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Abstract

Purpose Endovascular aortic repair procedures are currently conducted with 2D fluoroscopy imaging. Tracking systems

based on fiber Bragg gratings are an emerging technology for the navigation of minimally invasive instruments which can

reduce the X-ray exposure and the used contrast agent. Shape sensing of flexible structures is challenging and includes many

calculations steps which are prone to different errors. To reduce this errors, we present an optimized shape sensing model.

Methods We analyzed for every step of the shape sensing process, which errors can occur, how the error affects the shape and

how it can be compensated or minimized. Experiments were done with one multicore fiber system with 38 cm sensing length,

and the effects of different methods and parameters were analyzed. Furthermore, we compared 3D shape reconstructions

with the segmented shape of the corresponding CT scans of the fiber to evaluate the accuracy of our optimized shape sensing

model. Finally, we tested our model in a realistic endovascular scenario by using a 3D printed vessel system created from

patient data.

Results Depending on the complexity of the shape, we reached an average error of 0.35–1.15 mm and maximal error of

0.75–7.53 mm over the whole 38 cm sensing length. In the endovascular scenario, we obtained an average and maximal error

of 1.13 mm and 2.11 mm, respectively.

Conclusion The accuracies of the 3D shape sensing model are promising, and we plan to combine the shape sensing based

on fiber Bragg gratings with the position and orientation of an electromagnetic tracking to obtain the located catheter shape.
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Introduction

Cardiovascular diseases are the main cause of death in

western industrial nations [9]. Some of these diseases like

abdominal aortic aneurysms can be treated with an endovas-

cular aortic repair (EVAR) procedure, in which a stent graft

is placed in the aneurysm region under 2D fluoroscopy. To

reduce the X-ray exposure and to supersede the angiography,

a three-dimensional navigation is needed.

Fiber Bragg grating (FBG)-based systems are used for

shape sensing, which enables three-dimensional navigation.

FBGs are interference filters inscribed into the core of an

optical fiber, which reflect a specific wavelength. Combining

multiple FBGs at the same longitudinal position allows to

calculate curvature and direction angle. The most common

configurations are three fibers arranged triangular around

the structure to be measured [4,13]. This introduces signifi-

cant errors due to possible changes in the core geometry [4],

which can be overcome with multicore fibers, where several
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cores are integrated into one fiber [10]. In addition, other

FBG systems with other geometries have been introduced,

for instance helically wrapped [17].

Most research groups use FBG systems for shape and force

sensing of medical needles [11], which have a simple bending

profile allowing only shapes with low bending and no torsion.

For example, Park [12] applied FBGs for shape sensing of

biopsy needles and Roesthuis used it to reconstruct the shape

of a nitinol needle [13]. A few works using optical fibers

for flexible instruments have been reported in the literature:

Shi [15] used FBGs for catheter shape sensing. Also Khan [7]

used four multicore fibers to reconstruct the first 118 mm of

a catheter. However, to our knowledge, there are currently

no studies on the accuracy of fiber optical shape sensing for

very long and flexible medical instruments.

In general, shape reconstruction of flexible structures is

more challenging, because higher deflections and torsion

can occur. Thus, the error analysis of the shape reconstruc-

tion from measured wavelengths to the reconstructed shape

becomes more important. Also, the shape accuracy has to be

very accurate, since the error accumulates along the fiber.

In each shape sensing step, the errors were analyzed to

determine how strongly the preserved form is influenced and

how it is best reconstructed. Using this, we optimized our

shape sensing model by compensating or minimizing the var-

ious error sources. Then, we evaluated our optimized model

with 3D shape measurements. Finally, we tested it in a real-

istic endovascular scenario by inserting our fiber in a 3D

printed vessel.

Material andmethods

We consider a multicore fiber with n FBG arrays along a

flexible instrument, as shown in Fig. 1. Each array contains

seven FBGs, one center core and six outer cores. All FBGs

have fixed length ℓ, and the arrays are uniformly distributed

with center-to-center distance d.

Shape sensingmodel

We analyzed every shape sensing step and optimized it by

minimizing the errors. The result is our optimized shape sens-

ing model:

1. Wavelength shift calculation.

2. Strain computation for every core.

3. Strain interpolation for every core.

4. Curvature and angle calculation.

5. Curvature and angle correction.

6. Shape reconstruction with circle segments.

Every step is described in more detail in the following sec-

tions.

Wavelength shift calculation

FBGs are interference filters inscribed in short segments of

an optical fiber core, which reflect a specific wavelength of

the incoming light [8]. The Bragg wavelength of a FBG is

defined as

λB = 2ne�,

where ne is the effective refractive index of the grating and �

the grating period. Mechanical strain or temperature change

influence the reflected wavelength. This results in a wave-

length shift

�λ = λ − λB

of the measured wavelength λ in comparison with the refer-

ence wavelength λB of the FBG. If the reference wavelengths

of the FBGs are unknown, they have to be determined by a

separate measurement where no strain is applied to the fiber

system.

Strain computation

The measured wavelength shift �λB, which can be caused

by applying strain ε or by changing temperature �T in the

Bragg gratings, is given by

�λ = λB

(

(1 − pe)ε + (α� + αn)�T
)

,

where pe is the photo-elastic coefficient and α� and αn are

the thermal expansion coefficient and the thermo-optic coef-

ficient [5]. By assuming a constant temperature �T = 0 the

applied strain of the FBG can be calculated:

�λb = λb(1 − pe)ε.

The photo-elastic coefficient pe is directly related to the

gauge factor G F = 1 − pe. Photoelasticity is defined as

the change in reflected wavelength depending on the strain

applied in axial direction. For FBG systems, the photo-elastic

coefficient pe ≈ 0.22 can be found in the literature [16] and

experiments for determining the parameter of any FBG sys-

tem are described [2].

Interpolation

When the curvatures and angles are calculated for every FBG

array, the intermediate values can be determined by interpo-

lation. Henken [4] compared common interpolation methods

for shape sensing and concluded that cubic spline interpola-

tion is the best solution, which is currently the state-of-the-art

interpolation. Interpolating the curvature is straight forward
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Fig. 1 Left: a FBG system with center-to-center distance d and sensor length ℓ. The different cores are represented by numbers: here the cores of

configuration (2347) are highlighted. Right: the cross section of a triplet configuration

since it is continuous for every shape, whereas the angle

interpolation is challenging for flexible structures, which may

have discontinuous angle. Thus, we suggest to interpolate

the strain, since it is continuous.

Furthermore, it is assumed that the measurements of one

FBG array are the values for one specific position, usually the

array center. Thus, we use the averaged cubic interpolation,

as introduced in [6]: this yields a realistic interpolation based

on the spatial properties of a FBG by modeling the measured

value as an average over the sensor range.

Curvature and angle computation

The calculation of the curvature and direction angle depends

on the fiber system. The most common one is a triplet con-

figuration [4,13]: here, the FBG system has three fiber cores

with specific angles (typically 120◦) in between, as illustrated

in Fig. 1.

For this configuration, the relationship between strain, cur-

vature and directional angles is described by the following

equations:

εa = −κra sin(ϕ) + ε0

εb = −κrb sin(ϕ + γa) + ε0

εc = −κrc sin(ϕ + γa + γb) + ε0,

(1)

where εx is the strain, rx the radius and γx the angle of fiber

x . By solving the equation system, we obtain the strain bias

ε0, the curvature κ and the direction angle ϕ. The equation

system can also be extended for four or more fibers.

The equations show that the curvature is influenced by

the radii rx similarly as by the photo-elastic coefficient. In

addition, the strain is also biased by a temperature change,

additional axial strain and pressure. Due to the short distance

(< 100 µm) of the FBGs in one array, it can be assumed that

for every grating in one array (see Fig. 1), this bias is equal

and therefore compensated by the strain bias ε0.

Curvature and angle correction

The determined curvatures and angles are influenced by

various variables; therefore, we suggest the following cor-

rections: the curvatures are scaled by the photo-elastic

coefficient pe and the center-to-core distances rx . Since both

parameters can be biased, we determine a correction param-

eter c to get the right curvatures

κreal = c · κ. (2)

This factor must be determined individually for each fiber.

Also, the fiber can be twisted during production or storage,

but these twists are not contained in ε0. Thus, we obtain a

measured angle

ϕ = ϕreal + ϕtwist, (3)

which does not equal the real angle ϕreal because it is dis-

torted by the twist angle ϕtwist. The twist angle ϕtwist cannot

be determined for fibers of this geometry without a mea-

surement, where κ �= 0 [see also Eq. (1)]. Helically wrapped

fibers include torsion in their model, and the twist can be

calculated. For short and stiff instrument, this error is negli-

gibly, whereas for flexible instruments the twist angles must

be determined.

Shape reconstruction

In the last years, three shape reconstruction algorithms have

been proposed: Moore [10] presented a method based on the

fundamental theorem of curves, which states that the shape

of any regular three-dimensional curve with nonzero cur-

vature can be determined by its curvature and torsion [1].In

mathematical contexts, the torsion of curves corresponds to

the change of the direction angle. The shape is obtained by

solving the Frenet–Serret equations:
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dT

dt
= κ N ,

dN

dt
= −κ N + τ B,

dB

dt
= −τ N ,

where κ is the curvature, τ the torsion, T the tangent vector,

N the normal vector and B the binormal vector of the curve at

length position t . The integration of the determined tangent

vectors yields the shape of the curve. This method fails at

points with κ = 0 since the torsion is undefined there. Thus,

this algorithm is not suitable for shape sensing of flexible

structures.

Cui [3] suggested a method based on parallel transport to

overcome this problem. The equations to be solved are:

dT

dt
= κ1 N1 + κ2 N2,

dN1

dt
= −κ1T ,

dN2

dt
= −κ2T .

where κ1 and κ2 are the curvature components corresponding

to the normal vectors N1 and N2, which are orthogonal to the

tangent vector T . The shape reconstruction is conducted in

the same way as with Frenet–Serret.

Roesthuis [13] proposed another method based on circle

segments: the shape is reconstructed by approximating it with

elements of constant curvature. For every element a circle

segment of curvature κ and length l is created and is rotated

by the direction angle ϕ. By repeating this procedure for

every given set (κ, ϕ) we obtain the whole shape.

Experimental methods

For all experiments described below we had one multicore

fiber system (FBGS Technologies GmbH) available with 7

cores, one center core and six outer cores with an angle of

60◦ in between, as shown in Fig. 1. It has 38 FBG arrays

each with 5 mm length and 10 mm center-to-center distance,

which are chains of draw tower gratings (DTG�).

In the next sections, we used the following parameters and

algorithms if they are not analyzed or specified otherwise:

we fixed our covered fiber to a precise ruler and used the

measured wavelength as reference wavelengths, we used a

photo-elastic coefficient pe = 0.22, made averaged cubic

strain interpolation, used four outer cores and reconstructed

the shape with circle segments.

For matching reconstructed and ground truth shape, we

used the iterative closest point algorithm [14]. For evaluation,

we calculated the average and maximum error defined as

eavg :=
1

n

n
∑

i=0

‖xi − x
gt
i ‖2 and

emax := max(‖x0 − x
gt
0 ‖2, . . . , ‖xn − x

gt
n ‖2),

where x0, . . . , xn are the reconstructed points and x
gt
0 , . . . , x

gt
n

are the ground truth points located every 10 mm along the

shape.

Wavelength shift computation

For our multicore fiber, we had no reference Bragg wave-

lengths given. Thus, we had to determine these wavelengths

with a measurement without any strain. Therefore, we ana-

lyzed the effect of the Bragg wavelength estimation: at

different times we fixed the fiber in a straight line, measured

the wavelengths, used it as reference Bragg wavelengths and

reconstructed various types of shapes.

Strain calculation

The photo-elastic coefficient influences the shape by cur-

vature scaling. To analyze this effect, we bent our fiber to

varying degrees and reconstructed the shape with different

pe values.

Interpolation

We formed our fiber to a snakelike shape, which has a few

singularity points, interpolated the measured strains as pro-

posed in “Interpolation” section and compared the resulting

curvature and angles with the ones of common interpolation

methods.

Curvature and angle computation

Since we have a multicore fiber with six outer cores and one

center core and an interrogator, where we can connect four

cores, we do not have to use a triplet configuration with 120◦

in between. Thus, we analyzed the effect of different core

configurations on the resulting curvatures and angles.

Curvature and angle correction

To determine the twist angle ϕtwist, we bent our fiber to a 2D-

shape, where every position has the same angle and used the

determined angles as twist angles, as described in Eq. (3).

To get the curvature scale factor c of our fiber, we made

bow shapes with different radii, determined the best value

assuming a photo-elastic coefficient pe = 0.22 and used it

for curvature correction, as described in Eq. (2).

Shape reconstruction

The shape reconstruction quality depends completely on the

input: when the measured values are correct, the proposed

algorithms can reconstructed the correct shape. Therefore,

we analyzed the following two aspects:

First, we looked at the convergence, i. e. how fine the

segments in each step must be for accurate shapes. Second,

we analyzed the noise handling of the three algorithms, i. e.

how the resulting shape change with increasing Gaussian

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:2137–2145 2141

Table 1 Results of the Bragg

wavelength study: measured

errors eavg and emax in mm for

different shapes using various

Bragg wavelengths

Shape Error First reference Second reference Third reference

Straight line eavg 0.36 0.16 2.28

emax 1.00 0.30 5.49

Bended curve eavg 1.70 1.56 1.59

emax 4.92 4.53 4.82

S-curve eavg 1.80 1.76 1.38

emax 4.58 4.62 3.06

noise. In both cases, we simulated an arc shape with torsion,

calculated the average curvature and median angle for every

segment and reconstructed the shape.

3D shape reconstruction accuracy

To evaluate our model, we recorded 3D measurements: we

covered our fiber (diameter: 200 µm) with a metallic capil-

lary tube (inner diameter: 300 µm, total diameter: 400 µm),

fixed it in a specific shape, computed the shape and com-

pared it with the segmented ground truth from the CT image.

For the endovascular experiment, we inserted our fiber into a

3D printed vessel, which was created from a CT patient scan.

Results and discussion

Wavelength shift calculation

Table 1 shows the shape accuracies which were reconstructed

with different reference wavelengths. The used wavelengths

were determined experimentally by placing the fiber as

straight as possible. For all three shapes, the obtained errors

differ by several millimeters. This indicates that the refer-

ence wavelengths measurement has to be very accurate to

obtain reconstructed shapes with a high accuracy. Thus, we

recommend to determine the reference wavelengths by fix-

ing it to a precise ruler, because here no kind of strain is

applied.

Strain computation

The effect of the photo-elastic coefficient is shown in Fig. 2

for shapes with different bending strengths. In the left image,

the reconstructed shape does not change notably, whereas in

the right image the reconstructions differ significantly. Thus,

the photo-elastic coefficient has high effects for high curva-

tures, while it has a minor effect on slightly curved structures.

Therefore, it is important to determine the right photo-elastic

coefficient or to compensate this error by determining the

scale factor in another experiment to get accurate reconstruc-

tions.

Interpolation

For interpolation evaluation, we used a snakelike shape,

which has discontinuous direction angles. The resulting cur-

vatures and angles of our average cubic strain interpolation

and the state-of-the-art methods are shown in Fig. 3. Inter-

polating the strain instead of curvature and angle leads to

more accurate interpolation: at discontinuity points the cur-

vature is closer to zero and the angles are more accurate,

whereas interpolating the angle results in overshoots before

and after the discontinuity, which can result in worse recon-

structions. Thus, we recommend to interpolate the strain with

our interpolation method, since it leads to most realistic cur-

vatures and angles and in the end to more accurate shapes.

The interpolation influence on the shape accuracy depends

on the center-to-center distance d: a higher distance of the

FBG arrays leads to more values that must be interpolated.

For the distance of our fiber, the effects were low, see also

[6].

Curvature and angle computation

We calculated the curvature and direction angles using first

a configuration with three cores (234), a configuration with

three cores (347) and a configuration with four cores (2347).

The numbers correspond to the cores as shown in Fig. 1,

where the cores of configuration (2347) are highlighted in

white. We observed that configuration (347) leads not to suf-

ficient results due to the linear dependency of two cores.

For proper 3D reconstruction, at least 3 linear independent

cores are needed as observed with configuration (234) and

(2347). The performance of FBGs in different cores in the

multicore fiber varies quite significantly due to the manu-

facturing process. One side of the fiber will perform better,

and this is why an asymmetrical configuration is preferable.

Nonetheless due to low signals for shapes with high local

bending radii, it is recommended to use more cores to ensure

functionality for all possible shapes. Another possibility

is to calculate multiple local strains for differing configu-

rations and thus enable local averaging leading to higher

accuracies.

123



2142 International Journal of Computer Assisted Radiology and Surgery (2019) 14:2137–2145

Fig. 2 Effect of the photo-elastic coefficient for different bendings [ground truth (green), reconstruction with pe = 0.21 (yellow), pe = 0.22 (red)

and pe = 0.23 (blue)] : the images show the fiber with low (first image) and high (second image) bending and the inserted projections of the

reconstructed shape

Fig. 3 Results of interpolation

study: the images show the

resulting curvatures and angles

of different interpolations

methods along the fiber

Curvature and angle correction

First, we bent the fiber to a bow, where κ �= 0, and used

the determined angles for the angle correction, as described

in Eq. (3). The result of this experiment is displayed in the

left image of Fig. 4: the reconstruction without correction is

twisted, whereas the corrected shape lies in the plane of the

ground truth and is much more accurate. Afterward, we made

several circular shapes with various radii to determine the

curvature scale factor of our fiber. The results are shown in the

right image of Fig. 4: we found that a scale factor of ≈ 1.026

achieves the best results and used it for curvature correction

of our fiber, as described in Eq. (2). With both corrections,

we obtain now a high reconstruction accuracy, as shown in

Table 2. However, these corrections allow a compensation of

errors that do not change over time; other errors like dynamic

twist are not corrected.

Shape reconstruction

The results of the convergence study are summarized in the

left image of Fig. 5: the method based on circle segments has

a faster convergence than Frenet–Serret and parallel trans-

port. A reason for that might be, that for Frenet–Serret and

parallel transport the differential equations have to be solved

to get the tangent vectors, whereas for circle segments the

shape is directly reconstructed. In the right image of Fig. 5,

the noise study results are shown: the methods based on

parallel transport and circle segments have significantly bet-

ter noise handling than Frenet–Serret, which indicates that

both methods are more stable and less prone to faults than

Frenet–Serret. Considering the results of both experiments,

we used the circle segment approach as shape reconstruction

method. Parallel transport is also suitable, but the segment

length has to be chosen fine enough (< 5 mm) to get accurate
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Fig. 4 Left: results of the twist angle study: the reconstructions with

twist correction (blue) and without (orange) are shown. Ground truth

from the CT scan is displayed in white with the plane shown as grid;

Right: results of the curvature scale study: the average error (straight

line) and maximum error (dashed line) are plotted for three circles

Table 2 Results of the 3D experiment: measured errors eavg and emax

in mm for different 3D shape measurements using our shape sensing

model with and without the curvature and angle correction

Shapes\errors (mm) With corrections Without corrections

eavg emax eavg emax

Circle 1 0.35 0.75 3.53 12.57

Circle 2 0.50 1.15 4.91 18.13

Circle 3 0.50 1.02 5.70 23.66

S-curve 1 0.70 1.29 5.77 17.83

S-curve 2 0.57 1.98 1.78 4.27

S-curve 3 1.15 7.53 2.33 6.57

Helix 1.00 4.72 6.04 25.72

Inside the vessel 1.13 2.11 2.59 7.00

reconstructions, whereas Frenet–Serret is not suitable, since

it cannot reconstruct flexible structures as s-curves and has

the worst noise handling.

3D shape reconstruction accuracy

For the 3D shape experiments, we integrated the results of

all previous experiments in our model. We made several

measurements bending our fiber to different 3D shapes. The

segmented shapes from the CT scan of the measurements,

as shown in Fig. 6, were used as ground truth. The accu-

racies, shown in Table 2, depend on the complexity of the

forms: for the circular shapes, we obtain an average error

of eavg ≈ 0.5 mm and a maximal error of emax ≈ 1 mm,

whereas for s-curved and helical shapes, we get higher errors,

especially for s-curve 3 and helix.

Comparing our results with Khan [7], we obtained higher

errors. But Khan evaluated a catheter of only 114 mm length

in different configurations with weakly bending, constant or

linear curvature and nearly no torsion. Also they did not

tested their catheter in any form with singularities like s-

curves. Hence, the results of our 3D experiments with high

deflections using the 380 mm multicore fiber are nevertheless

accurate and promising.

In the last experiment, we evaluated our model in a realistic

endovascular scenario and inserted our fiber into a 3D printed

vessel phantom, as shown in Fig. 7. Here, we obtained an

average error eavg = 1.13 mm and maximum error emax =

2.11 mm, which indicates an accurate reconstruction. This

is also visible in the right image of Fig. 7: the reconstructed

shape, represented by the blue line, fits almost perfectly to

the ground truth of the CT scan. We also provided a video

as electronic supplementary material, which shows further

views.

Conclusion

We presented an optimized shape sensing model with

multicore fibers for flexible instruments. We conducted a

detailed error analysis for every shape reconstruction step.

The main error sources of shape sensing with multicore fibers

are corrupted reference wavelengths for the wavelength shift

computation, direction angles changed by the twist present in

the fiber and curvature values, which are distorted by using

an inaccurate photo-elastic coefficient or incorrect radii.

This indicates that two calibration measurements need to be

done for every fiber. The first one is used to determine the

Bragg wavelength λb with κ = 0, the second one to get the

twist angle ϕtwist where κ �= 0 and the curvature scale fac-

tor. Further factors influencing the shape are the equations

defined by the used core configuration, the curvature and

angle interpolation and the reconstruction algorithm.

Furthermore, we evaluated the accuracy of our model

with 3D measurements in a CT scanner. We received the

accuracies eavg ≈ 0.35 to 1.15 mm and emax ≈ 0.75
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Fig. 5 Shape reconstruction study results: the images show the average error as a function of segment length and of noise

Fig. 6 3D experiment with the fiber: the segmented shapes from the CT scan of the circle, s-curve and helix measurements are shown

Fig. 7 The first image shows the vessel phantom with the fiber inside, the second image the CT scan with the reconstructed shape (blue) and ground

truth (white)
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to 7.53 mm. Finally, we tested our fiber system in an

endovascular scenario and obtained high accuracies (eavg =

1.13 mm, emax = 2.11 mm). These experiments show

promising results for using multicore fibers for shape sensing

of catheters.

In future work, we aim to enable a full endovascular

catheter navigation. For this purpose, we plan to combine

the reconstructed shape obtained by the multicore fiber with

the position and orientation of an electromagnetic tracking

system. Also, the experiments were conducted under ideal

conditions and we want to analyze our model in more realis-

tic scenarios and to compensate other effects that may occur,

such as dynamic change in the twist angle during an endovas-

cular procedure. For this problem, using helically wrapped

fibers as fiber system might be a better choice.
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