing a data point at random. Then, it computes the array
D with the Euclidean distance for every data point xi ∈ T to
the centroid C1. Note that here the Euclidean distance is the
distance between fiber 3D points (dP in Equation 1). Next, the
algorithm defines as the next centroid a data point xi, which is the
farthest away (maximum distance) point to all previous centroids
(lines 6 and 7 in the algorithm). The algorithm maintains in
D the minimum distance of every point in T to all previously
obtained centroids; that is, for every point xi, it stores the
distance to the closest previous chosen centroid (lines 8 to 10 in
the algorithm).

The algorithm just described has fine-grained data parallelism.
First, the distance array D can be computed using a Map
parallel operation since it applies the distance function to every
point xi ∈ T, and an independent thread for each point can
perform this operation. This operation takes O(1) parallel time.
Next, the nested loop in the algorithm obtains the position
of the farthest point to centroids, and it can be performed
by using a maximum parallel Reduction operation, which is
O(log(N)). Then, the algorithm performs a parallel Map, keeping
the minimum distance for each data point in the D array. The
algorithm obtains the next initial centroid computing the data
point at maximum distance in D.

2.3.4. Step 1.c. Centroid Retraction: A Variation of

Kmeans++ to Avoid Outliers
As mentioned, Algorithm 1 aims to define data points as initial
centroids that are far from each other using Kmeans++. However,
this algorithm might choose as initial centroids data points that
are outliers, that is, points that are far from any other point.
To avoid this problem, we define an operation to move initial
centroids toward the mean of the centroids. Note that these
initial centroids will probably be different from actual data points.
However, this is the way all centroids are updated in the iterative
process of Kmeans. We call this processing a retraction. This
computation is somehow similar to what the clustering algorithm
CURE (Guha et al., 2001) does to choose cluster representatives.

The operation for computing the point retraction qi is given
in Equation (5),

qi = Ci(1− r)+ Cm × r (5)

where r is the retraction rate defined as a value in the range [0..1]

and Cm =

∑

i∈[1,k] Ci

K . As this operation is performed once on the
initial centroids per selected point, its computation time is linear
with the number of clusters, K.

Figure 3 illustrates the differences between the selection
of initial centroids of Kmeans, Kmeans++ and Kmeans++
with point retraction. The Kmeans case (Figure 3, left) shows
the potential problem of choosing random centroids, where
the blue and orange clusters seem incorrectly separated
because their corresponding initial centroids were probably too
close. Kmeans++ (Figure 3, middle) can improve the Kmeans
clustering, but it still can incorrectly separate the blue cluster
because its initial centroid was too far away from all the cluster
points. The Kmeans++ with point retraction can reduce the effect
of an outlier centroid as shown in Figure 3 on the right.

Figure 2 (Step 1) displays the data flow and parallel kernels
for computing Kmeans++ with retraction of initial centroids and
the kernels used for data partitioning to compute the final fiber
point clusters. Note that this step is performed for each of the five
points selected positions 1, 4, 11, 18, 21 of fibers, resulting in fiber
point clusters for each position.

2.3.5. Parallel Algorithm for Step 2 of FFClust
In Step 1, as a result of computing Kmeans, we stored cluster
fiber point memberships in a matrix of N rows and p columns,
where N is the number of fibers and p = 5 the number of
fiber points. Each column contains the cluster membership of
each fiber point position. Consequently, each row contains the
cluster memberships of each fiber point. This representation
helps to process Step 2 and 3 of FFClust in the GPGPU
implementation. In Step 2 we use this information to define
a dictionary data structure where each row in the matrix is
a key representing a fiber cluster point memberships, and the
value is the fiber id. We use the parallel thrust library (nVIDIA
Developer, 2020) primitives to compute this step. The first
primitive is sort_by_key(), which receives as input an array
of keys, and an array of values. It outputs the sorted keys
with corresponding values, respectively. This output is precisely

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 3 | Illustration of possible cluster formation using Kmeans, Kmeans++ and Kmeans with point retraction. Initial centroid points are shown in red. Figure on the

(left) shows that random centroids for the blue and orange clusters are too close, producing an incorrect cluster formation. The figure in the (middle) shows

Kmeans++ centroid initialization, where the initial centroid for the blue cluster is far away from any other point, producing a wrong classification of some points which

are assigned to the orange cluster. Figure on the (right) shows Kmeans++ with point retraction which defines initial centroids that provide a better cluster formation

than Kmeans++.

the FFClust definition of preliminary clusters, where each
preliminary cluster is identified by a unique key, containing a
collection of fiber ids. Figure 2 (Step 2) displays the operation
of sort_by_key() using an example. In the example, there are
three fiber groups identified with their corresponding fiber
cluster point memberships {A,B,C,D,E}, {A,X,Z, F,G}, and
{E, F,C, F,H}. The first group contains fibers {1, 3, 15}, the
second contains fibers {3, 14} and the third contains fibers {2, 12}.
In addition, we use the thrust reduce_by_key() primitive. This
operation receives as input the sorted membership keys, and an
array of values. It outputs the unique keys (i.e., memberships),
and an array with the number of values (i.e., the number of
fibers) that have the same key. In the example of Figure 2 (Step
2), the number of fibers in each of the groups are 3, 2, and 2,
respectively. Step 3 uses as input the preliminary fiber clusters
with their corresponding sizes.

Note that the sort_by_key() and reduce_by_key() Thrust
parallel primitives implement the MapReduce pattern, which
boosts programmer productivity and provide high performance
as stated in Bell and Hoberock (2012).

2.3.6. Parallel Algorithm for Step 3 of FFClust
In this step small preliminary clusters are reassigned to
large clusters. We used the preliminary clusters with their
corresponding sizes computed in Step 2. Based on the number
of fibers, the preliminary clusters are classified into two sets: SS:
Small clusters, clusters with fewer than six fibers, and SL: Large
clusters, clusters with six or more fibers.

A centroid for each cluster is computed in parallel in a CUDA
thread to perform the cluster reassignment. The reassignment
using the centroids of preliminary clusters uses a pipeline of filters
in parallel. First, it separates clusters by centroids that are close to
each other based on the middle fiber data point. Each group is
separated by sub-groups of fibers containing external fiber points
close to each other. Next, the separation is done by four points,
and finally with the other fiber data points.

Figure 2 (Step 3) displays the data flow for the parallel
operations performed in this step.

2.3.7. Parallel Algorithm for Step 4 of FFClust
This step uses a graph model, representing candidate clusters
as vertices and defining edges based on a threshold of the
maximum Euclidean distance of pairwise centroids. To improve
performance, FFClust first groups centroids based on the
membership of the middle point of fibers, and then over each
group, it applies the graph model. Next, for each graph, the
algorithm enumerates all maximal cliques, sorts them by size,
and merges all clusters represented by the vertices in the same
maximal clique. The FFClust implementation uses networkx
python package to perform all graph operations. In this work,
we follow the same ideas, but instead of using python networkx,
we use C++ and the Eppstein et al. algorithm (Eppstein et al.,
2013) for listingmaximal cliques, which is very efficient for sparse
graphs. Because this is a refinement step, it is expected that these
graphs are likely to be sparse, then using an algorithm for listing
maximal cliques on sparse graphs is expected to be more efficient.
We use OpenMP parallelism instead of parallelism on the GPU
in this step because the size and number of maximal cliques are
rather small, and moving data to and from the device reduces
the performance. Figure 2 (Step 4) displays the data flow for the
used parallel operations, where each group and graph processing
is in parallel.

3. RESULTS

This section presents an experimental evaluation of the proposed
method. First, we provide the main statistics of the results,
including the coverage of fibers in final clusters, the histograms
of the number of fibers in clusters, the intra-cluster and inter-
cluster distances. Second, we present a visual inspection of the
final clusters obtained by the methods. Next, we discuss the
quality of cluster results using the Davies-Bouldin index (DB
index) (Xu and Tian, 2015). Then, we analyze the performance
by comparing execution times, speedup, and scalability of our
parallel alternatives compared to FFClust. Finally, we compare
the clustering results of FFClust and our best alternative for the
segmentation of long bundles application. In all experiments, we

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 4 | Intra-cluster and Inter-cluster distance histograms of final clusters. Intra-cluster distance shows that the parallel alternatives achieve less compact clusters

than FFClust. Inter-cluster distance shows that parallel alternatives have fewer clusters that are closer to each other than FFClust.

used 10 tractography datasets representing 10 different subjects
containing about one million fibers.

3.1. Main Statistics of Final Clusters
This section presents the main statistics obtained in this study.
We use different names according to the alternatives defined in
Step 1 to distinguish each of the parallel schemes. We denote
the alternative that uses random initialization of centroids in
Step 1 as CkFFC. The alternative with Kmeans++ initialization as
CkpFFC, and CeFFC for the alternative of Kmeans++ with point
retraction. CeFFC uses point retraction of 5%, which we obtained
experimentally. In addition, we define an alternative that includes
a post-processing step that removes all final clusters with intra-
cluster distances over 70 mm. We called this alternative CefFFC.

Typically, clustering algorithms aim to obtain compact
clusters, clusters with small intra-cluter distances; and well-
separated clusters, clusters with large inter-cluster distances.
Figure 4 (left) displays the histogram of the intra-distance of final
clusters, and Figure 4 (right) the histogram of the inter-cluster
distance. As observed, our alternatives obtain about 60 clusters
with intra-cluster distance over 70 mm, whereas FFClust does
not. However, the parallel alternatives obtain about five thousand
clusters fewer than FFClust with inter-cluster distance less than 5
mm. This means that more clusters in FFClust are closer among
one another than in the parallel methods.

We explore the final clusters with intra-distance over 70
mm obtained in our alternatives. Figure 5 displays them. We
observe that all of them are clusters consisting of short fibers.
As observe, all appear to be noise. Since they do not provide
relevant information, we believe that it is correct to eliminate
those clusters after inspection.

Figure 6 (left) shows the coverage of fibers in all final clusters
measured as a percentage of the total number of fibers. Figure 6
(right) displays the histogram of the cluster sizes. These figures
show that the parallel implementations provide a similar fiber
coverage to FFClust, between 83.8 and 85.2%, but they differ

in the number of final clusters. The CkFFC obtains about
3200 more clusters than FFClust, which is about 8.4% more
clusters. CkpFFC provides 1500more clusters (3.4%), and CeFFC
provides about 4, 100 more (10.8%). The cluster size histogram
in Figure 6 (right) shows that the cluster sizes are similar,
although the parallel alternatives find about two larger clusters
than FFClust.

3.2. Cluster Result Visualization
Figure 7 presents the visualization of the 50 largest final clusters
for all the alternatives. We omitted CefFFC because the 50 largest
clusters are the same as the CeFFC alternative. The visualization
includes the coronal, axial, and sagittal views for each method.
In general, the results are quite similar between the methods. As
observed, all methods provide well-formed clusters covering the
main whole brain structure. The 50 bigger clusters correspond
to portions of the corpus callosum, corticospinal tract, uncinate
fasciculus and some short connections. As we used an arbitrary
cluster size threshold, some parts of the brain my not be covered
by the selected clusters. FFClust seems to produce more compact
clusters, the alternative with Kmeans++ with point retraction
(CeFFC) appears to achieve a better coverage of the brain,
while the alternative with Kmeans with random initialization
of centroids (CkFFC) presents more portions of the brain with
fewer clusters. To complement this exploratory analysis, section
3.6 provides a comparison of FFClust and CeFFC methods based
on the segmentation of deep white matter bundles.

3.3. Quality of Clusters
This study measures the quality of final clusters by using the
Davies-Bouldin index (DB index, Xu and Tian, 2015). The DB-
index is a measure defined as the average similarity of each cluster
with its most similar cluster. The similarity is the ratio of intra-
cluster distances to inter-cluster distances (Equation 6). Thus, a
higher-quality clustering is achieved when elements belonging in
clusters are compact or less disperse, and different clusters are
farther apart among them.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 5 | Final clusters with intra-cluster distance over 70 mm in CeFFC for a subject. With coronal, axial, and sagittal views. All these clusters are well formed, but

contain short fibers that seem to be noise.

FIGURE 6 | Coverage and size histogram of final clusters. The CeFFC alternative obtains the highest number of clusters and coverage of fibers. It also contains a few

bigger clusters than FFClust.

Since our goal is to produce a high-quality clustering
algorithm close to FFClust, we define a normalized DB index
(DBn), which divides the DB index obtained by an alternative
algorithm, by the DB index of FFClust.

The normalized DB-index is presented in Equation (7). The
closest value of DBn index to 1 means that the method is the
closest in DB to FFClust. A value greater than one means that
the alternative method has a better DB index than FFClust. In
addition, Equation (8) presents the variance, which we used to
evaluate how DB index varies between execution trials.

DB =
1

n

n
∑

i=1

max
i6=j

(

αi + αj

d(ci, cj)

)

(6)

DBn =
DBffclust

DBm
(7)

Var(X) =

∑n
1(xi − µ)2

n
(8)

Figure 8 (left) shows the DBn index vs. the variance obtained
for the analyzed methods using the 10 tractography subjects. As
seen in the figure, FFClust has the highest variance of 0.014. In
addition, CkpFFC and CeFFC provide the closest alternatives
to FFClust, but CeFFC is the closest to FFClust. The CefFFC
alternative provides a DBn of 1.038, which means achieving a DB
index slightly better than FFClust.

3.4. Performance Results
We evaluate the performance in terms of execution time and
speedup. We implemented the parallel algorithms using C++,
thrust library, OpenMP, CUDA 10 toolkit with O3 compiler
optimization. All experiments were executed in a i5-9600K
6C12H CPUmodel, which has 6 cores working at 3.7GHz; 32 GB
of RAM and a Quadro P620 Nvidia GPU.

Figure 8 (right) displays the arithmetic mean of the execution
time achieved in each step of the algorithms for 10 tractography

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 7 | Visualization of 50 largest final clusters for a subject, for FFClust and the three parallel methods (CeFFC, CkpFFC, and CkFFC). The CeFFC alternative

obtains well formed clusters with a higher brain area coverage than FFClust for this group of clusters. FFClust shows more compact clusters than the parallel

alternatives. (A) FFClust. (B) CeFFC. (C) CkpFFC. (D) CkFFC.

datasets with about a million fibers each. As observed, Step 1
consumes the largest execution time in FFClust, whereas using
fine-grain parallelism in all the presented alternatives improves
the execution time of this step in more than one order of
magnitude. This figure also shows that all parallel alternatives
achieved a similar total execution time between 2.5 and 4 s,
while FFClust consumes about 40 s. The CefFFC alternative filters
out all final clusters produced by CeFFC that have intra-cluster
distance over 70 mm. This post-processing is also parallelized
and increases the execution time by about 2 s (shown in pink in
Figure 8, right), achieving a total of 6 s.

Figure 9 (left) shows the speedup achieved for the parallel
alternatives in each of the steps of the algorithm. As seen in

the figure, the most significant gain in speedup is in the first
step, where the algorithms CkFFC provides a speedup around
80, whereas in CeFFC and CkpFFC is about 20. The second best
speedup is in Step 3, where it is over 10, and Step 4 follows
with a speedup between 8 and 9. The Step 2 of the algorithm
has the lowest speedup, which is about two. Overall, considering
all steps, the parallel algorithms achieved a speedup of 11.5 over
FFClust.

Figure 9 (right) displays a scalability test comparison
between FFClust and CeFFC in the Step 1 of
FFClust. The figure shows that increasing the
number of fibers does not increases much the
execution time.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2021 | Volume 15 | Article 727859

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 8 | Normalized DB-Index on the left and Execution times in log scale on the right. The CeFFC alternative achieves a DB almost as good as FFClust. The

CeFFC alternative, which filters out clusters with intra-distance over 70 mm, achieves a slightly better DB than FFClust. All parallel alternatives improve execution times

of FFClust in an order of magnitude. Note that the lowest execution time value in Y axis is 0.1 s.

FIGURE 9 | Speedup and scalability of our parallel alternatives of FFClust. All parallel alternatives obtain a speedup greater than two in all the steps of FFClust, where

the highest speedup is achieved in the Step 1 and the lowest in Step 2. The scalability test on the right figure shows that the execution time of the parallel alternatives

is rather stable with the number of fibers, whereas the execution time of FFClust increases with the number of fibers.

3.5. Performance Discussion
Table 1 displays a comparison summary between FFClust and
the best GPGPU implementation, CeFFC. For each of the
steps, it shows the programming languages, libraries, computing
platforms, and the execution times in seconds required. In
addition, the last column of the table provides the speedup
achieved by CeFFC in each Step. As observed, FFClust exploits
CPU parallelism in all the Steps, where Step 1, 2 and 4 uses python
Multiprocessing package for process-based parallelism. In Step
3, FFClust uses parallelism using C with OpenMP (Vázquez
et al., 2019). The GPGPU implementation uses C++ and CUDA
in Step 1, CUDA Thrust library in Step 2 and 3, and C++
and OpenMP in Step 4. As seen in the last column of Table 1,
the GPGPU implementation achieves acceleration in all the
FFClust steps.

In Step 1, the FFClust algorithm uses MiniBachKMeans

and Multiprocessing python packages, whereas the GPGPU
alternative implements in C++ and CUDA the Kmeans++
with point retraction for centroid initialization. Moreover, since
MiniBatchKMeans uses sampling, it is faster than the other
Kmeans implementations in python. We also implemented
sampling with Kmeans++, but we obtained lower quality results
and the execution time saving was not significant and therefore
not shown in this study. Table 1 shows that we achieve a speedup
of 20.30 in this Step.

In Step 2, FFClust uses the Multiprocessing python package
to parallelize the construction of a dictionary data structure
to compute preliminary fiber clusters. In contrast, the
GPGPU implementation uses the parallel thrust primitive
sort_by_key() to compute the preliminary fiber clusters and the

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 727859

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

TABLE 1 | Comparison summary by steps between FFClust and our best parallel implementation CeFFC using a tractography of a million fibers.

Algorithm FFClust CeFFC

Steps Prog. languages Libraries, parallelism Time (s) Prog. languages Libraries, parallelism Time (s) Speedup

Step 1 Python Multiprocessing, MiniBatchKMeans 20.10 C++ CUDA Kmeans* 0.99 20.30

Step 2 Python Multiprocessing 0.88 C++ Thrust 0.40 2.20

Step 3 Python, C OpenMP 12.82 C++ CUDA 1.25 10.25

Step 4 Python Multiprocessing, networkx 7.41 C++ OpenMP, Eppstein 0.92 8.05

Total exec. time (s) 41.21 3.56 11.57

Kmeans* denotes Kmeans++ with point retraction.

reduce_by_key() primitive to compute the size of preliminary
fiber clusters required as input in the Step 3. Table 1 shows we
achieve a speedup of 2.20 in this Step.

In Step 3, FFClust defines a C and OpenMP parallel
implementation (Vázquez et al., 2019), which is called from the
python implementation. Our GPGPU implementation uses the
GPU to exploit more parallelism since more work is performed
to assign small preliminary clusters to large ones. As observed
in Table 1, the execution time of Step 3 in FFClust is 12.82
s, whereas in Step 3 of the GPGPU implementation is 1.25 s
achieving a speedup of 10.25. Since we use the same algorithm
andC/C++ as the programming language, the gain in the GPGPU
implementation comes mostly from using more processors.

Step 4 of the FFClust algorithm uses python networkx package,
which is based on the Tomita algorithm (Tomita et al., 2006) for
enumerating maximal cliques1. As discussed in Eppstein et al.
(2013) the Tomita algorithm is an implementation of the Bron
and Kerbosch’ algorithm (Bron and Kerbosch, 1973), using a
heuristic based on a pivoting strategy described by Cazals and
Karande (2008). Eppstein et al. (2013) show, experimentally,
that their algorithm is between 10 and 160 times faster than
Tomita’s algorithm for sparse graphs. In Step 4 of the GPGPU
implementation, we use the Eppstein algorithm to enumerate
maximal cliques. Given that this algorithm does not exhibit
evident SIMD parallelism, we did not define a GPU parallel
algorithm for this step. However, using OpenMP parallelism and
the Eppstein algorithm in this step provide a speedup of 8.05 as
shown in Table 1.

Finally, Table 1 displays that the overall speedup of the
GPGPU implementation of FFClust is 11.57.

3.6. Segmentation of Deep White Matter
Bundles
To compare the behavior of CeFFC algorithm to the FFClust,
we applied a bundle segmentation method (Labra et al., 2017;
Vázquez et al., 2019) to the fibers obtained by the FFClust and
CeFFC clustering algorithms. The segmentation method is based
on a multi-subject bundle atlas of deep white matter bundles
(see Figure 10). The method labels the fibers that belong to
a known bundle, based on a variation of dME distance and
a defined maximum distance threshold for each bundle. We
applied FFClust and CeFFC on 10 subjects for this analysis.
First, we applied the segmentation on the fibers obtained by the

1https://networkx.org/documentation/stable/reference/algorithms/generated/

networkx.algorithms.clique.find_cliques.html.

clustering algorithms. For each bundle in the atlas, we count
the number of fibers (nf) and the number of clusters (nf). To
evaluate the differences between methods, we calculated the
Relative Mean Absolute Difference (RMAD) of the mean ncl for
the 10 subjects (ncl) and the mean nf for the 10 subjects (nf).
Table 2 shows that the RMAD of ncl if of 5%, with total means
almost equals for the number of clusters (343.9 vs 343.7). Also,
the RMAD of nf is very low, equal to 2.6%, where the total means
of the number of fibers are similar, but with a slightly higher value
for CeFFC (8315.4 vs. 8521.5). This result is an advantage since
CeFFC filters out less meaningful fibers. Finally, we computed the

mean of the number of fibers per cluster (nf /cl) for each bundle.

We found that the RMAD of nf /cl is only 1.3%, which shows that
both methods obtain similar results.

Figure 10 shows the segmented bundles for a subject.
In Figure 10A it can be seen that the results are
visually similar for both methods. Figure 10B shows the
segmented bundles for CeFFC on separated displays,
where we observe a correct appearance of these deep white
matter bundles.

4. CONCLUSION

This work proposes GPGPU parallel algorithms for the state-
of-the-art fiber clustering algorithm FFClust (Vázquez et al.,
2020). Having a fast fiber clustering algorithm is desired in brain
imaging studies, including visualization tools, and applications
that need the processing of many subjects such as inter-subject
clustering, bundle atlas constructions, and connectivity-based
parcellations. The parallel algorithms follow the same steps
defined in FFClust, and they can improve the execution time for
each step. Step 1 exploits fine-grained parallelism using a GPU.
The proposed parallel alternatives for Step 1 of the algorithm uses
Kmeans++ method. In addition, this work proposes a variation
of the kmeans++ algorithm that aims to avoid selecting outliers
as initial centroids. The parallel algorithms for this step use the
MAP and Reduce parallel patterns and memory optimizations
based on coalescing memory, constant and shared memory on
the device. The parallelism of this step provides the highest
speedup, which is about 80. The parallelization of the other three
steps of FFClust uses the multicore architecture using OpenMP,
the parallel thrust library, and a fast algorithm for listingmaximal
cliques. The overall speedup of the complete parallel method
is about 11.5, being able to process a tractography dataset of
one million fibers in 3.5 s. The quality of the resulting clusters

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 727859

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.clique.find_cliques.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.clique.find_cliques.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

FIGURE 10 | Segmented bundles for FFClust and CeFFC algorithms (one subject). (A) All the segmented bundles. First row: left sagittal view, second row: coronal

view. (B) The segmented bundles on separated displays for CeFFC algorithm (left sagittal view). Corpus Callosum: rostrum (magenta), genu (blue), body (dark green)

and splenium (brown). Cingulum (light brown), inferior longitudinal fasciculus (dark purple), corticospinal tract (orange), uncinate fasciculus (light blue), inferior

fronto-occipital fasciculus (pink). Arcuate fasciculus: direct segment (red), anterior segment (green), posterior segment (yellow).

TABLE 2 | Bundle segmentation results.

Fascicle ncl FFClust ncl CeFFC RMAD ncl (%) nf FFClust nf CeFFC RMAD nf (%) RMAD nf/cl (%)

Arcuate fasciculus (LA) 288.7 301.3 4.4 7175.3 7262.7 1.2 0.8

Arcuate fasciculus (RA) 391.5 378.5 3.3 11430.4 11554.6 1.1 1.3

Arcuate fasciculus (LD) 374.3 384.3 2.7 7461.9 7731.8 3.6 0.2

Arcuate fasciculus (LP) 156.3 181.8 16.3 3941.5 3950.9 0.2 3.5

Arcuate fasciculus (RP) 141.4 148.4 5.0 3462.2 3461.5 0.0 1.2

Arcuate fasciculus (RD) 179.4 192.5 7.3 2937.2 3034 3.3 0.6

Corpus callosum (Body) 1051.3 979.5 6.8 43208.2 43831.2 1.4 3.6

Corpus callosum (Genu) 470.0 459.5 2.2 12507.9 12720.5 1.7 1.1

Corpus callosum (Rostrum) 220.7 224.1 1.5 4736.6 4841.4 2.2 0.1

Corpus callosum (Splenium) 279.5 273.3 2.2 7672.4 7884.0 2.8 1.3

Inferior fronto occipital (L) 501.4 520.1 3.7 7581.2 8075.3 6.5 0.4

Inferior fronto occipital (R) 516.7 509.4 1.4 8627.4 9068.9 5.1 1.1

Inferior longitudinal (L) 452.2 468.3 3.6 6304.2 6591.2 4.6 0.2

Inferior longitudinal (R) 579.5 554.6 4.3 8453 8917.6 5.5 1.5

Uncinate fasciculus (L) 215.4 237.6 10.3 4331.3 4431.4 2.3 1.4

Uncinate fasciculus (R) 222.9 231.9 4.0 4653.6 4779.6 2.7 0.3

Corticospinal tract (L) 98.0 90.6 7.6 4447.0 4472.4 0.6 4.0

Corticospinal tract (R) 29.2 30.7 5.1 440.6 444.8 1.0 0.6

Mean 343.9 343.7 5.0 8315.4 8521.5 2.6 1.3

Comparison of the mean number of clusters ncl and the mean number of fibers nf between FFClust and CeFFC algorithms. Also, the Relative Mean Absolute Difference (RMAD) of ncl ,

nf and the mean number of fibers per cluster nf /cl is provided. L, Left; R, Right; A, Anterior segment; P, Posterior segment; D, Direct segment.

is about the same as FFClust measured in terms of the DB
index metric.

DATA AVAILABILITY STATEMENT

The datasets generated for this study and source code are
available at: http://www.inf.udec.cl/~chernand/sources/CeFFC/.

ETHICS STATEMENT

The studies involving human participants were
reviewed and approved by Comité de Protection des
Personnes Ile-de-France VII CPP100002/CPP100022,
France. The patients/participants provided their
written informed consent to participate in
this study.

Frontiers in Neuroinformatics | www.frontiersin.org 13 September 2021 | Volume 15 | Article 727859

http://www.inf.udec.cl/~chernand/sources/CeFFC/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

AUTHOR CONTRIBUTIONS

IG and PO designed and implemented the main code and
experiments. AV implemented the FFClust algorithm and
provided analysis codes. CR implemented validations of the
methods. CP and J-FM provided the pre-processed ARCHI
database. PG supervised the work, provided funding, and
wrote the manuscript. CH designed the main research idea,
provided guidance on the implementation and evaluation of
the algorithms, performed validation analysis, and wrote the
manuscript. All authors read and approved the final manuscript.

FUNDING

This work has received funding by ANID FONDECYT
1190701, ANID-Basal Project FB0008 (AC3E) and
ANID-Basal Project FB0001 (CeBiB). This work
was also partially funded by the Human Brain
Project, funded from the European Union’s Horizon
2020 Framework Programme for Research and
Innovation under the Specific Grant Agreements No.
945539 (HBP SGA3), No. 785907 (HBP SGA2), and
No. 604102 (HBP SGA1).

REFERENCES

Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., and Rocha, L.

(2013). G-DBSCAN: a GPU accelerated algorithm for density-based clustering.

Proc. Comput. Sci. 18, 369–378. doi: 10.1016/j.procs.2013.05.200

Banharnsakun, A. (2017). A MapReduce-based artificial bee colony

for large-scale data clustering. Pattern Recogn. Lett. 93, 78–84.

doi: 10.1016/j.patrec.2016.07.027

Bell, N., and Hoberock, J. (2012). “Thrust: a productivity-oriented library for

cuda,” in GPU Computing Gems Jade Edition, ed W-m. W. Hwu (Boston, MA:

Elsevier), 359–371. doi: 10.1016/B978-0-12-385963-1.00026-5

Bron, C., and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an

undirected graph. Commun. ACM 16, 575–577.

Cazals, F., and Karande, C. (2008). A note on the problem of reporting maximal

cliques. Theoret. Comput. Sci. 407, 564–568. doi: 10.1016/j.tcs.2008.05.010

Chen, C., Li, K., Ouyang, A., Tang, Z., and Li, K. (2017). GPU-accelerated parallel

hierarchical extreme learning machine on flink for big data. IEEE Trans. Syst.

Man Cybernet. Syst. 47, 2740–2753. doi: 10.1109/TSMC.2017.2690673

Combrisson, E., Vallat, R., O’Reilly, C., Jas, M., Pascarella, A., Saive, A.-,l.,

et al. (2019). Visbrain: a multi-purpose GPU-accelerated open-source

suite for multimodal brain data visualization. Front. Neuroinform. 13:14.

doi: 10.3389/fninf.2019.00014

Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., and Toraldo, G. (2019).

A GPU-accelerated parallel k-means algorithm. Comput. Electric. Eng. 75,

262–274. doi: 10.1016/j.compeleceng.2017.12.002

Dafir, Z., Lamari, Y., and Slaoui, S. C. (2020). A survey on parallel

clustering algorithms for big data. Artif. Intell. Rev. 54, 1–33.

doi: 10.1007/s10462-020-09918-2

Dean, J., and Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Commun. ACM 51, 107–113. doi: 10.1145/1327452.1327492

Descoteaux, M., Angelino, E., Fitzgibbons, S., and Deriche, R. (2007). Regularized,

fast, and robust analytical Q-ball imaging. Magnet. Reson. Med. 58, 497–510.

doi: 10.1002/mrm.21277

Dodero, L., Vascon, S., Murino, V., Bifone, A., Gozzi, A., and Sona, D. (2015).

Automated multi-subject fiber clustering of mouse brain using dominant sets.

Front. Neuroinform. 8:87. doi: 10.3389/fninf.2014.00087

Duclap, D., Lebois, A., Schmitt, B., Riff, O., Guevara, P., Marrakchi-Kacem, L., et al.

(2012). Connectomist-2.0: A Novel Diffusion Analysis Toolbox for BrainVISA.

ESMRMB.

Eppstein, D., Löffler, M., and Strash, D. (2013). Listing all maximal cliques

in large sparse real-world graphs. ACM J. Exp. Algorithmics 18, 3–1.

doi: 10.1145/2543629

Fakhi, H., Bouattane, O., Youssfi, M., and Hassan, O. (2017). “Newoptimized

GPU version of the k-means algorithm for large-sized image segmentation,”

in 2017 Intelligent Systems and Computer Vision (ISCV) (Fez: IEEE), 1–6.

doi: 10.1109/ISACV.2017.8054924

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S.,

Descoteaux, M., et al. (2014). Dipy, a library for the analysis of diffusion MRI

data. Front. Neuroinform. 8:8. doi: 10.3389/fninf.2014.00008

Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B., and Nimmo-Smith,

I. (2012). QuickBundles, a method for tractography simplification. Front.

Neurosci. 6:175. doi: 10.3389/fnins.2012.00175

Garyfallidis, E., Côté, M.-A., Rheault, F., and Descoteaux, M. (2016).

“QuickBundlesX: sequential clustering of millions of streamlines in multiple

levels of detail at record execution time,” in 24th International Society of

Magnetic Resonance in Medicine (ISMRM) (Singapore).

Garyfallidis, E., Côté, M.-A., Rheault, F., Sidhu, J., Hau, J., Petit, L., et al.

(2018). Recognition of white matter bundles using local and global

streamline-based registration and clustering. Neuroimage 170, 283–295.

doi: 10.1016/j.neuroimage.2017.07.015

Giuroiu, S., and Keng Liao, W. (2015). CUDA Kmeans. Available online at: http://

users.ece.northwestern.edu/wkliao/Kmeans/index.html

Guevara, M., Osorio, I., Bonometti, D., Duclap, D., Poupon, C., Mangin,

J., et al. (2015). “iFiber: a brain tract visualizer for android devices,” in

2015 CHILEAN Conference on Electrical, Electronics Engineering, Information

and Communication Technologies (CHILECON) (Santiago: IEEE), 245–250.

doi: 10.1109/Chilecon.2015.7400383

Guevara, M., Román, C., Houenou, J., Duclap, D., Poupon, C., Mangin,

J. F., et al. (2017). Reproducibility of superficial white matter tracts

using diffusion-weighted imaging tractography. Neuroimage 147, 703–725.

doi: 10.1016/j.neuroimage.2016.11.066

Guevara, P., Duclap, D., Marrakchi-Kacem, L., Rivière, D., Cointepas, Y., Poupon,

C., et al. (2011a). “Accurate tractography propagation mask using T1-weighted

data rather than FA,” in Proceedings of the International Society of Magnetic

Resonance in Medicine (Montreal, QC), 2018.

Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan,

D., et al. (2012). Automatic fiber bundle segmentation in massive tractography

datasets using a multi-subject bundle atlas. Neuroimage 61, 1083–1099.

doi: 10.1016/j.neuroimage.2012.02.071

Guevara, P., Poupon, C., Rivière, D., Cointepas, Y., Descoteaux, M., Thirion, B.,

et al. (2011b). Robust clustering of massive tractography datasets. Neuroimage

54, 1975–1993. doi: 10.1016/j.neuroimage.2010.10.028

Guha, S., Rastogi, R., and Shim, K. (2001). Cure: an efficient clustering algorithm

for large databases. Inf. Syst. 26, 35–58. doi: 10.1016/S0306-4379(01)00008-4

Haehn, D., Franke, L., Zhang, F., Cetin-Karayumak, S., Pieper, S., O’Donnell,

L. J., et al. (2020). “TRAKO: efficient transmission of tractography data for

visualization,” inMedical Image Computing and Computer Assisted Intervention

-MICCAI 2020 (Lima: Springer), 322–332.

Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., and

Sotiropoulos, S. N. (2019). Using GPUs to accelerate computational diffusion

MRI: from microstructure estimation to tractography and connectomes.

Neuroimage 188, 598–615. doi: 10.1016/j.neuroimage.2018.12.015

Huerta, I., Vázquez, A., López-López, N., Houenou, J., Poupon, C., Mangin, J.-

F., et al. (2020). “Inter-subject clustering of brain fibers from whole-brain

tractography,” in 2020 42nd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC) (Montreal, QC: IEEE),

1687–1691. doi: 10.1109/EMBC44109.2020.9175342

Jamel, A., and Akay, B. (2019). A survey and systematic categorization of parallel

k-means and fuzzy-C-means algorithms. Comput. Syst. Sci. Eng. 34, 259–281.

doi: 10.32604/csse.2019.34.259

Jin, Y., Shi, Y., Zhan, L., Gutman, B. A., de Zubicaray, G. I., McMahon,

K. L., et al. (2014). Automatic clustering of white matter fibers in brain

diffusion MRI with an application to genetics. Neuroimage 100, 75–90.

doi: 10.1016/j.neuroimage.2014.04.048

Frontiers in Neuroinformatics | www.frontiersin.org 14 September 2021 | Volume 15 | Article 727859

https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/j.patrec.2016.07.027
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1016/j.tcs.2008.05.010
https://doi.org/10.1109/TSMC.2017.2690673
https://doi.org/10.3389/fninf.2019.00014
https://doi.org/10.1016/j.compeleceng.2017.12.002
https://doi.org/10.1007/s10462-020-09918-2
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1002/mrm.21277
https://doi.org/10.3389/fninf.2014.00087
https://doi.org/10.1145/2543629
https://doi.org/10.1109/ISACV.2017.8054924
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fnins.2012.00175
https://doi.org/10.1016/j.neuroimage.2017.07.015
http://users.ece.northwestern.edu/wkliao/Kmeans/index.html
http://users.ece.northwestern.edu/wkliao/Kmeans/index.html
https://doi.org/10.1109/Chilecon.2015.7400383
https://doi.org/10.1016/j.neuroimage.2016.11.066
https://doi.org/10.1016/j.neuroimage.2012.02.071
https://doi.org/10.1016/j.neuroimage.2010.10.028
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1016/j.neuroimage.2018.12.015
https://doi.org/10.1109/EMBC44109.2020.9175342
https://doi.org/10.32604/csse.2019.34.259
https://doi.org/10.1016/j.neuroimage.2014.04.048
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Goicovich et al. A Parallel Fiber Clustering Algorithm

Kumar, S., Sreenivasan, V., Talukdar, P., Pestilli, F., and Sridharan, D.

(2019). “ReAl-LiFE: accelerating the discovery of individualized brain

connectomes on GPUs,” in Proc Conf AAAI Artif Intell (Hawaii), 630–638.

doi: 10.1609/aaai.v33i01.3301630

Labra, N., Guevara, P., Duclap, D., Houenou, J., Poupon, C., Mangin, J. F.,

et al. (2017). Fast automatic segmentation of white matter streamlines

based on a multi-subject bundle atlas. Neuroinformatics 15, 71–86.

doi: 10.1007/s12021-016-9316-7

Li, H., Xue, Z., Guo, L., Liu, T., Hunter, J., and Wong, S. T. (2010). A hybrid

approach to automatic clustering of white matter fibers. Neuroimage 49,

1249–1258. doi: 10.1016/j.neuroimage.2009.08.017

Moreno-Dominguez, D., Anwander, A., and Knösche, T. R. (2014). A hierarchical

method for whole-brain connectivity-based parcellation.Hum. BrainMapp. 35,

5000–5025. doi: 10.1002/hbm.22528

nVIDIA Developer (2020). Thrust. Available online at: https://developer.nvidia.

com/thrust

O’Donnell, L. J., Suter, Y., Rigolo, L., Kahali, P., Zhang, F., Norton, I., et al. (2017).

Automated white matter fiber tract identification in patients with brain tumors.

Neuroimage: Clin. 13, 138–153. doi: 10.1016/j.nicl.2016.11.023

O’Donnell, L. J., and Westin, C.-F. (2007). Automatic tractography segmentation

using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26,

1562–1575. doi: 10.1109/TMI.2007.906785

Perrin, M., Poupon, C., Cointepas, Y., Rieul, B., Golestani, N., Pallier, C., et al.

(2005). “Fiber tracking in q-ball fields using regularized particle trajectories,” in

Information Processing in Medical Imaging (IPMI), eds G. E. Christensen, and

M. Sonka (Glenwood Springs, CO: Springer), 52–63. doi: 10.1007/11505730_5

Prckovska, V., Peeters, T. H. J. M., van Almsick, M., ter Haar Romeny, B.,

and Bartroli, A. V. (2011). Fused DTI/HARDI visualization. IEEE Trans. Vis.

Comput. Graph. 17, 1407–1419. doi: 10.1109/TVCG.2010.244

Román, C., Guevara, M., Valenzuela, R., Figueroa, M., Houenou, J., Duclap, D.,

et al. (2017). Clustering of whole-brain white matter short association bundles

using HARDI data. Front. Neuroinform. 11:73. doi: 10.3389/fninf.2017.00073

Ros, C., Tandetzky, R., Güllmar, D., and Reichenbach, J. (2011). “GPGPU-

computing for the cluster analysis of fiber tracts: replacing a $15000 high end

PCwith a $500 graphics card,” in Proc Intl SocMag ResonMed., (Montreal, QC),

19.

Schmitt, B., Lebois, A., Duclap, D., Guevara, P., Poupon, F., Rivière, D., et al.

(2012). CONNECT/ARCHI: An Open Database to Infer Atlases of the Human

Brain Connectivity. ESMRMB.

Sculley, D. (2010). “Web-scale k-means clustering,” in Proceedings of the 19th

International Conference onWorldWideWeb (Raleigh, NC: ACM), 1177–1178.

doi: 10.1145/1772690.1772862

Siless, V., Chang, K., Fischl, B., and Yendiki, A. (2018). AnatomiCuts:

hierarchical clustering of tractography streamlines based on anatomical

similarity. Neuroimage 166, 32–45. doi: 10.1016/j.neuroimage.2017.

10.058

Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case time

complexity for generating all maximal cliques and computational

experiments. Theoret. Comput. Sci. 363, 28–42. doi: 10.1016/j.tcs.2006.

06.015

van Aart, E., Sepasian, N., Jalba, A., and Vilanova, A. (2011). CUDA-accelerated

geodesic ray-tracing for fiber tracking. Int. J. Biomed. Imaging 2011:698908.

doi: 10.1155/2011/698908

Vázquez, A., López-López, N., Labra, N., Figueroa, M., Poupon, C., Mangin,

J.-F., et al. (2019). “Parallel optimization of fiber bundle segmentation

for massive tractography datasets,” in 2019 IEEE 16th International

Symposium on Biomedical Imaging (ISBI 2019) (Venice: IEEE), 178–181.

doi: 10.1109/ISBI.2019.8759208

Vázquez, A., López-López, N., Sánchez, A., Houenou, J., Poupon, C., Mangin,

J.-F., et al. (2020). FFClust: fast fiber clustering for large tractography

datasets for a detailed study of brain connectivity. Neuroimage 220:117070.

doi: 10.1016/j.neuroimage.2020.117070

Xu, D., and Tian, Y. (2015). A comprehensive survey of clustering

algorithms. Ann. Data Sci. 2, 165–193. doi: 10.1007/s40745-015-

0040-1

Yoo, S. W., Guevara, P., Jeong, Y., Yoo, K., Shin, J. S., Mangin, J.-F.,

et al. (2015). An example-based multi-atlas approach to automatic labeling

of white matter tracts. PLoS ONE 10:e0133337. doi: 10.1371/journal.pone.

0133337

Zhang, F., Wu, Y., Norton, I., Rigolo, L., Rathi, Y., Makris, N., et al. (2018).

An anatomically curated fiber clustering white matter atlas for consistent

white matter tract parcellation across the lifespan. Neuroimage 179, 429–447.

doi: 10.1016/j.neuroimage.2018.06.027

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Goicovich, Olivares, Román, Vázquez, Poupon, Mangin, Guevara

and Hernández. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 September 2021 | Volume 15 | Article 727859

https://doi.org/10.1609/aaai.v33i01.3301630
https://doi.org/10.1007/s12021-016-9316-7
https://doi.org/10.1016/j.neuroimage.2009.08.017
https://doi.org/10.1002/hbm.22528
https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
https://doi.org/10.1016/j.nicl.2016.11.023
https://doi.org/10.1109/TMI.2007.906785
https://doi.org/10.1007/11505730_5
https://doi.org/10.1109/TVCG.2010.244
https://doi.org/10.3389/fninf.2017.00073
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1016/j.neuroimage.2017.10.058
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1155/2011/698908
https://doi.org/10.1109/ISBI.2019.8759208
https://doi.org/10.1016/j.neuroimage.2020.117070
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1371/journal.pone.0133337
https://doi.org/10.1016/j.neuroimage.2018.06.027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism
	1. Introduction
	2. Materials and Methods
	2.1. Tractography Datasets
	2.2. Background
	2.2.1. FFClust
	2.2.2. Kmeans Algorithm

	2.3. Parallel Algorithms for FFClust
	2.3.1. Parallel Algorithms for Step 1 of FFClust
	2.3.2. Step 1.a. Building Point Clustering Using Parallel Kmeans
	2.3.3. Step 1.b. Building Point Clustering Using Parallel Kmeans++
	2.3.4. Step 1.c. Centroid Retraction: A Variation of Kmeans++ to Avoid Outliers
	2.3.5. Parallel Algorithm for Step 2 of FFClust
	2.3.6. Parallel Algorithm for Step 3 of FFClust
	2.3.7. Parallel Algorithm for Step 4 of FFClust

	3. Results
	3.1. Main Statistics of Final Clusters
	3.2. Cluster Result Visualization
	3.3. Quality of Clusters
	3.4. Performance Results
	3.5. Performance Discussion
	3.6. Segmentation of Deep White Matter Bundles

	4. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

