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We produced transparent nanocomposite reinforced with bacterial cellulose having a wide range of

fiber contents, from 7.4 to 66.1 wt %, by the combination of heat drying and organic solvent

exchange methods. The addition of only 7.4 wt % of bacterial cellulose nanofibers, which

deteriorated light transmittance by only 2.4%, was able to reduce the coefficient of thermal

expansion of acrylic resin from 86�10−6 to 38�10−6 K−1. As such, the nanofiber network of

bacterial cellulose has an extraordinary potential as a reinforcement to obtain optically transparent

and low thermal expansion materials. © 2006 American Institute of Physics.

�DOI: 10.1063/1.2191667�

Bacterial cellulose �BC�, cellulosic nanofibers produced

by bacteria, has extraordinary potential as a reinforcement to

obtain optically transparent materials. Since bacterial cellu-

lose nanofiber is a ribbon-shaped fiber of 10�50 nm,
1–4

it

can be used to reinforce transparent plastics with less than

10% loss of light transmittance, even at fiber contents as high

as 70 wt %.
5

Because the nanofibers are made up of bundles

of semicrystalline extended cellulose chains, their Young’s

modulus and tensile strength are 138 GPa �Ref. 6� and at

least 2 GPa,
7

respectively, and surprisingly, the thermal ex-

pansion in the axial direction is less than 0.1�10−6 K−1.
8

Hence, this nanofiber reinforced composite showed incred-

ibly low thermal expansion �3�10−6 K−1� and high tensile

strength �325 MPa�, while maintaining the flexibility and

ductility of many plastics.
5

Besides, due to the nanofiber size

effect, high transparency was obtained against a wide distri-

bution of resin refractive indexes, from 1.492 to 1.636 at

20 °C.
9

The optical transparency was also insensitive to tem-

perature increases up to 80 °C.
9

These nanofiber-network-

reinforced polymer composites should lead the way to a

wider use of optically transparent polymers in optoelectronic

devices such as substrates for flexible displays and compo-

nents for precision optical devices, which demand high trans-

parency and low thermal expansion.

However, to further enhance the transparency of BC

nanocomposites, maintaining their low thermal expansion

and high strength, their optimum fiber-content must be elu-

cidated based on the fiber-content dependency of the proper-

ties. Hence, in this Letter, we developed a method to produce

BC composites in a wider fiber-content range and clarified

the changes of regular light transmittance and the coefficient

of thermal expansion �CTE� of the composites against fiber

content.

BC pellicles with a thickness of 10 mm consisting of

1 vol % BC nanofibers and 99 vol % water were used as the

starting material.
5,9

When the pellicles were pressed to one-

tenth of their original thickness to squeeze out the water and

then dried, the BC sheets shrank during the drying and their

density became 1.0–1.2 g/cm3. As the density of the cellu-

lose microfibrils is 1.6 g/cm3, the interstitial cavities in the

dried sheets were estimated to account for 1 /3–1/4 of the

volume. Thus, when these cavities were completely filled by

impregnating the sheets with neat acrylic resin �tricyclode-

cane dimethanol dimethacrylate �TCDDMA�� under a re-

duced pressure and cured by UV light,
5,9

the fiber content of

the BC nanocomposites was restricted to a range of

52.4–66.1 wt %.

To produce BC nanocomposites with lower fiber con-

tents, it is necessary to prevent cohesion of BC nanofibers

during the evaporation of water. Thus, organic solvents that

are soluble in both water and acrylic resin were applied for

the removal of water from BC pellicles instead of drying.

That is, the BC pellicles were compressed, adjusting the

thickness by a cold press to control the fiber content, and

were dipped into a mixture of water and acetone, the con-

centration of which was increased from 50% to 100% step

by step, to prevent nanofiber cohesion. Afterwards, the

solvent-replaced sheets were impregnated with neat acrylic

resin under reduced pressure and UV cured. The acetone was

completely evaporated during the resin impregnation under

reduced pressure. This method enabled the production of

nanocomposites with lower fiber contents in a range of

19.0–49.0 wt %. The fiber contents of BC nanocomposites

were determined by elemental analysis.

When ethanol was used as a solvent, due to its higher

polarity, the thickness adjusted BC sheets swelled during the

impregnation of acrylic resin. As a result, BC nanocompos-

ites with fiber content in the range of 7.4–35.2 wt % were

obtained. Consequently, the study of the fiber-content depen-

dency of the optical transparency and thermal expansion of

bacterial nanofiber reinforced composites became possible in

a wider fiber-content range, from 7.4 to 66.1 wt %. The re-a�
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sulting thickness of the composites was distributed from

56 to 580 �m.

Regular luminous transmittances were measured at

wavelengths from 190 to 1000 nm using a UV-visible spec-

trometer with an integrating sphere 60 mm in diameter

�U-4100, Hitachi High-Tech. Corp.�. Regular transmittance

was measured by placing the specimens 25 cm from the

entrance port of the integrating sphere. The regular trans-

mittances of BC nanocomposite sheets against various fiber

contents are shown in Fig. 1. In Fig. 1�a�, the regular trans-

mittance spectra of acrylic resin and the BC nanocomposite

produced by heat drying or by ethanol exchange are com-

pared. All the composites absorb light below 400 nm af-

fected by the optical characteristics of the acrylic resin and

the transmittance gradually increases with increasing wave-

length. Despite the wide distribution of fiber content and

sample thickness as described above, all the BC nanocom-

posites transmitted more than 75% of the light in the wave-

length of 500–800 nm, including Fresnel’s reflection. How-

ever, careful comparison of the transmittance spectra against

various fiber contents revealed an unexpected dependency;

that is, the transmittance decreased in spite of the decrease in

fiber content.

To investigate the dependency more precisely, the regu-

lar transmittances of BC nanocomposite at 590 nm were

compared, as shown in Fig. 1�b�. It was discovered that de-

creasing the fiber content from 66.1 to 7.4 wt % leads to a

reduction of the regular transmittance from 84.1% to 79.5%.

In the production of BC composites, fiber contents were

adjusted by changing the thickness of the composite while

maintaining the same amount of bacterial cellulose. The

transmittances are influenced not only by their fiber contents

but also by their thicknesses. Thus, to discuss the fiber-

content dependency of the optical transparency excluding the

effect of sample thickness, the regular transmittances at

590 nm of BC nanocomposites with 100 �m thickness were

calculated by defining the regular transmittance of acrylic

resin as 100%.
10

As shown in Fig. 2, it was found that the

normalized transmittance of BC nanocomposites increased

against the decrease of fiber content linearly and regardless

of the sample preparation methods.

Haraguchi and Usami reported that the light transmit-

tance of a transparent phenolic resin sheet 100 �m thick de-

teriorated by 15% when 20 nm silica nanoparticles were well

dispersed by 10 wt % using the sol-gel method.
11

Contrary to

this, with BC nanocomposites, the reduction of the regular

transmittance at the fiber content of 11.7 wt % was only

3.3% �Fig. 2�. Even at fiber contents as high as 66.1 wt %,

the loss of transparency was a mere 13.7% �Fig. 2�. This

clearly indicates that the bacterial cellulose has an extraordi-

nary potential as a reinforcement to obtain optically transpar-

ent materials.

As mentioned above, lower fiber content is preferable

from the viewpoint of high light transmittance of BC com-

posites; however, decreasing fiber content could detract from

the low CTE of BC composites. Hence, the CTEs of BC

composites were evaluated against the fiber content. The

CTEs were measured by a thermomechanical analyzer

�TMA/SS6100, SII Nanotechnology Inc.�. Specimens were

25 mm long and 3 mm wide with a 20 mm span. After heat-

ing at 180 °C for 2 h in a nitrogen atmosphere to postcure

the acrylic resin, the measurements were carried out three

times with a heating rate of 5 °C/min in a nitrogen atmo-

sphere in tensile mode under a negligible load of 3 mg to

detect the thermal strain. The CTE values were determined

as the mean values at 20–150 °C in the second run.

Surprisingly, the addition of only 7.4 wt % of BC

nanofibers, which deteriorated light transmittance only by

2.4% �Fig. 2�, could reduce the CTE of acrylic resin from

86�10−6 to 38�10−6 K−1 �Fig. 3�. This is an excellent re-

FIG. 1. Regular transmittance spectra �a� and the regular transmittance at

590 nm �b� of BC nanocomposite of various fiber contents �wt %� and

thicknesses ��m�.

FIG. 2. Normalized regular transmittance at 590 nm and 100 �m thickness

of BC nanocomposite against fiber content.
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inforcement effect if compared to polyimide �59

�10−6 K−1�/silica nanohybrids, which resulted in just 20%

reduction of CTE at a filler content of 5 wt %, accompanied

by 30% degradation in transparency.
12,13

Even when micro-

sized silica particles with extremely low CTE of 0.5

�10−6 K−1 were mixed with cyanate ester resin �68

�10−6 K−1� up to 70 wt %, the reduction of CTE against

filler content was linear and resulted in 34% of the CTE of

the matrix.
14

On the other hand, BC nanocomposites’ CTEs

drastically decreased to 15�10−6 K−1 up at around 30 wt %

fiber content and then gradually declined to 10�10−6 K−1

above 50 wt % fiber content, which is only 12% of the origi-

nal acrylic resin �Fig. 3�. It should be pointed out that the

nanofiber network of BC might play an important role in the

drastic reduction of CTE.

In conclusion, we produced bacterial cellulose nano-

composites with a wide range of fiber contents, from

7.4 to 66.1 wt %, by the combination of heat drying and or-

ganic solvent exchange methods. The addition of bacterial

cellulose nanofibers linearly decreased the regular transmit-

tance of the nanocomposites; however, the deterioration of

light transmittance was limited to just 13.7% at a fiber con-

tent of 66.1 wt %. The coefficient of thermal expansion was

drastically suppressed by the addition of the nanofibers. The

addition of only 7.4 wt % of BC nanofibers, which deterio-

rated light transmittance by only 2.4%, could reduce the CTE

of acrylic resin from 86�10−6 to 38�10−6 K−1, and a coef-

ficient of thermal expansion of 15�10−6 K−1 was attained at

30.8 wt % fiber content.
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FIG. 3. The coefficients of thermal expansion of BC nanocomposites with

various fiber contents.
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