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Invi ted Paper 

We discuss the  implementation  of  fiber-optic  lattice structures 
incorporating  single-mode fibers and  directional couplers. These 
fiber structures can be used to perform various high-speed  time- 
domain  and  frequencrdomain  functions such as matrix operations 
and frequency filtering.  In this paper we  mainly consider systems in 
which  the signals (optical  intensities)  and  coupling  coefficients are 
nonnegative  quantities; these  systems fit  well  in  the theory of 
positive systems. We use this theory to conclude, for example, that 
for such systems the  pole  of  the system transfer function  with  the 
largest magnitude is simple  and  positive-valued  (in  the  Z-plane), 
and  that  the  magnitude of  the frequency response can nowhere 
exceed its value at the  origin.  We also discuss the effects of various 
noise phenomena on the  performance of  fiber-optic signal 
processors, particularly  considering  the effects of laser source phase 
fluctuations. Experimental results  are presented showing that the 
dynamic range of  the fiber systems,  discussed in this paper, is 
limited,  not by the laser source intensity noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor shot noise, but  by 
the laser phase-induced intensity noise. Mathematical analyses of 
lattice structures as well as additional  applications are  also pre- 
sented. 

INTRODUCTION 

The low-loss (fractional decibels/kilometer) and  large 
bandwidth-length product (on the order  of  100 CHz . km 
for single-mode fibers)  of optical fibers,  together with ad- 
vances in the manufacturing of fiber-optic components 
provide an attractive technology for processing broad-band 
signals [I], [2]. 

Fiber-optic signal  processing  devices  can  be  constructed 
to perform various functions, such as convolution, correla- 
tion, matrix  operations  [3],  and  frequency filtering [3]-[5]. 
Pulse-train  generation,  data-rate transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6], code 
generation,  pulse  compression,  and  matched filtering 
[7-[10] are  also  achievable. 

Previous work has conceptrated on classical tapped- 
delay-line forms  (transversal  filters).  Various  mechanisms, 
such as radiation due to bending [4] and  evanescent cou- 
pling by polishing the cladding down very  close to the fiber 
core [ I l l ,  have been used to realize  the  taps. In this paper, 
attention is on different  fiber-optic structures,  namely latt ice 
(or ladder) forms, which can  be  used as alternatives  for 
performing  optical signal  processing. 
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Lattice  structures have found increasing  applications in 
signal  processing during the past  decade  [12].  This  interest 
has been for the following reasons: 

i) They allow a systematic  approach to filter synthesis. 
ii) They  have a very straightforward implementation. 
iii) They  are both regular  and  modular.  That is, the imple- 

mentation is accomplished by interconnecting sections  hav- 
ing the same  basic topology, making  the assembly easily 
expandable. 

iv) They  have convenient numerical  properties which 
make them  suitable  for  applications to digital signal 
processing. 

v)  They provide a natural  model  for  many important 
physical  and  mathematical  phenomena  such as speech  sig- 
nal  generation [I31 and  are useful in estimation problems. 

In fiber-optic form, we  use single-mode  fibers and direc- 
tional couplers in conjunction  with semiconductor laser 
sources  and optical detectors to realize a fiber-optic lattice 
processor.  Higher  order  lattices are simply  linear  extensions 
of  the basic  sections.  These  basic  sections, as well as the 
operation of directional couplers,  are described in Section 
II. 

The  signals to be  processed are modulated as intensity 
variations on optical carriers  whose  coherence time is less 
than the  shortest  relevant time delay in the system.  This 
restriction is to avoid environmentally sensitive optical in- 
terference (phase)  effects. In this paper  we  consider only 
fiber-optic systems which are linear in the intensities of the 
propagating waves. It should be mentioned that in all our 
experiments we  used a short  coherence length (a few 
millimeters) multimode semiconductor laser as the optical 
source.  This particular optical source could be amplitude 
modulated from 1 MHz to 1.3 CHz.  Furthermore,  the out- 
put  light intensities were detected by photodiodes whose 
outputs can  be connected to measurement  systems  such as 
an oscilloscope, a network analyzer,  or a spectrum analyzer, 
and for which the output voltage is proportional to input 
intensity. 

PAPER OUTLINE 

In Section I we introduce the  elementary  concepts  that 
we need to construct fiber-optic signal  processing  devices. 
Using the concepts  explained in Section I, in Section II we 
demonstrate two structures that are  basic to fiber signal 
processing: two-coupler nonrecirculating and two-coupler 
recirculating delay  lines. These  basic fiber structures  are 
employed in Section Ill to implement two different types 
(feed-forward and feed-backward  configurations)  of so- 
called lattice structures in their fiber-optic forms. 
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Section IV discusses mathematical tools for the analysis 
of  lattice structures. These tools include transformation 
techniques, the transfer-matrix  and  chain-matrix formula- 
tions [14],  and a modern control theory formulation [15]. 
The transfer-matrix  and  chain-matrix  characterizations are 
useful  for  the  analysis of cascaded two-port systems which 
include our fiber lattice structures.  We utilize the  Z-trans- 
form method, together with the  transfer-matrix  and chain- 
matrix formulations, to describe  these  structures  for filtering 
applications. 

The modern control theory formulation for  these lattice 
structures uses the notion of a state  vector to represent  the 
system with  two matrix  equations: a state update equation 
and  an output equation. This formulation is well suited  for 
the theory of positive systems that will be  used in Section 
IV to draw some conclusions  about  the  behavior  of fiber- 
optic systems incorporating positive-valued quantities. We 
shall see that this knowledge alone,  namely,  the  fact that all 
the system quantities are nonnegative in value,  enables  us 
to make  some  very strong  statements  about  the  behavior  of 
the system,  such as pole-zero positions,  system stability, 
and  sensitivity. 

Section V contains some time-domain signal  processing 
applications of  fiber  lattice structures,  such as the  realiza- 
tion of a high-speed  matrix-vector multiplier using the 
lattice concept. In this form,  our lattice structure  resembles 
systolic  array  architectures [I61 which were originally de- 
signed  for VLSl implementation  of various  matrix  opera- 
tions. Experimental  results  are  also presented showing how 
these  lattices  can  be  used to perform some useful  matrix 
operations. 

Frequency-domain  signal  processing  applications  of fiber 
lattice structures  are presented in Section VI. In this section 
we  use Z-transform  methods to study  the  properties of 
fiber-optic lattice structures  when  used as frequency filters. 
Possible pole-zero patterns  of  various lattice orders  are 
shown with a discussion  of their implications for the  analy- 
sis and  design  of  various filter types.  We  also  examine a few 
fiber-optic  filtering devices,  such as all-pole, all-zero, 
pole-zero, and  all-pass  (phase-equalizer)  filters,  together 
with the presentation of  some experimental and theoretical 
results  and optical power efficiency calculations. 

Finally,  Section VI1 concludes the paper with a discussion 
of relevant  noise  phenomena. We particularly consider the 
effects of laser  source  phase fluctuations on the perfor- 
mance  of fiber-optic  filtering systems.  Experimental  results 
are  also presented showing that the dynamic range of the 
fiber systems  discussed i s  limited by this laser phase- 
induced intensity noise  [17], [18]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I. ELEMENTARY CONCEPTS 

To perform the  various  signal  processing  operations 

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATime delay: 
The output  of the delay  element is the input delayed  by a 

unit  of time. That is, for a discrete-time input signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( k ) ,  
the output is f ( k  - 1); where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk represents  the time index. 
A block diagram  representation  and the impulse response 
(response to an intensity impulse input) of this element are 
shown in Fig. l(a). Note that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-' inside  the block 
diagram  represents a unit  time delay.  Here,  we  have  used a 
notation from the  Z-transform which will be described 
later.  Fiber  lengths provide precise time delays  that  can  be 

described,  we  need to employ the following elements: 

DIAGRAM 
BLOCK 

RESPONSE 
IMPULSE 

(c) 
Fig. 1. Elementary concepts for signal processing. (a) Time- 
delay element.  (b)  Tapping element. (c) Time-advance ele- 
ment. 

employed to perform the time-delay function. Assuming a 
refractive index  of  about 1.5 for the fiber,  the propagation 
delay is = 5 ns/m. 

2) Tapping: 
Various  mechanisms,  such as evanescent directional cou- 

plers  or  bends  ("kinks"),  can  be  used to accomplish tap- 
ping. Mathematically, the output  of the tapping element is 
a constant multiple, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  of  the input (see Fig. l(b)). 

3)  Time  advance: 
The  signal is advanced  one unit of time rather  than 

delayed (see  Fig. l(c)). Note that this element has only 
mathematical  meaning,  and  that systems requiring  unit ad- 
vance  subsystems in their construction are not physically 
realizable. 

4) Summing  element: 
This  subsystem  sums incoming signals  (Fig.  2(a)). In 

fiber-optic systems a directional coupler can  be  used to  do 
the summing operation. 

f .  

(b) 

Fig. 2. Summing and  branching  elements. (a) Summing ele- 
ment. (b) Branching element. 

5) Branching element: 
This  subsystem  divides  the incoming signal into several 

parts  (Fig.  2(b)). A directional coupler can  also  be  used to 
divide the incoming  light signal into  two parts. 

910 PROCEEDINGS OF THE IEEE, VOL. 72, NO. 7, JULY 1984 



II. BASIC FIBER STRUCTURES 

Recirculating (feed-backward)  and nonrecirculating 
(feed-forward) delay  lines are two structures that are  basic 
to fiber-optic signal  processing.  Using  single-mode  fibers 
and directional couplers in conjunction with semiconduc- 
tor laser  sources, one can  construct a two-coupler  recir- 
culating delay line (see  Fig. 3(a)) and a two-coupler nonre- 
circulating delay line (see  Fig.  3(b)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DIRECTIONAL 
COUPLER 

X I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nn I T  I 

(4 ( 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 3. Basic fiber structures. (a) Two-coupler recirculating 
(feed-backward)  delay line. (b) Two-coupler nonrecirculating 
(feed-forward) delay line. (c)  Impulse  response  of  the two- 
coupler recirculating delay line. (d) Impulse  response of the 
two-coupler nonrecirculating delay line. 

In the two-coupler recirculating delay line a single-mode 
fiber loop  (with  loop delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  is closed upon itself  by two 
directional couplers, with the second  coupler feeding some 
portion of the  light back to the first  coupler  through the 
fiber loop. Thus optical signals  sent into the input port, say 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX , ,  circulate  repeatedly  around the loop, sending a 
portion of the recirculating intensity to the output ports V, 
and Y,. The  impulse  response of the system  consists of a 
series of decaying  impulses  equally  spaced in time by the 
loop delay T, as shown in Fig.  3(c). A two-coupler recir- 
culating delay line has  already  been  used for frequency 
filtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5]. 

The two-coupler nonrecirculating delay line also  consists 
of two directional couplers, but in this case the outputs of 
the first coupler are both fed forward to the second  coupler 
where  they are recombined  after a time delay T which is 
the time-delay difference between  the two feed-forward 
fiber lines. The  impulse  response of the system is composed 
of just two impulses  spaced  by the amount T in time (see 
Fig.  3(d)). 

The input-output relationship of the directional couplers 
[I91 can be  described  by a 2 X 2 complex  transfer  matrix 
(see  Fig. 4) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(El, E2)  and (€,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE , )  are, respectively, the input and 

ADJUSTABLE 
DIRECTIONAL 

COUPLER 

E I - q - p E 3  

E2 o - T T b 4  

Fig. 4. Schematic  diagram of a fiber-optic directional cou- 
pler. 

output complex  amplitudes of the vector  fields E,, E,,  E,,  
and E, which are  assumed, for simplicity, to have the same 
state of polarization. It should  be  mentioned that the cou- 
pler itself  exhibits  very little dependence on the state of 
polarization of the input fields [20]. Since backward  reflec- 
tions are negligible, the coupler  matrix can be  approxi- 
mated [21] by the product of an overall  amplitude  transmis- 
sion factor ( y ) ' l 2  (0.9 < y < 1 )  and a unitary matrix.  This 
property of the matrix implies that (AI2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA161, = l C 1 2  + [Dl2 
= 1 and CA* + D6* = 0 (the star denotes  complex conju- 
gation). 

For a symmetric  coupler ( A  = D and 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, (1) can  be 
rewritten as 

where fi is the amplitude coupling coefficient, and j 
= fi indicates a 90" phase shift for the coupled  signal. 

Furthermore, in the case when a temporally  incoherent 
light source is used, the input and output  light intensities 
can  be  related to each  other  by the following expression: 

where (Il, 12) and ( I 3 ,  I,) are the input and output intensi- 
ties,  respectively, y is the overall intensity transmission 
factor,  and K is the intensity coupling coefficient. Equations 
(1)-(3) will be  used in later  sections  for  our  mathematical 
analyses. 

The  basic recirculating and nonrecirculating delay  lines 
described  previously are  used as elementary  sections of 
feed-backward  and feed-forward lattice  structures,  respec- 
tively. These structures are the subject of our  discussion in 
the next  section. 

Ill. LATTICE STRUCTURES 

Lattice  structures are suitable  forms  for  performing the 
various  signal  processing  operations  described  above.  Com- 
pared to other  forms, lattice structures  have  some  advanta- 
geous  characteristics,  such as modularity, regularity, ease of 
implementation,  and  good  sensitivity. 

In this  section we introduce two fiber-optic lattice  con- 
figurations; recirculating (feed-backward)  and  nonrecirculat- 
ing (feed-forward)  forms.  Fig. 5(a)  shows  an Nth-order 
feed-backward  (recirculating) fiber-optic lattice structure. In 
this  paper  we  are  interested in cases where T is the same 
for all sections, but this restriction would  not be necessary 

(b) 

Fig. 5. Schematic  diagram  of  the Nth-order fiber-optic 
lattice structure with N + 1 couplers  and N delay  elements. 
(a) Feed-backward configuration. (b)  Feed-forward config- 
uration. 
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in general.  This  structure is obtained  by interconnecting N 
two-coupler recirculating delay  lines (see  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3(a)) in 
tandem. As seen in Fig.  5(a), this  structure has one feed-for- 
ward  and  one  feed-backward  fiber line. 

In contrast,  Fig. 5(b) illustrates  an Nth-order feed-forward 
(nonrecirculating) fiber lattice structure which is imple- 
mented  by  cascading N two-coupler nonrecirculating delay 
lines (see  Fig. 3(b)). In this  configuration,  there are two 
feed-forward  lines with  no feed-backward  line. 

Both of these lattice configurations  have two ports with 
two terminals at  each port  (two inputs, two outputs). Fig. 
q a )  and (b) shows the equivalent  diagrams of the feed- 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Equivalent  diagram  of  the  Nth-order  fiber-optic 
lattice structure with N + 1 couplers  and N delay  elements. 
(a)  Feed-backward  configuration.  (b)  Feed-forward  config- 
uration. ( 4  is the  intensity  transmittance  of  the ith section.) 

backward  and  feed-forward lattice structures.  These two 
lattice forms  can  also  be  combined to construct  more 
sophisticated fiber-optic structures. 

In later  sections,  we  discuss the applications of the  vari- 
ous  structures introduced here.  Before  that,  however,  we 
present different methods  for  mathematical  analysis of the 
lattice structures. 

IV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMATHEMATICAL ANALYSIS 

This  section is devoted  mainly to establishing the theoret- 
ical  background  needed to analyze  our fiber-optic systems 
(in particular, lattice structures). In Section  IV-A  we  explain, 
very briefly, the Z-transform  technique,  and  show  its appli- 
cations  using a few simple fiber-optic systems as examples. 
In Section  IV-B  we introduce the transfer-matrix  and chain- 
matrix formulations which we use to simplify the mathe- 
matical  manipulations.  Section  IV-C  presents the modern 
control theory formulation, while its usage in the theory of 
positive fiber-optic systems is shown in Section IV-D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Z- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransform  Techniques 

In order to increase  our ability to handle  more  complex 
systems  problems,  we utilize transform  techniques  for de- 
scribing the  signals.  We  particularly  use the Z-transform 
[ 22 ] .  This  usage is justifiable since  all  the systems of interest 
here are, first,  linear  and time-invariant and,  second,  dis- 
crete in time. The latter is due to the fact that we  can 
define a basic time delay T such  that  any  other  relevant 
system  delays  are  integer multiples of this  basic  time  delay. 
That is, the  impulse  response of the system is a series of 
impulses which are equally  spaced in time. As a result,  we 
can simplify the  mathematical  analysis of such  systems by 

considering the values of the system  signals only at discrete 
instants in time. Since the input and output are described in 
terms of discrete  samples,  these  systems  are  called  sam- 
pled-data systems [ 22 ] .  

The  mathematical  analysis of discrete systems is essen- 
tially similar to that of continuous  data systems, but it is 
simpler,  and  more intuitive in terms of physical  interpreta- 
tions. 

The  Z-transform, F(z) ,  of a signal, f (k) ,  is defined  by the 
following expression: 

m 

F(z) c 
.. 

f (  k ) z - k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k =  -m 

where k is the time index, which is an integer multiple  of 
the basic time delay ( k  = n o ,  and z is the transform 
variable which represents a unit time advance (z-’ repre- 
sents a unit time delay). 

We also  describe the input-output relationships  by sys- 
tem transfer functions (the ratio of the Z-transform of the 
output  to the Z-transform of the input) whose  poles  and 
zeros  are  very important in the design  and  analysis of 
frequency-selective  filters.  The  frequency  response is ob- 
tained when we  evaluate the transfer function at z = ejwr. 
This elwr describes a unit circle centered at the origin of the 
Z-plane  (Fig. 7) .  The unit circle  also  plays  an important role 
in problems  regarding  stability. 

I ~ ~ Z I  
t 

UNIT CIRCLE 

W 
1 - 1  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Z-plane with the  unit circle. 

To  insure  stability,  all the poles of the system  transfer 
function must be inside the unit circle. Fiber lattice filters 
incorporating passive  elements (no gain)  are  sure to be 
stable.  Furthermore, i f  all the zeros  are  also  inside  the unit 
circle,  the  system is called a minimum phase  system, while 
i f  any  zero  lies  outside the unit circle, the system is called a 
nonminimum phase  system. It should be mentioned that 
for a minimum phase filter, the phase  response  and the 
logarithm of the magnitude  response are a Hilbert trans- 
form pairs.  This is in addition to the property of all  real 
stable  causal  systems  that the real and  imaginary  parts of 
the frequency  response are Hilbert transformations of each 
other. Oppenheim and  Schafer [ 22 ]  give a more  complete 
description of the  Z-transform  theory. 

Using the definition of the Z-transform, (4), we find the 
following expressions  for the system  transfer  functions, 
H ( z ) ,  of the two-coupler  delay  lines introduced earlier (see 
Fig.  3): 

a) Two-coupler recirculating delay line, with X ,  as the 
input and V, as the output (see  Fig.  3(a)) 

where a, and do  are the intensity coupling coefficients of 
the couplers,  and f, is the  loop intensity transmittance of 
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the system. As (5) shows, this system  has  one  zero  at 

and  one pole at z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalaod,. 

input and Y2 as the output (see Fig. 3(a)) 
b) Two-coupler recirculating delay line, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, as the 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl, i s  the intensity transmission  factor of the forward 
fiber  line. In this case, the  system  has  one  zero  at the origin 
and  one pole at z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalao{,. 

c) Two-coupler nonrecirculating delay line, with X, as 
the input and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, as the output (see Fig.  3(b)) 

Hii(z) = - bi)(l - bb)e~~ + bik/12Z-~ (7) 

where b, and 4 are  the intensity coupling coefficients of 
the  couplers,  and dl ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, are the intensity transmit- 
tances in the two feed-forward fiber lines.  This  system  has 
one pole at the origin and  one  zero  at 

z =  - 614 2 

(1 - b,)(l - ~ J ) ~ I I  ' 

Note that those  zeros  or  poles which are located at the 
origin do not affect the  frequency response  of the system 
(except  for a linear phase factor). For this reason,  we  refer 
to the two-coupler recirculating delay line, with Y, as the 
output, as a first-order (one-pole) all-pole system.  The two- 
coupler nonrecirculating delay line and the two-coupler 
recirculating delay line  with V, as the output, are referred to 
as first-order (one-zero) all-zero and first-order (one-pole) 
pole-zero systems,  respectively.  The pole-zero diagrams  of 
the systems  discussed in this section are illustrated  in Fig. 8. 

(a) ( 4  (c) 
fig. 8. Pole-zero  diagrams of the two-coupler delay  lines 
(see  Fig. 3), with X ,  as the input. (a) Two-coupler recirculat- 
ing delay line, with Y, as the output. (b) Two-coupler recir- 
culating delay  line, with Y2 as the output. (c) Two-coupler 
nonrecirculating delay  line, with Y, as the output. 

These  diagrams contain  information about  the  frequency 
responses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the corresponding systems. 

6. Transfer-Matrix and  Chain-Matrix Formulations 

All the structures of interest in this paper  have, in gen- 
eral, two inputs and two outputs (two-pair systems).  Trans- 
fer-matrix and chain-matrix formulations are two methods 
of characterization which are suitable for cascaded two-pair 
systems.  These methods are first explained very briefly, and 
then applied to our lattice structures to obtain the total 

transfer functions. A more detailed explanation of  these 
methods can  be found in [14]. 

Consider a linear  and time-invariant two-port system, 
with each port having two terminals. In Fig. 9(a), the first 
and  second  ports  consist of the  variables ( X , ,  Y,) and (X,, Y2), 

''4 H p;2 
x2 

(b) 
Fig. 9. A two-pair system.  (a)  Feed-backward configuration. 
(b)  Feed-forward configuration. 

respectively;  we  refer to this configuration as a feed-back- 
ward two-pair system. Alternatively, if (X l ,  X,) and ( Y , ,  Y,) 
constitute the  first and  second  ports, then the system is 
referred to as a feed-forward two-pair system (see Fig.  9(b)). 
Note that  the input variables  are shown by X ,  and the 
output variables  by Y. 

The inputs and the outputs are related to each other by 
the transfer  matrix 

where z is the Z-transform variable. Note that H,,,(z) is 
the transfer function from input X,, to  output Y,. 

While the transfer  matrix formulation is suitable  for  the 
analysis  of  cascaded feed-forward two-pair systems, there is 
another way  of  characterization which is more  suitable  for 
the analysis of cascaded feed-backward two-pair systems. 
This method makes  use of the  chain  matrix which relates 
the pair ( X , ,  Y,) to the pair (X2, Y,) 

Note that both the  transfer  matrix  and  the  chain  matrix are 
2 X 2 matrices which are uniquely determined for specified 
input and output variables. 

It can  be  easily shown  that  elements  of the transfer 
matrix of a feed-backward two-pair system are related to 
the elements  of i ts  chain  matrix through the following 
expressions: 

H12 = 
GllG,, - G12G21 

G11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

H21, = c,, 

If C,,G,, - C,,G,, = 1, the system is called a reciprocal 
(H,, = H,,) two-pair. A very important property of the 
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chain-matrix formulation is that for cascaded feed-back- 
ward two-pair systems  (see  Fig. 9(a)), the  chain  matrix of 
the composite system is the product of the individual chain 
matrices, multiplied in the same  order as the systems  are 
cascaded,  i.e., 

Gt,,,, = GqG2G3 . . . G,. (1 4) 

The  same multiplicative rule, but  with the reverse  order, is 
also valid for  the  transfer  matrices of cascaded feed-forward 
two-pair systems  (see  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9(b)), as shown below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Hrotal = HN * * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH3 H2 Hl (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is the  number of cascaded  systems.  These multi- 
plicative properties of the chain-matrix and  transfer-matrix 
formulations greatly simplify the  mathematical analysis of 
cascaded two-pair systems. 

Lattice  structures  are good examples  of  cascaded two-pair 
systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs mentioned before,  these  structures  are obtained 
by a cascade connection  of  individual  two-coupler delay 
lines  (basic lattice sections)  of  the  types illustrated in Fig. 3. 

It can readily be shown that for a directional coupler, 
with a as the coupling coefficient, the  transfer  matrix H, 
(with variables labeled as shown in Fig.  9(b))  and the chain 
matrix G, (with variables  labeled as shown in Fig.  9(a))  are 
given by the following expressions: 

and 

G, = - 

In a similar way, for a simple two-line delay  system, with 
a unit  time delay (z- ’)  and intensity transmission  factors dl, 
and dl*, as depicted in Fig. IO,  we obtain 

I 

0 

I 
I I 
I I 

0 

! I W I  * 
1 ----------I 

Fig. 10. A simple two-line delay  system; dl,  and d l ,  are 
iniensity transmission  factors of the  first  and  second-fiber 
lines,  respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-’ represents  a unit  time delay. 

and 

The two-coupler delay  lines  (see  Fig. 3) are both a cascade 
connection of two couplers and a two-line delay line. 
Therefore,  using (14)-(19),  we  can  calculate the  chain  ma- 
trix and  transfer  matrix  of,  respectively,  the two-coupler 
recirculating and nonrecirculating delay  lines. The  results 
are shown below. 

where 

p ,  = 1 - alaodlz-l 

c;, = -a, - dl(l - 2a0)t1z-’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I G;, = a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(I - 2a1)a0d1z-’ 

G;, = -alao + (1 - 2a1)(1 - 2a,)d,~-~ (20b) 

and dl = dl,dl2 is the loop intensity transmittance, Ga and 
Gd are coupler chain matrices (see (17)) with  coupling 
coefficients equal to a, and a,, respectively,  and G d  is the 
chain matrix of the two-line delay  system, given in (19). 
Moreover, in this case, the  elements of the corresponding 
transfer  matrix  can be found through (10)-(13), which are 
consistent with those of (5) and (6); also for the nonrecir- 
culating case we  have 

where 

Note that the H,, element is the same as the  one  given in 
(7). 

The chain  and  transfer  matrices  of  the  basic lattice sec- 
tions, given in (20) and (21), can  be  used to calculate the 
total chain and  transfer  matrices  of  higher  order lattice 
structures.  Using this approach,  together with Z-transform 
techniques, we  can obtain general  expressions  for the  trans- 
fer functions of our lattice structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Modern Control Theory Formulation 

In modern control theory [15], a general (discrete-time) 
linear nth-order system is described in a state  space  by the 
state  update  and the output equations as shown below. 

We  represent  the  matrices  and  the  vectors  by  upper  and 
lower case notations,  respectively. In (22a), the  vector x ( & )  
is an n-dimensional state  vector, u(k)  is an rn-dimensional 
input vector, y ( k )  is a pdimensional output vector,  and 
A,B,C,D are (n X n), ( n  X rn), ( p  X n), and ( p  x m) 
matrices,  respectively. In the case of shift-invariant (tirne-in- 
variant)  systems the above  matrices are independent of 
time. However, these  matrices  are, in general, functions of 
system  parameters  such as coupling coefficients and  system 
losses  or  gains. 

It should also  be noted that  the  state  of a dynamic system 
is usually defined as the  smallest set of  variables (called 
state  variables)  such that the knowledge of  these  variables 
at the initial  time t = to together with the inputs for t 2 to, 
completely determines the behavior  of  the system  for  any 
time t 2 to. Usually,  the state variables  are  taken to be the 
outputs of  the  delay  elements. 

In the mathematical model described  by (22a) we  have 
assumed the  general case of a multiple-input ( r n  inputs), 
multiple-output ( p  outputs) system (“MIMO” system). If 
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the system  has only a single input and a single output 
(“SISO” system), the equations  can  be  expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x ( k  + 1) = A ( k ) x ( k )  + 6 ( k ) u ( k )  ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy( k )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc‘( k ) x (  k )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd( k )u (  k )  (22b) 

where now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 and c are vectors  and d is a scalar. 
As an  example, taking the outputs of the delay  elements 

as the state  variables,  we  get the following expressions  for 
the ( A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,  C, 0)  matrices of the Nth-order feed-backward 
lattice structure: 

Note that all the indices are numbered  increasingly from 
the right to the left of the  lattices’  schematic  diagrams. 

As seen, all  elements of the  above  matrices  and  vectors 
are nonnegative in value. It can be  shown  that i f  the 
coupling coefficients of all the middle couplers (the first 
and  last  couplers  excluded)  are  greater  than 0.5, then  all the 
system  poles  are  real  and  nonnegative.  The  reason is that, in 
this case, all the minors of the A matrix which is an upper 
Hessenberg  matrix,  are  nonnegative. 

B =  

and 

where  the input,  output, and  state  vectors are as shown 0, pos;r;ve Opt;cal Systems 
below 

In this  paper  we  have  considered only systems in which 
(23e) the signals (optical intensities)  and coupling coefficients are 

nonnegative quantities. These  systems form a subclass which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r =  (;) 

and 

X =  

is well matched to the requirements of several  fields of 
application. These and  many  other  linear  systems of interest 
can  be  represented  by a set of linear  matrix-vector  equa- 

(23f) tions in which all the elements of the matrices  and  vectors 
involved are  (real)  nonnegative in value. Real matrices with 
nonnegative  elements  have important applications in the 
theory of probability  for  the study of Markov  chains  [23] 
(stochastic  matrices),  and in the theory of oscillatory 
properties of elastic  vibrations in mechanics [24] (oscillation 

The  ‘theory of positive systems is closely  associated with 
the theory of positive matrices, which is remarkably well 

(23g)  matrices). 
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developed. This  enables  us to use the  results of the theory 
of positive matrices in the  study  of positive systems. After 
some  basic familiarity  with this important theory, our goal is 
to explore i ts  applicability  to optical systems which  incor- 
porate positive-valued parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A very interesting and  advantageous  feature  of positive 
systems theory is that it provides us with some fairly strong 
and important conclusions  about  the  behavior  of a positive 
system. In  addition, it is usually  consistent with  intuition. 

In this section,  we  first define a positive system,  using the 
state-space  model,  described in Section IV-C to represent 
that system.  Then,  we  state  some definitions and important 
theorems  of positive systems theory. These theoretical re- 
sults are then used to prove  that  the  magnitude  of  the 
frequency response  of a linear shift-invariant positive sys- 
tem can nowhere exceed its  value at the origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a = 0). 
Finally,  after  discussing  the  results obtained and verifying 
their consistency with  intuition, we conclude this section 
with a few remarks regarding some  of  the  effects of the 
positivity feature on positive optical signal  processing  sys- 
tems. 

Based on the state-space representation  of a linear sys- 
tem, a linear positive system is defined as a linear  system in 
which the  state  variables  (and the outputs) are  always 
positive (or  at  least nonnegative) in value.  Such kinds of 
systems  arise frequently in practice  since  the  state  variables 
of many real systems  describe quantities which are  always 
nonnegative. As an  example, in many economic systems the 
variables which describe quantities of  goods  remain non- 
negative. The  same is true for the subset of linear optical 
systems  for which the quantities involved are positive-val- 
ued,  such as incoherent optical processors which have 
applications in signal  processing  and filtering operations. In 
the following we  present  some  facts from positive systems 
theory. 

7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASome Theoretical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackground: If A = [ a j j ]  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = 
[b j j ] ,  we  shall  agree on the following notations for our  later 
discussions: 

For two real  matrices A and B we write 
i) A > 6 (or B < A )  i f  and only if aj j  > 6jj for all i , j .  
ii) A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 B (or 6 6 A )  if and only if aj j  2 bjj for all i , j .  
iii) A 2 6 (or 6 5 A )  if and only if a j j  2 bjj for all i , j  

with aj j  # bjj for at  least one ( i , j ) .  
iv) For a complex-valued matrix C we denote by C the 

matrix  modulus C which is obtained from C when all the 
elements are replaced by their moduli. For the special case 
when 6 = 0 we call A strictly positive, positive (or strictly 
nonnegative), and nonnegative, when A > 0, A 2 0, and 
A 2 0, respectively. 

Now we proceed to describe  three of the  major proper- 
ties of linear positive systems [15]. 

i) The first important property, which is stated  by the 
Frobenius [25] and  Perron [26] theorems, is related to the 
fact that for any linear-positive system there exists a domi- 
nant  eigenvalue  and  eigenvector. This important property 
will be described in more detail later in the  discussion of 
the Frobenius-Perron  Theorem. 

ii) The  second property of positive systems is concerned 
with the connection between stability and positivity.  It can 
be shown [IS] that for positive systems there is a direct 
correspondence between the existence of a positive equi- 
librium  point and stability. 

iii) The third major property is concerned with the  effects 
produced by  changes in the values  of  the  parameters  of the 
system (comparative statics).  For positive systems positive 
changes  (such as increasing an element of the system  matrix 
A )  produce corresponding positive changes  (increases) in 
the components  of  the equilibrium points (the steady-state 
state  vector). 

Therefore,  even i f  the  precise  values  of  the  parameters  of 
a linear-positive system  are not  known in advance,  we  can 
draw some significant qualitative conclusions  about  the 
behavior  of  the system.  Here it should also  be noted that 
the structure  of continuous-time-positive systems is slightly 
different from that  of discrete-time-positive systems be- 
cause in the  former case the system  matrix  relates the state 
to the derivative  of the state  and the  derivative  need not be 
positive, but in both cases the results  are virtually the same 
in character [IS]. 

By using  the theory of positive systems it can  be shown 
that the  magnitude  of  the  frequency response of a positive 
system  can nowhere exceed its  value at the origin, i.e., 

Some related  theorems,  together with the proof of (24),  are 
presented in the  Appendix. For  more complete information 
on this topic, see [IS] and  [27J 

2. Discussion and Conclusions: The theory of positive 
systems  has the attractive feature of being consistent with 
intuition. For  example, for the conclusion given in (24),  we 
can  have the following explanations: 

i) At frequencies for which w T = 2nn( n = 0,1,2, ) 
the signals  add constructively in the system,  whereas at 
other frequencies this is not the case.  Therefore, the  magni- 
tude  of the  transfer function should take  its  maximum  value 
at frequencies which are integer multiples of 1/T. 

ii) Since the impulse response of a positive system is real 
and positive-valued for all time, it can be  considered  analo- 
gous to a power spectrum (which is positive for all frequen- 
cies); therefore, the Fourier  transform of the  impulse  re- 
sponse  (or the system  transfer function) can  be  regarded as 
an autocorrelation function, and it is well  known that the 
value  of  an autocorrelation function at the origin is maxi- 
mum and positive [28]. 

In conclusion, we  have briefly described  the theory of the 
positive systems  and  used it  to prove  that  the  magnitude of 
the frequency response of a positive system  can nowhere 
exceed  its  value at the origin. This implies that, for instance, 
we  cannot make  high-pass filters with positive systems, 
since  these filters should be  able to reject  the low-frequency 
components of the input signals.  Further flexibility is possi- 
ble by combining positive sections with sections allowing 
negativity. One such  example  (all-pass filter) is given in 
Section VI (frequency-domain applications). It should be 
mentioned that information about the locations of the 
poles  and  zeros  can  also  be obtained for positive systems. 
For  example, it can  be shown  that, for a positive system, 
there cannot be  an odd number of zeros to the right hand 
of the pole  with the largest magnitude (which is real  and 
positive).  This  result is not proved in this paper. 

Finally,  we  emphasize the point that  just knowing the 
fact that the system is positive enables us to make  some 
fairly strong  statements  about  the  behavior  of the system 
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regardless of  the precise  values of the system  parameters. 
More detailed studies are  necessary to reveal  other poten- 
tial applications of positive systems theory in incoherent 
optical systems,  such as iterative optical processors  and 
optical baseband filters. 

V. TIME-DOMAIN SIGNAL PROCESSING APPLICATIONS 

In this  section,  we  explain the operation of a new  fiber- 
optic processor, the fiber-optic systolic  matrix-vector multi- 
plier [3], which is capable of performing  high-speed  matrix 
operations. 

To  realize  this  processor, a feed-backward fiber-optic 
lattice structure has been  used. In this configuration, our 
processor  also  shares important features of Kung's  systolic 
architecture  [16]. Our experimental  results are for a 2 X 2 
(Toeplitz)  matrix-vector multiplier, with 100-MHz clock rate 
(2-m  fiber  loops).  However, it should  be noted that, by 
incorporating smaller  fiber  loops,  and  designing  smaller 
components  and a more  compact  geometry, the effective 
clock rate of the device might be  readily  increased to well 
over 10 GHz.  Also,  higher  order  lattices  can  be  used to 
operate on matrices of higher  dimension. This  extension 
requires only additional couplers  and  fiber length. In gen- 
eral,  this fiber structure has all the advantages of the lattice 
structures,  described  previously.  Furthermore, in this appli- 
cation, it also simplifies (compared to the transversal filters) 
the data flow and detection by  performing the summations 
optically within a single  strand of fiber. 

The operation of the systolic multiplier is described in 
connection with Figs. 11 and 12. As  is  seen in Fig. I l (a), this 

(b) (c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 11. The scattering  processor. (a)  The counter-propagat- 
ing guided waves in the two fibers  interact in the couplers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Td is the round  trip  loop delay between adjacent  couplers. 
(b) A directional coupler as the systolic  inner product step 
processor.  (c) Operation of the  inner product step  processor. 

processor  consists of two parallel fiber lines with several 
couplers (with the intensity coupling coefficients repre- 
sented  by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,) distributed along the fibers. This  device  may 
also  be  referred to as a (single-mode) fiber-optic scattering 
processor (FOSP). The term  "scattering" is used  here in the 
signal  processing  context of [29].  Each coupler (see  Fig. 
Il(b)) operates on the upper left and  lower right inputs 
(Xup and Xdown) to produce the upper right and  lower left 
outputs ( Yup and &ow,). Mathematically, a general (not 
necessarily  passive)  linear  coupler of this  type  can be de- 
scribed  by  (linear)  transmission  and reflection operators r, 

TOEPL I TZ MATRIX 
011 = 022 

Fig. 12. A systolic Toeplitz matrix-vector multiplier for 2 X 
2 matrices.  (ai) are the coupling ratios of the  three  couplers. 
The output is the sum of the contributions made  by  each of 
the  vector  components. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp according to 

Since  the  delay  between  successive  couplers  can  be incor- 
porated  easily into their characteristic  matrices,  our  struc- 
ture comprises a series of scatterers  whose  cascaded  opera- 
tion is described by Redheffer's  scattering  formalism  [29]. 
Therefore, with appropriate  couplers, the FOSP can  simu- 
late (with a very  fast  speed)  many  physical  phenomena 
which are  also  described  by the same scattering  formalism 

As mentioned  before, with conventional (passive) direc- 
tional couplers [20], the FOSP can function as an analog 
matrix-vector multiplier  which operates  very much like a 
digital systolic  array  processor  [16].  (See  [30],  [31],  for a 
different optical systolic  processor, which uses light-emit- 
ting diodes (LEDs) and a Bragg cell for input and a charge- 
coupled  device (CCD) detector for output.) In a digital 
systolic  system  [16],  data flow from the computer  memory, 
passing  through  many  processing  elements  before  they 
return to memory.  The  interactions of the input data with 
the  flowing partial  results permit multiple computations for 
each 1/0 memory access.  The building block of systolic 
processors  is  the  inner product  step processor  [16]. In the 
limit  of weak coupling (0 < a, << 1): ai. X,, + Xdown + 

Ydown, and X, ,  + Vu,, so each  coupler  is  an  Inner product 
step  processor  (see  Fig. I l(b), (c)) and the basic time  unit  of 
the FOSP is determined  by the loop delay Td, which should 
match  the switching time of the  coupler. While the general 
systolic  architecture  can  be  two-dimensional, a FOSP, which 
uses mechanically or electronically controlled couplers, is 
one-dimensional,  since only two of the  three  ports of the 
basic  systolic  step  processor are optical channels.  One of 
the more  important  applications of one-dimensional sys- 
tolic arrays is in matrix-vector multiplication. As described 
in [16],  the operation of the multiplier involves 2N - 1 
couplers,  corresponding to the 2N - 1 main-  and off-diago- 
nals of the given N X N matrix (in the special but important 
case of a banded  matrix [16],  less than 2N - 1 will be 

1291. 
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required [30]). As the components  of  the input vector  are 
serially  fed into the input  line of Fig. I l (a), the  matrix 
elements  enter  the  couplers  progressively in such a way 
that each coupler sees matrix  elements  from a single off- (or 
main-) diagonal.  However, as long as fast switchable cou- 
plers are not available,  the high inherent bandwidth of  our 
fiber processor  can  be fully  utilized only for matrix-vector 
multiplications  which involve Toeplitz matrices  (i.e., 
matrices in which all the  elements  along each diagonal are 
equal). Since convolutions and  correlations are described by 
Toeplitz operators, this last limitation is not  too severe. 

The operation of the systolic multiplier  with fixed weights 
is described in Fig. 12, for a 2 X 2 Toeplitz matrix. The 
matrix  elements are represented  by  the coupling ratios zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a , )  
which are assumed to be  weak, thus eliminating recircula- 
tion of  the input pulses.  The components of the input 
vector  enter  the input  line as a time sequence  of light 
pulses  whose  spacings  are  equal to the round-trip  loop 
delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATd between adjacent  couplers. With incoherent light, 
the  device is linear in the intensity of  the optical guided 
waves,  and the intensity of  the light at  the output  line is the 
sum  of the responses to the two components of the input 
vector. Referring to Fig.  12,  we see that  the  matrix-vector 
product appears in a time slot  that follows the first pulse. A 
similar  result  holds for general (Toeplitz) N-dimensional ma- 
trix-vector multiplication. Since  such a matrix  has 2N - l 
independent elements, 2N - 1 couplers will be required, 
and the N components  of  the output vector will  follow the 
(N - 1)th output pulse. 

In the above  discussion,  we  have  neglected recirculations 
and loop losses. However, as is evident  from Fig. 12, proper 
operation of  the multiplier depends only on the  device 
impulse response  rather than on the individual  coupling 
ratios  and loop losses.  Therefore, for a given N X N (Toep- 
litz) [ a j j ]  matrix, the 2N - 1 couplers can  be adjusted to 
yield an impulse response with pulse  heights proportional 
to a,, N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa?, N - l , .  . *,  a;, N- ;+,,. . * ,  aN.1 ,  respectively. 

Although the outlined operation of the  device  admits 
only positive vector  components and matrix  elements,  the 
extension to the  general  complex case is straightforward i f  
one uses the previously developed  techniques for bipolar 
operation of incoherent optical data  processing  [32]. As in 
the digital systolic case, the main advantage of the FOSP 
over  current  transversal  matrix-vector multipliers [2], is its 
single-output nature which permits the use of small,  and 
therefore fast detectors without sacrificing light-collection 
efficiency. 

An experimental  device,  shown in Fig. 13, was built from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ions 

DELAY 

FOSP 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. The experimental  device. The coupling ratio, ai ,  of 
the i th coupler was adjusted  by sliding the two half-couplers 
with respect to each other. Td was approximately 30 ns. 
Negative  electronic  pulses  were required for positive modu- 
lation  of the laser light. 

three directional couplers. After the three  upper  and  three 
lower half-couplers [20]  were  spliced  separately  (by  using a 
fusion splicer),  the two sets  were  assembled to  yield three 
(backwardly) interconnected couplers. The three  couplers 
were  manually  adjusted to  yield an impulse response with 
the  first  three  pulse  heights proportional  to a,,, a,,(= a,,), 
and a,,, respectively. The experimental output vectors, 
which are shown in Fig.  14(a),  (b), follow the theoretical 

[:] 

[:::] = [ 1 

OUTPUT PULSES H 
(b) 

fig. 14. Experimental  matrix-vector  products in  two differ- 
ent cases (arbitrary  vertical scales).  The upper  traces show 
the electronic input pulses which are of negative polarity. 
The  bias point  of the laser  source  was  set  such that  negative 
pulses  were required for positive modulation of the laser 
light. The undershoots that follow the  pulses  result from the 
high-pass  characteristics of the electronic circuitry. Note that 
the first  and the fourth pulses  are proportional to alZxl and 
aZlxZ,  respectively. 

predictions quite accurately.  Among the factors that de- 
termine the ultimate accuracy  of the multiplier are incorrect 
settings of the impulse response, incorrect time delay be- 
tween the input pulses, unequal loop delays,  residual recir- 
culation (for high-data-rate  applications),  and insufficient 
frequency bandwidth of  the electronic components. (The 
undershoots  that appear  after  the output pulses in Fig. 14 
are  due to the high-pass  characteristics of the power splitters 
and the amplifier.) 

The extension of  time-domain signal  processing applica- 
tions  of fiber lattice structures to such operations as code 
generation, correlation, and  matched filtering, are relatively 
straightforward (although not experimentally demonstrated). 

VI. FREQUENCY-DOMAIN SIGNAL PROCESSING APPLICATIONS 

A common problem in the systems theory and  signal 
processing areas is that of frequency filtering an input 
signal. By filtering a signal  one  attempts to remove  un- 
wanted frequency  components from the input signal, so 
that the filtered signal  closely  resembles a desired  signal. 

There  are different methods  for filtering a signal  [22],  [33]. 
One  method is through the use of a transversal filter 
(tapped-delay line [4])  whose  tap  weights are adjusted to 
realize  the  desired filtering operation. This  transversal filter 
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is sometimes  called a nonrecursive  system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a finite-dura- 
tion impulse  response (FIR) filter. It should  be  mentioned 
that a system is called a nonrecursive  system if its  present 
output is a function of past  and  present inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[33]. (In 
contrast, a system is cal1ed.a recursive  system if i ts  output is 
a function  of past outputs as well as past  and  present 
inputs.)  Furthermore,  nonrecursive filters introduce only 
zeros in the system  transfer function, and  therefore are 
known as all-zero  filters. 

In contrast to FIR filters,  there is another class of filters 
whose  impulse  response has infinite duration in time. These 
filters are called infinite-duration impulse  response  (IIR) or 
recursive  filters.  Recursive  filters  introduce, in general, both 
poles  and  zeros  (pole-zero filter). In a special  case,  recur- 
sive  filters  can introduce only poles; the name “all-pole 
filter” is used in this case. 

As mentioned earlier,  lattice  structures are alternative 
filter forms. By varying the coupling coefficients of the 
lattice couplers,  we  can  adjust the system  transfer function 
and,  therefore,  shape the frequency  response of the filter. 

Here,  we  examine filtering properties of both nonrecur- 
sive  and  recursive fiber lattice filters. These two filter types 
can  be combined to realize  more  complex filtering opera- 
tions. An  example of this combined  form  which is com- 
prised of all-pole and  all-zero lattice filters, in cascade, is 
also  presented with a discussion of i ts use as an  all-pass 
filter [33] (phase  equalizer).  This  cascaded  system  has the 
feature  that  its  poles  and  zeros  can  be  adjusted  indepen- 
dently  of each other. Optical power efficiency calculations 
are  also  discussed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANonrecursive (FIR) Lattice  Filters 

Fig. 5(b) (or Fig. qb)) shows  an Nth-order nonrecursive 
fiber-optic lattice filter made of directional couplers.  This 
nonrecursive  structure has two feed-forward  lines.  This is in 
contrast with the recursive (IIR) lattice which has one 
feed-forward line and  one  feed-backward line. 

Using  Z-transform  techniques,  we obtain the following 
expression for the  transfer function  of the nonrecursive 
fiber lattice structure (the coefficient of the  zeroth-order 
delay is taken  equal to 1): 

H,,(z) = 1 + c,z-l + c2z-2 + * * + CNZ-N 

= (1 - Z1z-’)(1 - z ~ z - ’ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* e .  (1 - z ~ z - ’ )  (26) 

where  the ci)s are positive-valued and are functions of the 
coupling coefficients, the power loss or  gain,  and the zi)s 
are the zeros of the transfer function. This  transfer function 
is an  all-zero  type, with its  poles located at  the origin. 

By expanding (26) into i ts real  and  imaginary  parts  and 
also  using the fact  that the ci)s are nonnegative  variables, 
we can conclude  that, for a positive nonrecursive filter, 
there  cannot  be  any  zero of the transfer function in the 
symmetric  angular  sector le1 < r/N, where 8 represents 
the polar  angle in the Z-plane,  and N i s  the order of the 
system.  This inequality can  also be  used to estimate the 
minimum order of the system required to realize a given 
zero  pattern.  Moreover, it is easy to show  that,  for  such 
systems, not all the zeros  can be located in the right-hand 
Z-plane,  unless  sections allowing negativity are incorpo- 
rated. 

Frequency  responses of nonrecursive  fiber lattice filters 
are similar to those of a transversal filter (tapped-delay line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FREQUENCY X DELAY ( f T )  

(a) 
loo, 1 

- 1 0 0  I 1 I I 1 l 
o 0.2 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6 0.a 1.0 

FREOUENCY X DELAY ( f T )  

(b) 

Fig. 15. Frequency  response of a two-coupler  nonrecursive 
lattice  filter, for 4 = 6, = 0.5 (with no power loss or gain). 
(a) Log-magnitude  response. (b) Phase response. 

[4]). As an  example,  frequency  responses (in one  basic 
period) of a first-order  nonrecursive  fiber  lattice filter, when 
coupling coefficients of both couplers are 0.5, for  equal 
intensity transmittances in the two fiber  lines,  are shown in 
Fig. 15. This filter can  be  used as a notch filter to block 
frequencies  around U T =  II, where T is the time-delay dif- 
ference  between the two feed-forward  fiber  lines. 

These nonrecursive fiber lattice filters have all the ad- 
vantageous  features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22] ,  [33] of nonrecursive systems,  such 
as inherent stability,  good phase control properties  (can 
design  linear  phase  filters), in addition to all the features  of 
lattice structures mentioned before. In particular, the fact 
that all the operations are done optically within the fiber, 
simplifies the detection system  (compared to that of a fiber 
transversal  filter),  and  also  increases the light-collection 
efficiency. 

One characteristic of nonrecursive  filters,  whether of the 
transversal  or  the lattice type, is that  they  cannot provide 
very  sharp filtering unless  the filter order, N, is very high. 
This  is  undesirable,  since  higher  order  filters  are  more 
difficult  to fabricate  and  also  more  costly. 

B. Recursive (IIR) Lattice  Filters 

Fig.  5(a) (or Fig. qa)) illustrates an Nth-order  fiber-optic 
recursive lattice filter, with the input specified as X ,  (or X,)  
and two outputs as Y, and Y,. 

This filter, which has a structure  similar to that of the 
fiber systolic array multiplier (see Section V),  has one  feed- 
forward line and  one  feed-backward  line. By using the 
output Y, on the  backward line we can do matrix-vector 
multiplication operations, as described  before. 

Using the chain-matrix  method (see Section IV-6) or (28) 
and (29), it can be shown that the transfer function, H,(z), 
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from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, has both poles and  zeros which are depen- 
dent on each other. In other words,  the  poles  and  zeros 
cannot be adjusted independently of each other. This is, in 
general,  an undesired  feature  that can  be removed by using 
the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, on the forward line.  It should be noted here 
that in the weak coupling regime H,(z) approximates  an 
all-zero transfer function,  which is desirable  for  matrix-vec- 
tor multiplication operations. 

Using the chain-matrix approach,  we  have  also shown 
that the  transfer function H,(z) from X ,  to Y, has  zeros 
only at the origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor infinity. and  poles  whose locations can 
be adjusted independently from  the zeros. 

Therefore,  for  frequency filtering applications it is mostly 
preferred to use the output Y,. This allows realization of an 
all-pole  filter. The  transfer function of this all-pole  filter can 
be  represented, within a constant proportionality factor,  by 

I 

= (1 - plz-l)( l  - m z - l )  . . . (1 - p N z - l )  

(27) 

where  the p/s are the  poles  of  the  transfer function. 
In general, if the phase  response  of the filter is not 

important we  can  always  design better filters using  the IIR 

structures.  This is true because the poles  of  the IIR filter can 
be  arranged in such a way as to keep the magnitude  of the 
frequency response flat in some specified frequency range, 

-I .o 
-1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.5 0 0.5 1 . 0  

AM (2) 

and then the zeros  can  be  used to force  the  frequency 
response to zero. As a result, low-order IIR filters can  be 
used to produce  extremely sharp frequency responses.  This 
is the most  advantageous  feature  of  the IIR structures. 
Among the  disadvantageous  features [22] ,  which stem from 
the existence  of  feedback  loops, are complexity of  the 
design, stability concern,  and nonlinear phase  response (it 
can  be equalized to be arbitrarily close to linear, but  intrin- 
sically  because of the closeness of the  poles  and  zeros there 
can  be a big phase  change in the transition regions). 

We  have developed  general  expressions  for the transfer 
functions of the above fiber lattice configurations. For the 
recursive fiber lattice case, H1," and H2," (the nth-order 
transfer functions from X, to Y,, and from X ,  to Y,, respec- 
tively) are related to the  transfer functions of  the (n - 1)th- 
order filter by  the following recursion formulas: 

an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(I - 2 a n ) H 1 , ( n - l ~ ~ K 1  

1 - a n H l . ( n - l ) W 1  
H1,rl= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 H2," = 

where  the initial  conditions are 

I .o I .o 

0.5 0.5 

- 
t? 

- 
g o  2 0  I 

-a5 -0.5 

4.0 
-1 .0  -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 I .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I  .o 

RE& (21 
Ry 12) 

( 4  (e) 

Fig. 16. The Z-plane maps of possible pole locations for recursive fiber-optic lattice 
filters. These patterns  were  generated  by  randomly  varying  the coupling coefficient vector, 
A ,  = (a,,a,;. . , a N ) ,  where 0 4 a ;  5 1, and G, = 1. (a) First order.  (b)  Second  order.  (c) 
Third order. (d) Fourth  order.  (e) Fifth order. Note that  for  the Nth-order lattice the 
coupling coefficient vector, A,, is defined as an ( N  + 1)-element  vector  whose  elements 
are the values of the coupling coefficients, a,, i.e., A ,  = (a, ,a, ; .  . ,a,) .  

920 PROCEEDINGS OF THE IEEE. VOL. 72, NO. 7, JULY 1 ' 9 3  



and the recursion  index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn varies from 0 to the filter order N. 
The pole-zero  locations of these  transfer functions in the 
Z-plane  depend on the coupling coefficients and  power 
losses  or  gains in the system. 

For the first- through fifth-order recursive cases, the maps 
of possible pole locations are shown in Fig.  16(a)-(e).  These 
maps  were obtained  by running a computer  program  that 
uses a random  number  generator to vary the elements of 
the  coupling coefficient vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALL (a0,a,;. .,a,), ran- 
domly between  zero  and  one. This  program  then  computes 
the roots of the corresponding  characteristic polynomials. 
This  process  was  repeated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 times  for  the first- and 
second-order  filters,  and IOOOO times for the third-, fourth-, 
and fifth-order cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs seen in the figure,  for the first-order 
filter the pole is always  (real)  positive,  and  for  the  second- 
order  system both poles are real (the pole with the  larger 
magnitude is positive-valued). For the third-order case, 
again, the pole with the  largest  magnitude is always posi- 
tive-valued,  whereas the other two poles  can  be  either both 
real or a complex  conjugate  pair. For the fourth- and 
fifth-order filters again  the pole with the largest  magnitude 
is always  positive,  and  the  rest of the poles  can  be  either  all 
real  or  some  real  and  some  complex  conjugate  pairs.  Note 
that we assumed that the systems corresponding to the 
above  patterns do  not have  any power loss or  gain. In the 
case of power loss or  gain, the patterns  contract  or  expand, 
respectively. In the latter case the system might  become 
unstable,  for  some  cases.  Similar  maps  were obtained  also 
for other lattice orders.  These plots show  that the Z-plane 
filter  pole patterns  have  regular  characteristic  branches  an- 
gularly positioned at &2n/n, ( n  = 1,2; * *,  N), where N is 
the order of the lattice, as well as integer multiples of this 
expression. Information about  pole-zero  locations are help- 
ful  in filter design. As an example, Fig. 17 illustrates the 
frequency  responses of third- and fifth-order all-pole lattices 
for two different settings of  coupling coefficients. The  val- 
ues of the coupling coefficient vectors  are  chosen  such  that 
for  one case all the poles of the corresponding filter transfer 
function are  (real)  positive,  and for the other case there are 
both real  and  complex  poles. Note that  the  presence of 
peaks in the frequency  response  curves  (see  Fig. 17) are 
indicative of the existence of complex  conjugate pole pairs. 
The  pole-zero  diagrams of these  examples  are depicted in 
Fig.  18. Also, frequency  responses of the  systolic multiplier, 

NO LOSS OR AMPLlFlCATlON 
THIRD-ORMR ALL-POLE  LATTICE - 
FIFTH-ORDER  ALL-POLE  LATTICE --- 

~ A ~ = ~ 0 . 9 , 0 . 1 . 0 . 1 . 0 . 9 ~  A 

-120 I 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.4 0.6 0.8 I .o 

FREOUENCY I DELAY  ( fT )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 17. Log-magnitude  frequency  responses of third-order 
and fifth-order all-pole fiber-optic lattice filters  for two dif- 
ferent sets (shown on the  figure)  of the coupling coefficient 
vector. 
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Fig. 18. Pole  diagrams of the third- and fifth-order recur- 
sive lattice filter  of the  examples shown in Fig. 17. 
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(c) 
Fig. 19. Frequency  responses of the  recursive lattice struc- 
ture,  used for matrix-vector multiplication. (a) Log-magni- 
tude response in the frequency  range 0-1200 MHz, for the 
case when the first  three output pulses of the  impulse 
response  are equal. The  upper  trace  shows the frequency 
response  of  the  electronics. (b) Phase and log-magnitude 
responses, illustrated in one cycle (0-100 MHz). (c)  Log-mag- 
nitude response in the frequency  range 0-600 MHz, for the 
case when the coupling coefficient of the middle coupler is 
maximum (a ,  +i 1). 

used for matrix-vector multiplication, are shown in Fig.  19. 
Note that  our  experimental  systolic multiplier was a sec- 
ond-order  recursive lattice structure in the weak coupling 
regime (when the coupling coefficients are low). As it is 
clear  from the figure,  this  regime of operation makes the 
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frequency responses of the  systolic multiplier similar to 
those  of a transversal filter. 

The pole and  zero  diagrams shown above  are for positive 
systems.  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 indicates  that,  for  such systems,  the Z-plane 
cannot be  covered completely. This  result is in contrast 
with that of lattice filters of  the digital  filtering theory. For 
such  systems, the system  parameters  can  assume both posi- 
tive and  negative  values,  and  therefore  they  can  cover  more 
area of the Z-plane. For fiber lattice filters,  Z-plane  cover- 
age  increases as the order  of  the  system is increased.  Fur- 
ther flexibility is possible by combining positive sections 
with sections allowing negativity [Ill. One such  example is 
explained below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Combined Fiber Lattice Filters 

By cascading the all-zero nonrecursive lattice with the 
all-pole recursive lattice, described in previous  sections,  we 
can obtain more  complex systems which have both poles 
and  zeros.  But now, the  poles  and  zeros of the combined 
system, shown in Fig.  20,  can be adjusted independently of 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAktaz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2)  
Hap(Z) 

ALL-POLE . ALL-ZERO + 
V- DETECTION 

INPUT GUT SYSTEM 
FILTER FILTER 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. Combined fiber lattice filter: recursive  and nonre- 
cursive sections  cascaded.  The detection system could  allow 
negativity, if needed. 

each  other. As a result,  we  may  arrange a desirable pole-zero 
pattern in the Z-plane to realize  more  complex  frequency 
responses. 

The total transfer function is given by the product of  the 
two subsystem  transfer functions, i.e., within a constant 
delay  factor, we  get 

where K is a constant, the zi)s are the zeros,  and the p,'s are 
the poles  of  the  transfer function. 

Using the  idea  described  above,  we  have  designed a 
simple first-order all-pass filter  which consists  of a first-order 
all-zero lattice and a first-order all-pole lattice, as shown in 
Fig. 21 (the detection system is described  later).  An  all-pass 
filter is a special case of an IIR filter in which the  magnitude 

Fig. 2 l .  Schematic  diagram of the first-order all-pass fiber 
filter. 

of the frequency response of the filter is constant  and only 
the phase  response  changes as the pole and  zero positions 
vary.  The impulse response of this filter is shown in Fig. 
22(a). From this figure, it is clear that this fiber all-pass filter 
cannot be realized without  incorporating a section allowing 
negativity. This is due to the  fact that the  impulse response 

t 

(b) 
Fig. 22. First-order  all-pass fiber filter. (a) Impulse response. 
(b) Pole-zero  diagram. 

is not positive for all times (it is positive at  the origin and 
zero  or  negative  at other  times). In terms  of pole-zero 
locations in the Z-plane, this means that for every pole at 
z = re@ there  must be a zero  at 

z = - e ' .  1 '6 
r 

In other words,  the poles and the zeros  are reflections of 
each other with respect to the unit circle, as shown in Fig. 
22(b) for the simple first-order case. Therefore, for the 
first-order all-pass filter, the  transfer function is given, within 
a proportionality factor,  by 

where  the  parameters are as defined before.  From  the 
above  transfer function we  can conclude that 

which is constant for a fixed pole-zero position, whereas 
the phase is a nonlinear function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. The reflection 
condition was met through the use of a subtractive detec- 
tion system which allows  negativity,  and  also  by adjusting 
the coupling coefficients. The detection system, as shown 
in Fig. 23, consists of two photodiodes of opposite polarity 

I 

INPUT ' ~ WON-INVERTING 
JL 

- PHOTODIODE 1 

ATTENUATORS 

\ 
lNPUT 2 _  INVERTING - 

PHOTODIODE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7- -BIAS 

Fig. 23. The electronic subtractive detection system  used in 
the system of Fig. 21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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whose  outputs are added in a power  combiner; the inputs 
to the photodiodes are the two fiber output lines of the 
nonrecursive  section.  The  attenuators  can  be  adjusted to set 
the ratio of the  light intensities which are to be  combined 
in the power combiner. In our  experiment,  due to high loss 
in the recursive  section resulting from damaged compo- 
nents,  we did not observe  very  good  experimental  results. 
However, the idea is feasible  and obtaining the desired 
results would be only a matter of using better components. 
All-pass filters are important in practice  [22],  [33]  since  they 
can be  used to equalize a given  phase  (or group  delay).  To 
show the operation of this  all-pass filter, we  have plotted, 
in Fig.  24, the theoretical  frequency  responses of the first- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 24. Frequency  responses of the  first-order  all-pass  fiber 
filter. (a) Magnitude  response. (b) Phase response. 1) Recur- 
sive section. 2) Nonrecursive section. 3) Cascaded system 
with the  subtractive  detection  system. 

order all-zero and all-pole sections,  along with those of the 
cascaded form  (with  the subtractive detection system). 

In general, the  fiber-optic lattice forms introduced above 
provide interesting structures for implementing both all-zero 
and all-pole filters. The  extension of the filter to higher 
orders  can  be straightforwardly done  by  adding  more stages 
to the lattice. Higher  order subsystems should provide more 
degrees of freedom  for the design of more  complex 
frequency  responses. Also, in-line optical amplifiers  [34]  can 
compensate for the propagation  and coupling losses, and 
therefore will allow a very  large  number of recirculations in 
the fiber loops.  This would improve the performance of the 
filters. 

D. Optical Power  Efficiency  Calculations 

In general, due to the presence of some power loss 
associated with the directional couplers  or the fiber, and/or 
multiplicity of the system output, there will be a nonzero 

insertion loss. Therefore,  for  practical reasons, it is im- 
portant to  find  out  how much optical power would be 
available at the output. 

Here,  we  show a simple  way that uses the system  transfer 
function, H(z), to calculate the output optical power  (or 
the optical power  efficiency)  for a given input power. For 
this purpose, it suffices to  know that the optical power is 
proportional to the dc ( f = 0) frequency  component  of the 
baseband optical intensity signal. Noting that the dc 
frequency  component  corresponds to z = 1 in the transfer 
function (z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAejZnfT),  we obtain the following relation be- 
tween the input and output optical powers: 

where P) and Po are the input and output optical powers, 
respectively.  Therefore, the ratio of the output optical power 
to the input optical power, or the optical power  efficiency, 
q ,  is equal to the value of the transfer function at z = 1, i.e., 

Note that H(1) is a (real) positive quantity for a positive 
fiber-optic systems of the type  described  previously. 

As an  example, for the two-coupler recirculating fiber 
lattice structure (see  Fig.  3(a))  we  have 

dl +(I - 2a1)a04 
q1 = 1 - a1a0e1 

and 

(33) 

(34) 

where ql is for the case when X,  is the input and Yl is the 
output, and q2 is for the case when output is Y,, rather  than 
V,. Other related  parameters  are as defined before in (5) 
and (6). These equations  were  also  used to  find the expres- 
sions given in (33) and (34).  From  (33) and (34) we  can 
conclude, for example, that by  increasing a, the  position 
of  the  pole moves  closer to the unit circle, while the out- 
put power from Y2 decreases and the output power  from Y, 
increases. 

As previously  stated, by varying the parameters of our 
fiber systems, we  can  adjust the frequency  response.  These 
changes, in turn,  affect the optical power  efficiency, a 
factor which is of practical  significance.  Therefore, it is 
important to  know the corresponding changes in the power 
efficiency factor, as the filtering characteristics of the sys- 
tem are altered. 

VII. NOISE CONSIDERATIONS 

Many  single-mode fiber-optic signal  processors  [3],  [5], 
such as the fiber recirculating lattice structures introduced 
before,  make  extensive use of recirculating delay  lines. The 
simplest recirculating loop, as illustrated in Fig. 26, is con- 
structed  by closing a continuous  strand of single-mode 
fiber on itself  by  using an adjustable  coupler.  This  simple 
structure is equivalent to the two-coupler recirculating de- 
lay line (see  Fig.  3(a)), when the coupling coefficient of the 
second  coupler is set to unity. 

As mentioned previously, in most fiber-optic signal 
processing  applications an R F  signal  modulates the intensity 
of a short  coherence length light source  (usually a multi- 
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mode  semiconductor laser)  and the output is detected  by a 
high-speed  detector. Since the laser driving current  and the 
detector output current are, respectively, proportional to 
the injected and  detected light intensities,  overall linearity 
is ensured only if the fiber  system is also effectively linear 
in the intensities of the interacting waves.  This requirement 
is easily  met  by  using  low-coherence  sources, e.g., multi- 
mode diode lasers, with a coherence  time  much  shorter 
than any  relevant loop delay.  The  use of low-coherence 
sources  has the additional advantage of rendering  these 
devices  relatively  insensitive to environmental  effects  such 
as temperature  changes, mild mechanical  vibrations,  etc. 

The  dynamic  range of these  wide-band  devices is limited 
by the available  source output power  and nonlinearities of 
the source,  detector,  or the fiber  and  by the noise  character- 
istics of the source radiation or the unavoidable detection 
shot  noise. Since a short  coherence  time is associated with 
correspondingly  large  phase fluctuations (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(36)), the out- 
put noise of these  signal  processing  devices, when driven 
by a short  coherence laser diode, is expected to be corre- 
lated with the laser  phase  noise.  This correlation was first 
noticed  while we  were  experimenting with the fiber-optic 
systolic-array multiplier described before. We  observed that 
the  output pulses of the processor contain a noise as seen 
in Fig.  25.  The optical source  was a CW multimode laser zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 25. Output pulses of the fiber-optic systolic array when 
inflicted by the phase  noise. 

diode. Fig. 25 should be compared with Fig. 14 for which 
the bias point of the laser  was  decreased  and the laser  was 
modulated by positive electronic pulses  (rather  than  nega- 
tive pulses  for the case when the bias point' is high).  After 
further study of the above-mentioned  observation it was 
demonstrated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Iq, [I81 that the power  spectrum of the 
output optical intensity of a single-mode  fiber recirculating 
delay line driven by a multimode semiconductor laser  ex- 
hibits a spectral  structure with notches at zero  frequency as 
well as  at other integer multiples of the inverse of the loop 
delay. In addition, the  contribution to the output noise  due 
to laser  phase fluctuations i s  much  stronger  than that due 
to laser intensity fluctuations. 

The role of laser  phase  noise in nonrecirculating inter- 
ferometric sensors  [35] as well as in homodyne  and  hetero- 
dyne  communication systems [36] has been  extensively 
studied by  many  investigators. As predicted by  these  stud- 
ies, the phase-induced output power  spectrum  attains  its 
maximum  at  zero  frequency, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 0 and, when the source 
coherence time T~ is much  shorter  than the device  delay T ,  

the spectrum near f = 0 is relatively  flat within several I/T 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26. Experimental  setup for the  measurement  of  the 
spectrum of the intensity noise at the output  of a recirculat- 
ing delay line, driven  by a semiconductor  laser. € , , E ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F3,E1 are, respectively,  the input and output fields. The 
optical power at the  detector was 130 pW, the loop length 
27 cm,  and  the amplifier gain = 40 dB. 

units [37].  Therefore, it appears that recirculating and  nonre- 
circulating interferometers  convert the laser phase  noise 
into intensity noise in very different ways. 

Fig.  26  describes the  experimental  setup  used for the 
phase  noise  study. As shown, the mechanically polished 
evanescent field coupler [I91 closes the delay line with  no 
splices.  The loop length was  27 cm which corresponds to a 
delay of 7 = 1.35 ns. The continuous-wave GaAlAs multi- 
mode laser  (GENERAL  OPTRONICS Model GO-ANA)  runs 
with  no external  modulation. The p-i-n photodetector i s  
followed by a 1-1000-MHz amplifier whose output is di- 
rectly fed to the input of the spectrum  analyzer.  Curve A of 
Fig.  27  describes  the  spectrum of the amplifier output when 

( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 MMz RESOLUTION I 

Fig. 27. Experimental  noise  spectra:  A-the amplifier noise 
with the laser off;  8-the laser intensity noise (the coupler is 
disassembled);  and  C-phase-induced  noise with an  assem- 
bled coupler (see  Fig. 26). 

the laser is off. Curve B shows the output spectrum when 
the coupler is disassembled into its two halves, so that the 
laser light goes directly from the laser through the fiber into 
the detector.  This  spectrum is therefore  characteristic of the 
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intensity noise  of  the  laser.  Curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC was taken with an 
assembled coupler and a power coupling ratio of approxi- 
mately 40 percent. Here  we see a much  stronger  spectrum 
with  two notches (within the  1-1000-MHz range):  one at 
f = 0 and the other at a frequency  of I/T(= 740 MHz). 
Therefore  the  dynamic range  of the loop, when the loop is 
operating as a filter, is limited  not by the laser intensity 
noise but by a 20-dB  stronger  noise  whose origin was 
shown to be the laser phase  noise.  The  observed  noise 
spectrum was found  to be highly dependent on the cou- 
pling ratio. In particular, when this ratio was either 0 or  100 
percent  the  noise  reduced to the level of  curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 in Fig.  27, 
and a coupling  ratio of 40 percent was found  to give the 
highest  noise. Fig.  28  shows the  spectrum  for a 10-m loop 

/-- 20MHz 

4 IC 50ns 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28. A recirculating delay line with a 10-m loop. (a) 
Spectrum of the output  intensity noise. The loop delay is 50 
ns, and the frequency spacing between successive  notches is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 MHz. (b) Intensity impulse response of the 10-m loop as 
determined  by  pulsing the laser with a 35-175 pulse. The 
input pulse is partially  coupled  out  (the first  pulse in the 
picture); after one circulation it is split again,  and the second 
pulse in the picture represents its uncoupled part. The pro- 
cess  repeats itself, and this time-domain display  clearly  shows 
several recirculations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( T  = 50  ns) along with the intensity impulse response  of the 
recirculating delay line (Fig.  28(b)  was obtained by pulsing 
the laser with a single  35-ns  pulse).  Again, the spectrum is 
characterized  by multiple notches equally spaced by I/T. In 
this longer loop  it was possible to incorporate a manually 
adjustable polarization  controller  which can  change the 
state of  polarization  of the propagating wave without alter- 
ing its degree  of polarization [38]. As the state of polariza- 
tion of the recirculating waves  was  varied,  we  observed up 
and down vertical  shifts of a few decibels in the noise 
power spectrum,  and Fig.  28  was obtained after the polari- 
zation  controller was optimized  to give  maximum  noise. 
Note that this spectral picture is complementary to the 
transfer function  of the recirculating delay line when oper- 
ating as a filter for RF modulation signals applied to the 
incident  light [5]. It was experimentally determined that the 
above  spectral  structure  was completely insensitive to 
loop-length variations on the  order of an optical wave- 
length  (indicating that T > TJ and it was not the result  of 
optical feedback from the  device into the laser. To the best 
of our knowledge,  laser-phase-induced  noise, with the par- 

ticular spectral  structure [I81 noted here,  has not been 
reported previously. 

In the following, we  present a brief analysis  of the 
phase-induced intensity noise at the output  of a single- 
mode fiber recirculating delay line driven by a single-mode 
laser with a finite coherence time but negligible amplitude 
noise. A more  comprehensive  analysis will be published in 
a forthcoming paper. 

A. Mathematical Analysis 

By using  the  coherent  characteristics of the  coupler as 
described  by (1)  or  (2),  and  assuming a finite number  of 
recirculations, it is possible to relate  the  observed  spectral 
structure to the laser  phase  noise  [17],  [18].  Here,  we  analyze 
mathematically the  experimental  arrangement illustrated in 
Fig.  26. In our analysis  we  assume  that the laser source 
emits a single longitudinal and  transverse  mode  of  the form 

W = f0exp[j(w,t + + ( t ) ) ]  (35) 

where Eo and wo denote,  respectively,  the time-indepen- 
dent laser complex field amplitude (no intensity noise)  and 
the center optical frequency, and + ( t )  represents  the laser 
phase  noise. 

Laser  phase fluctuations +( t )  generate a finite  bandwidth 
around wo. It is assumed that this source bandwidth is 
much smaller  than w,. We  also  assume that + ( t )  is a 
Wiener random process with a structure function (defined 
as the variance  of  the  increments) which is linear with the 
time increment tz - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl, i.e., 

where T= is the  coherence time  of the laser. Note that  the 
Wiener process is a stochastic time-independent increment 
process with stationary  increments  such  that  the  increment 
densities are  Gaussian with zero  mean. Also, the coupler 
can be described  by (I), where  the  characteristic  matrix is 
assumed to be unitary. 

While the state of polarization of a wave  that  propagates 
in the fiber generally changes, there exist two orthogonal 
eigenmodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, and Eb such  that, when propagating from 
port 1 to  port 2 through the loop, their polarizations are 
conserved.  The  phase velocities of these  waves  are different 
so that the two modes  experience different delays 7, and 
rb. These time delays  can  be effectively changed  by  insert- 
ing a polarization  controller [38] in the loop. For simplicity, 
the two modes  are  assumed to have the same intensity 
attenuation factor,  exp [ - 201~1. 

As a result, all the fields in the system  can  be decom- 
posed into  their two eigenmode  components;  the input 
field can be written as 

E ( t )  = g E a ( t )  + hEb(t) (37) 

where g and h are both constants,  and E, E,, and f b  are 
properly normalized so that 

The field  amplitude at the output  of the recirculating 
delay line ( E 4 )  is the sum  of contributions from an infinite 
number  of recirculations (see  Fig.  28(b)); therefore,  using 
(I), for each of the decomposition components  of  the 
output  field we  have 
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f 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (y)1/2Cexp(j[aot + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ < t > I )  
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+yDA ( ( ~ ) ~ / ~ B ) ~ - ~ e x p ( - n a , L )  

.exp( j [ao( t -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ~ ) + + ( t -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm)]) (39) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and L are,  respectively, the loop delay  for  the 
corresponding component and the loop length, and a. is 
the fiber (amplitude) attenuation per unit length which was 
of the order of several  decibels  per kilometer [39]. 

The output of the ac-coupled spectrum analyzer is re- 
lated to its input, v( t ) ,  by  the Wiener-Kinchine theorem, 
namely:  the  autocovariance function of v( t ) ,  ([ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv( t + t? - 
( v (  t ) ) l  v( f) - (v( t))]) (( ) denote  ensemble  average)  and 
the displayed  spectrum, S ( f ) ,  are a Fourier  transform  pair. 
Since the  spectrum analyzer input voltage is proportional to 
the  output  light intensity I (  t) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS( f )  is related to the autoco- 
variance function of I (  t )  by 

n=1 

COV,(fI,t,) = (I(t1) - ( I ) ) ( / ( t , )  - ( I ) ) )  

= Pj-+" S( f )  exp [211j( tl - t2) f ] df. (40) 
m 

The proportionality factor P depends on the detector re- 
sponsivity  and  the amplifier gain, as well as on  the  resolu- 
tion setting of  the  spectrum  analyzer. The  observed  spec- 
trum of Fig. 28(a) can  be approximated  by a + bsin'(nf7) 
( a  > 0, b > 0), and using (40) we  can conclude that the 
intensity autocovariance function has at least the following 
components: ( a  + 0.5b)6( t, - r,) - 0.256[6( t, - t, - T )  + 
6( t ,  - t2 + T ) ] ,  where 6 ( t )  is the  Dirac delta function. 
Although the above approximation is crude in that it predicts 
infinite signal  energy, it still indicates  that  the intensity 
autocovariance function is characterized by a positive nar- 
row peak  at the origin ( t ,  - t, = 0),  and two negative 
narrow peaks  at t, - t, = * T  (see Fig.  29).  We now proceed 
to show  that this form of  the  autocovariance function can 
actually be predicted from a model which takes into 
consideration both the laser phase  noise  and the unitary 
nature  of  the directional coupler. 

The  covariance function of  the output intensity fluctua- 
tions, (a), can  be calculated  using (39). It should also  be 
noted that  since  the two eigenmodes  are orthogonal the 
output intensity at port zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 can  be written as the sum of 
contributions from each eigenmode,  i.e., 

I (  t ,  = Id2/,( t ,  + Ih121b( t ,  (41 ) 

with I ,  and /b being,  respectively,  the output intensities 

due to the two eigenmodes E, and  Eb. It can  be shown  that 
the autocovariance function of I ( f )  (which is the inverse 
Fourier  transform of the  observed  power  spectrum) is given 
by 

COV/(4!t2) = (P(4) - ( 9 1 [ W  - ( 9 1 )  
= Id4Caa(fl~f2) + 21d21h12Cab(fl!f2) 

+Ih14Cbb( t l , t2)  (42) 

where Cad and c b ,  are, respectively, the autocovariance 
functions of I ,  and I , ,  and c a b  is the cross-covariance of I ,  
and 1,. 

In order to  obtain closed-form analytical  results,  the fol- 
lowing assumptions  are  made: 

a) T~ *: T [4O] ( T  = the loop delay) 
b) 176 - Tal *: Tc but 001Tb - Tal ci: 211. 

It should be mentioned that all our experimental setups 
meet  these two conditions. 

After some mathematical manipulation  (to be published 
in a forthcoming paper) it can  be shown  that the autoco- 
variance function has the following form: 

COV/(t l , t ,)  = T -  Caa(t1,t2) ( 4 3 4  

S( f )  = T .  Sa,( f ) .  (43b) 

with the spectrums related to each other as shown below 

Here, T (which we call the birefringence factor) is polariza- 
tion-dependent and independent of tl and t,, and is given 
by 

T =  Id4 + 21d21h12[ReS] + lhI4 (444 

where 

s = exp [ j a o b b  - d l  
1 - yexp[-2ao]1612 

1 - ~ e x ~ [ - 2 a ~ I 1 ~ 1 ~ e x ~ [ j ~ ~ ( ~ ,  - T b ) ]  ' 

-I Res Q I (equal to 1 if T~ = 7 6 ) .  (45) 

It can  also  be shown  that 

Cd,(fl!t2) = c~( t l , t 2 )OexP[ - l f l /Tc l  (46) 

with denoting the convolution operation and C, de- 
fined  below. 

Thus the  adjustment  of the polarization controller  (which 
changes only S), will result only in vertical  shifts  of  the 
output spectrum,  and this fact  was  observed experimen- 
tally. Also, while it is possible to adjust  the polarization 
controller such that the polarization  of the  first recirculated 

Fig. 29. Autocovariance function of the output  light intensity generated  by the first four 
terms in the expansion  of (39). The power coupling ratio was  assumed to be 40 percent, i.e., 
IS1 = I q  = 0.63 and [AI = ID1 = 0.78 in (1). 
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wave is made orthogonal to the polarization of the input 
wave, the polarization of the second recirculation will again 
be  parallel to that of the input wave.  Thus it is impossible 
to completely eliminate the phase-induced intensity noise. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(46), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC8( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2 )  is given by 
+m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CS(t l , t2)  = c W ( f 2  - 4 )  - M71 (47) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M = - m  

6 ( t )  is the  Dirac delta function and the intensities of the 
impulses are 

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ~ ~ T ~  - ~~1 varies.  This  dependence is illustrated in Fig. 
32. 

For the general case, when the ratio of  the system  delay 
to the coherence time ( T / T ~ )  can  assume  any  value from 0 
to large  numbers, as the ratio T/T, is increased the variance 
of the  output intensity also  increases.  This property was not 
demonstrated  experimentally, but a computer plot (see  Fig. 
33) showing the above-mentioned  behavior was generated 
for a coupling coefficient equal to 0.4, for the case when 
there is no  power loss or gain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs is seen in this  figure,  the 

21ACD(’y3exp ( -2a0) 

I - yexp ( -2a,)l~1’ 

2(.AD14y5exp(-6ao)lB12 + 
[I - yexp(-2ao)lBIZ][1 - ~ ~ e x p ( - 4 a ~ ) 1 6 1 ~ ]  ’ M=O 

2ylM1+31AD131qlB121MI-1  exp [ -2(IMI + l)uo] - 
I - yexp ( 

2ylM1+’1ADI4  exp [ -2( IM( + 3)a0] 1 6 1 2 ( 1 M l + 1 )  
M # 0. 

Since A, B, C, and Dare the elements of a unitary matrix, 
it follows  [I81 that all the G, with M # 0 are negative. 
Therefore, C8(tl, t z )  is a symmetrical function  of t = t, - tl. 
It is the sum of a positive impulse at t = 0 and infin- 
ite number of equally  spaced  negative  impulses at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 

MT(M # 0). Fig.  29  shows four of these  negative  impulses. 
The power  spectral  density is the product of the Fourier 

transforms of the two components of (46). Hence 

(49) 

with the total power  spectrum  given  by (43b). Sa( f), which 
is the Fourier  transform of C8(t = t, - t l ) ,  is shown in Fig. 
30 for various  values of coupling coefficients [B IZ  and the 
loss ao. When the loop is lossless, infinitely deep  notches 
appear, as seen in Fig. 3qa). But  their  depths  decrease as 
the  loop loss increases  (see  Fig. 3qb)). It is interesting to 
compare the  loop behavior with the low-coherence  source 
to its  performance as a resonator with a highly coherent 
HeNe laser  [39]. In the resonator case, a lossless loop is 
characterized  by  an infinite finesse.  However, the loop 
transmission with the HeNe laser is extremely  sensitive to 
micrometer-size  variations in the loop length, while with 
our  relatively incoherent source the characteristic  spectrum 
is environmentally  stable.  Another interesting feature,in Fig. 
30 is the  dependence of the form of the spectrum on the 
coupling ratio: the higher the  coupling ratio, the flatter is 
the power spectral  density within any  given period. This 
dependence  can  be  correlated with the fact that the effec- 
tive number of recirculations  increases with the coupling 
ratio. In Fig.  31(a) and  (b) we have plotted curves  showing 
the dependence of peak  and notch heights of the spectrum, 
and the depth of the notch on the coupling coefficient for 
various loop transmittance  factors. Also, Fig.  31(c)  shows 
the depth of the notch as a function  of the loop trans- 
mittance for various  values of the coupling coefficient. 
Furthermore, the birefringence factor, T (see (M)), changes 

-40 -(D - m  

0 1 . 0 0  2.00 100 
FREOUENCY (frl 

(a) 

~ 

0 1 . 0 0  2.00 300 
FREPUENCY L f I ) 

(b) 
Fig. 30. The power  spectral density of the autocovariance 
function, Ca(t,,tz), see (43, (48). (a) A lossless  loop ( y  = 
l ,a ,  = 0). (b) y = 1, a. = 0.1. 1) 161 = ICl = 0.32 and JAl  = 
1 / 3 1  = 0.95 in (1). 2) IS1 = ICl = 0.63 and [AI = 1 / 3 1  = 0.77. 3) 
IBI = IC l=  0.84 and IAl = 1 / 3 1  = 0.55. 4) 161 = IC l=  0.95 and 
IAl = 1 / 3 1  = 0.32. 

variance  reaches i ts  maximum  saturation  value  for T/T,  > - 4.  This ratio was much  higher in all  our  experiments. 
The  results  obtained so far  correctly  predict,  at  least 

qualitatively, all the observed  data, including: 

a) the periodic form  of the spectrum with a characteristic 
notch at the origin; 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 0.4 0.6 0.8 I .o 

COUPLING COEFFICIENT (1812) 

(a) 

r I 

I 0 L  0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 
0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6 0.8 1.0 

Fig. 31. Dependence  of the peaks  and  notches  and the 
depth of the  notch of the  output spectrum for the case 
when T/T= B 1. (a)  Peak  and notch heights as a function of 
the  coupling  coefficient for  various  values  of the loop trans- 
mittance factor. (b) Depth of the notch as a function of the 
coupling  coefficient for various  values  of the loop transmit- 
tance  factor. (c) Depth  of the notch as a function of the  loop 
transmittance factor for various  values of the coupling coeffi- 
cient. 

b) the shape of the basic period as a function  of the 
coupling coefficient; 
c) the dependence of the  spectrum on the setting of the 
polarization controller; 
d) the insensitivity of  the effect to environmental condi- 
tions (unlike the fiber-optic resonator). 

- 1 2  I I I I I I 1 

0 2.00 4.00 6.00 
B = w J T , - T ~ I  (RADIANS)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 32. The birefringence factor (see (44)), T, as a function 
of polarization phase difference w,,~T~ - ~ ~ 1 .  

0.20 o * l l  

C W R I N G  COEFFICIENT : 0.4 

No Loss 

L:nX 

0 
0 2.00  4.00 6.00 8.00 10.00 

T/TC 

Fig. 33. The  variance  of the output  intensity as a function 
of T/T<. This  curve is for the case when the coupling  coeffi- 
cient is equal to 0.4, with  no power loss or  gain in the 
system. It is also  assumed that the loop length is  an integer 
multiple of the source wavelength. 

Further investigation is required on the following issues: 
a) Extension of the theory to a multimode laser. 
b) More general theoretical treatment  that will also in- 

c) Quantitative experimental confirmations of  the theo- 

d)  Measurements of the  phase-induced  noise with sources 

e) The study of the implications of  the laser  phase  noise 

clude the laser intensity noise. 

retical predictions. 

with various  values of coherence time T ~ .  

on the performance of single-mode fiber-optic systems. 

APPENDIX 

In the following some of the  related  theorems of the 
positive systems theory [IS], [27] are  stated  and then used to 
prove  the relation given in (24). 

Theorem I. The  Frobenius-  Perron Theorem 

If A > 0 (strictly positive), then there exists A, > 0 and 
x,  > 0 such that 

a) Ax, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAoxo; 
b) if A f A, is any other eigenvalue  of A,  then ]A1 < Ao; 
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c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, is an eigenvalue of geometric  and  algebraic multi- 
plicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 2 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 (positive or strictly nonnegative)  and Aq > 0 for 
some positive integer q, then all the conclusions of Theo- 
rem 1 apply to A. 

Theorem 3 

If A 2 0 (nonnegative),  then  there exists X, > 0 and 
x ,  2 0 such that 

a) Ax, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXoxo; 
b) i f  A # X, is any other eigenvalue of A, then IXl 6 X,. 

Lemma I (Series  Expansion of Inverse): If A is a matrix 
with all eigenvalues strictly inside  the unit circle (IA(A)I < 
I ) ,  then 

[ / - A ] - 1 = I + A + A 2 + d +  ... . (A I )  

where / is the identity matrix. 

Theorem 4 

If A 2 0 (nonnegative) with associated  Frobenius-Perron 
eigenvalue A,, then the  matrix [A /  - A1-l exists  and is 
positive if and only if X > X,. 

Some Matrix  Inequalities 

i) The  Cauchy-Schwarz Inequality 

[ A  * B ] +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj A+. B+ (A21 

where  the "+" sign  (the  matrix modulus) and the inequal- 
ity signs  are as defined earlier in Section IV-D. The equality 
sign in (A2) holds for the i - j th  elements i f  aik and bk j  are 
real  and  have like signs for all possible values of k .  For the 
special case when A and B are both nonnegative  matrices 
[ A  B ] + =  A * B. 

ii) The Triangle Inequality 

[ A  + B ] +  j A++ 8'. (A3) 

Here  the equality sign  holds for the i - j th elements when 
a j j  and bij are  real  and  have like signs. 

Using the theoretical background  described so far, in the 
following section we will prove  that the modulus of the 
transfer function (or frequency response)  of a linear shift- 
invariant positive system  takes its  maximum  value at the 
origin (zero  frequency). 

Proof that  [H(ej"')]+ d H(1) 

Using Z-transform methods,  the  transfer function of a 
linear shift-invariant system, described  by  the  state-space 
form  of (22a), is given by 

H ( z )  = D + C(z/ - A)- lB  (A41 

where H, the ( p  X m) transfer function matrix  whose i - j th  
element Hij  is the  transfer function from the j th  input  to 
the i th output, is shown in its  expanded form in the 
following: 

' 4 1  H12 . * *  

H =  H.21 . . ' *  (A5) ... 
Hpl Hp2 - *  * Hpm 

The frequency response of the system is, in general, a 
complex-valued function  which is obtained by evaluating 
(A4) on the unit circle, z = e'"', in the  complex  Z-plane (o 
is the  angular modulation frequency, and T i s  the unit  time 
delay  of  the system). Now taking the modulus of  both sides 
of (A4), we will obtain the following expression  for the 
magnitude of the  frequency response of the system: 

[ H( e'"')] + = [ D + C( e'"'/ - A) - lB ]  + 

= [ D + Ce-jw'( / - e- iOh) - lB ]  +. (A6) 

Since the  transfer function is periodic  (with  period o T  = 2n) 
and also symmetric (for real impulse response) about o T  = 

n, we  can limit our discussion to the range 0 d o T 6  TT. 

Assuming a strictly stable  system ( lX(A)I < 1) it is obvious 
that the  matrix e-j"54 is stable too (le-j"'I = 1); therefore 
using Lemma I we  can  expand (A6) as 

[ H( ej"')] + 

= [ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ~ - P T ( /  + e-i"Q + e-ZiWT& + . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP I  +. 
647) 

Now, applying the  matrix inequalities (A2) and (A3) to (A7) 

we  get 

[ H(e'"')] +( D++ cfle-j"'I 

. ( I  + e-iaQ + e-2iwT& + . . . )+ g+ 

< D++ e(/+ A + + ( & ) + +  - - * ) B + .  

(A81 

But from the positivity constraint on the  system  we  have 
A , B , C , D  2 0, which means that A+=  A, B+= B, cf= C, 
and D+= C, therefore (A8) can  be rewritten as 

[H(e'" ' ) ]+< D +  C(/+ A + & + * * . ) B .  (A9) 

Moreover, since we have  assumed a strictly stable  system, 
from Lemma I we  have 

/ + A + & + = ( I  - A ) - ' .  (AI 0)  

Plugging (AIO) into (A9), we  get 

[H (e iw ' ) ]+6  D +  C ( / - A ) - ' B .  (AI 1 1 
But 

H(l) E D + C(/ - A)- lB .  (AI 2 )  

Therefore, comparing ( A l l )  and (Al2), we will finally obtain 

[ H( e'"')] + 6 H(1). (AI  3) 

We  also conclude that H(1) is real  and positive, which also 
means  that the phase  of the  transfer function is zero  at 
w = 0. 
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