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ABSTRACT.  We give a theory of fibered regular neighborhoods based on
a remarkable property of simplicial fibered projections.   All the usual properties
of regular neighborhoods are retained.   Using Millett's fibered general position,
together with the regular neighborhoods, we prove THEOREM.   The simplicial
space of codimension 4 PL embeddings of a complex into a PL manifold is lo-
cally contractible at each point of the space of topological embeddings.

Introduction. Two embeddings gx ,g2  of a space X into a space Q are
equivalent if there is a homeomorphism $: Q—> Q suchthat 4> ° gx = g2. The
local theory in the PL category is now understood. It is exposited in Edwards
[E]. The positive results are summarized in

Edwards, Corollary 3'. Suppose f:X —► int Q is a TOP embedding of
a compact polyhedron X into a PL manifold Q, and suppose dim X < dim Q
— 3. Then given any e > 0, there isa S > 0 such that any two PL embeddings
of X into hit Q which are within S of f are equivalent by an e-PL ambient
isotopy.

In codimensions less than three the corollary is false. In fact, it fails even
if the e-ambient isotopy condition is dropped.

The corollary above is the same as the statement that the simplicial space of
codimension 3 PL embeddings of a complex in a PL manifold is locally zero con-
nected at points of the space of TOP embeddings. In this paper we prove that all
the higher local homotopy groups of the space of codimension 4 embeddings
vanish. This is the fibered close equivalence theorem. (See Theorem 1.) The pre-
vious best result was by Lusk [Lu]. He showed local ^-connectivity of codimen-
sion 3 embeddings for k < dim Q — dim X — 3.

The proof of Theorem 1 requires working in the context of the product
Q x A where  Q is a PL manifold and A  is a simplicial complex. All proce-
dures are designed to preserve the sets of the form Q x {a}, a G A.  We signal
this idea by the words fiber preserving, or fibered.  En route to Theorem 1 we
require fibered versions of most of the standard tools of PL topology.  Some of
-
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242 R. T. MILLER

these are easy and we give proofs (e.g. simplicial approximation). Others automati-
cally work in the fibered case (e.g. Alexander's trick). The important cone un-
knotting theorem follows from the nonfibered case [L], the fibered Alexander trick,
and the covering «-isotopy theorem (see [H]). Millett [Mi, §3] does the general
position theorem (see §2, Proposition 9, this paper for the statement). He also
proves a fibered sunny collapsing theorem [Mi, §4].

Our principal contribution concerns fibered regular neighborhoods. The
problem in defining such neighborhoods is illustrated by the fact that there is a
fiber preserving PL homeomorphism h of Rn x Bk  to itself that fixes 0 x
Bk  and R" x 37Jfc  and such that h(Bn x Bk) does not fiber preserving PL
ambient isotop to B" x Bk  fixing 0 x Bk U R" x 37Jk. Otherwise, PL disc
bundles would be the same as PL R"  bundles. This is not the case [Bro].

We state one piece of philosophy and get two results.  The philosophy is
that one should always work in triangulations of Q x A  that project simpliciahy
to a triangulation of A.  (If /: Z x A —* Q x A is fiber preserving, it is always
possible to make both / and the projection of Q x A  to A simplicial simul-
taneously.)

Suppose K and ¿ are two triangulations of Rx x B1 that agree on Rx x
dB1 U {0} x B1 and project simpliciahy to the triangulation of {0} x Bl. If second
derived subdivisions of K and ¿ are chosen to agree on R1 x 3771 U {0} x Ti1 and
to project simplicially to the subdivision of the triangulation of {0} x Bl, then there
is a fiber preserving PL isotopy of Rl x Bl, fixed on Rl x dB1 U {0} x Bl
that takes TV({0} xT^TC") to TV({0} x Bl,L"). (See Figure 1.) We show this
is true in a more general but still restricted case (Theorem 12). This is the first
result.

The second result (Theorem 11) is that if AT is a subcomplex of Q x A,
where  Q is an arbitrary PL manifold, and  y is a subcomplex of X such that
X fiber preserving collapses to  Y (definition in §3), then there is a fiber pre-
serving PL ambient isotopy of Q x A  that takes the second derived neighborhood
of X onto the second derived neighborhood of  Y.

Combining the two results gives a still wider class of fiber preserving PL
ambient isotopic regular neighborhoods of Y.

The drawback of our fibered regular neighborhoods is that the complication
goes up with both the number of Simplexes in the triangulation of A  and the
dimension of A. See Figure 2 for some examples. This complication results in
the inductive spectaculars later in the paper. Keep in mind, however, that no mat-
ter what the dimension of A  or the complication of its triangulation, the re-
striction of a fibered regular neighborhood to a single Q x {a} can be any regular
neighborhood; it can be flat or lumpy and has no characteristic shape.
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FIBER PRESERVING EQUIVALENCE 243

FIGURE 1. The slashed areas denote the second derived neighborhoods of  {o}x B
in r\   X Bl.

neighborhood of
,1  •_   „2 „  „1Wxfi1 in R2 X B]

neighborhood of

A2   in  R | X A2

■ « I

¿^

FIGURE 2.   Typical fibered neighborhoods.   Beneath each neighborhood is the dual
subdivision of A.
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244 R. T. MILLER

The following approximation theorem complements the nonfibered equiva-
lence theorem.

Theorem (Bryant) [Br]. Suppose f: X —► int Q is a TOP embedding
of a compact polyhedron X into a PL manifold Q, and suppose dimX<
dim Q - 3.  Then given  e > 0, there is a PL embedding g: X —* int Q that
e-approximates f.

This theorem translates to the statement that the space of codimension 3
PL embeddings of a complex into a PL manifold is dense in the space of TOP
embeddings.

We give a quick argument in § 1 that proves a fibered approximation theo-
rem (Theorem 3) using Bryant's approximation theorem and the fibered close
equivalence theorem. The argument is really a homotopy result which always
follows from local contractibihty and density [E & W].

1. Statement of the equivalence and approximation theorems.  Let Q be
a PL manifold. Let X be a compact subpolyhedron of Q and Y be a subcomplex
of X. Let A he a finite complex and N be a subcomplex of A. Denote the
standard s-simplex by A*. A map h: X x A —>Q x A is fiber preserving if it com-
mutes with projection onto the second factor.

Theorem 1 (fibered close equivalence). Suppose dim X < Q — 4
and dim (AT n 90 < dim Q - 5. Suppose h: X —*■ Q isa TOP embedding with
h~1(bQ) = X C\bQ. Let s be a nonnegative integer.   Then for e>0 there
is a 5 > 0 such that if g*: X —+ Q is a PL embedding within 8  of h, and
with £*-1(9ß) = XC\bQ and if g: X x As -* Q x A" is a fiber preserving
PL embedding satisfying

(1) g-l$Q x As) = (X O 9ß) x As,
(2) g is within 8 of h x id s,
(3) g\(X x 9A0 U (Y x A°) = (g* x id^) U ((g*\ Y) x idA,),

if follows that there is a fiber preserving PL ambient isotopy ®t of Q x As
with

(4) @x°g = g* x idaS,
(5) Gt\(Q x 9AS) U (Y x As) = identity,
(6) 0f is within e of the identity everywhere and is fixed outside the

^-neighborhood of h(X) x As, and
(7) if Y D (X n 90, then et\bQ x As = identity.

In the next section we will reduce Theorem 1 to Theorem 4 (below). The
proof of Theorem 4 will then occupy the remainder of the paper.
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Remark 2. For a given e > 0, a given integer s, and h: X —*• Q, the
same Ô > 0 works in Theorem 1 for ah TOP embeddings sufficiently near h.
Thus, in particular, if 77: X x A —> Q x A  is a fiber preserving embedding and
A  is any finite complex, there is a single 6 > 0 which implies the conclusions of
Theorem 1 whenever the TOP embedding h is replaced by one of the embeddings
77|X x {a}, aEA.

Remark 2 together with the work of Bryant gives a quick proof of the next
theorem.

Theorem 3 (fibered approximation). Suppose dim X < dim Q — 4
and  dim(Z n oQ) < dim Q - 5. Suppose h: X x A —* Q x A isa fiber pre-
serving TOP embedding such that h\(X x B)U(Y x A) is PL.  Then for e > 0
there is a fiber preserving PL embedding g: X x A—* Q x A  such that

(1) g\(X x B) U (Y x A) = h\(X x B) U (Y x A),
(2) g is within e of h.

Proof of Theorem 3. By induction on the dimension k of A - B. The
case k = 0 is Bryant's approximation theorem.  If k > 0, for e > 0, subdivide
A  to obtain A whose mesh is so small that for each simplex a EA, h\X x a
is within S/3 of (h\X x a) x ida where a is the barycenter of a and S
comes from Remark 2 applied to   e/2.   In addition, take   5 < e/2.   Apply
Theorem  3 inductively to obtain a S/3     approximation    g\X x A^-1^
to h\X x yl(fc-1\ For each principal simplex aEA  choose a point s G 3a.
Theorem 1 gives an e/2-contraction of the   (k - 1) sphere of PL embeddings
g\X x bdy a to the embedding g\X x {s}. Regard this contraction as a fiber
preserving PL embedding g\X x a that extends g\X x da. Thus the union over
aEA  of the embeddings g \X x a defines a fiber preserving PL embedding g:
X x A —> Q x A. It is an e-approximation to h.

A PL map /: AT—»- Y is collapsible if, for each point y G Y, f~l(y) is
a cohapsible polyhedron. If y is a subpolyhedron of X and /: X —*■ Y is a
collapsible retraction, then X collapses to Y [C, Theorem 8.1]. We define an
abstract regular neighborhoood of X to be a compact manifold pair (TV", TI7"-1)
with M C 3TV, and an inclusion of pairs (X, X n 3TV) C (hit TV U int M, int TI7)
such that there is a cohapsible retraction p: TV—► X whose restriction p|TI7 is
a cohapsible retraction of M to (XC\ 3TV). In particular, the second derived
neighborhood of a subcomplex in a manifold is an abstract regular neighborhood.

Theorem 4 (n, j, k) (fibered equivalence theorem). Let X be a finite
complex, and let Y be a subcomplex of X. Let (A, B) be a pair of finite com-
plexes. Suppose dim X = j, and dim A = k.  Suppose further that n-j
< 4. 77ie« for e > 0, there isao>0 such that if (TV, M, p) is an abstract
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regular neighborhood of X with dim N = n and Y D (X n 9A0, and if g:
X x A —► N x A  is a fiber preserving embedding with

(1) g'H^N xA) = (Xn bN) x A,
(2) g\(X x B)U(Y x A) = inclusion, and
(3) (pxidA)og is within 8 of the inclusion,

then there is a fiber preserving ambient isotopy @t of N x A  with
(4) 0j » g = inclusion,
(5) Ot\(NxB)U(YUbN)xA = identity, and
(6) (p x id^) o 0f ¡s within  e of (p x id^).

The feature of abstract regular neighborhoods that we exploit in this paper
is contained in the next proposition. It is proved in [C].

Proposition 5. Suppose (N, M, p) is an abstract regular neighborhood of
X.   Then for each triangulation N of N such that the collapsible retraction p:
(Ñ, M) —>(X,XC\ bN) is simplicial it follows that p~1(D(t, X")) is a
(dim N - dim r)-ball for each simplex r EX . (See §3 for the definition of the
dual set D(t,X").)

It is convenient to state an equivalent form of Theorem 4.

Theorem 6 (n, j, k). X, Y, A, B as in Theorem 4. Suppose X is a triangu-
lation of X.  Then there is a 5 > 0 such that if (N, M, p ) is an abstract regu-
lar neighborhood of X with   (Y D X n bN)   and   p-1(D(T, j?"))   a
(n — dim r)-ball for each simplex t EX', and if g: X x A —>N x A is a fiber
preserving embedding with

(1) g~l(bN xA) = (XD bN) x A,
(2) g\(X x B) U (Y x A) = inclusion, and
(3) (fíxidA)°g is within 8 of the inclusion,

then there is a fiber preserving ambient isotopy @t of N x A with
(4) 0j » g = inclusion,
(5) @t\(N x B) U (Y U bN) x A = identity,
(6) ©¿p"1!» x A) C p-^^NQi, X"), X")) x A for each simplex

pEX.

2. Generalities about fibered maps and the reduction of Theorem 1 to Theo-
rem 4. The reduction of Theorem 1 to Theorem 4 has precedent in [B & S]
and [E]. First, a few preliminaries.

Proposition 7 (straight line homotopies). Let Ww  be a topological
manifold, A be any metric space, and S be any compact subset of W xA. Then
for e > 0 there is a 8 > 0 such that any fiber preserving map of S into  W x
A that is within 8 of the inclusion can be covered by a homotopy of the in-
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FIBER PRESERVING EQUIVALENCE 247

elusion that itself is within e of the identity. If S is not compact, both  e and
5 are to be considered functions of W x A into (0, °°).

Proof. If W = RW, the straight line homotopy obtained by moving each
point in S linearly along the line between it and its image under the map satisfies
the proposition with ô = e.

Extend the proposition to manifolds a coordinate patch at a time. Use the
fact that W is the union of w + 1 collections of disjoint coordinate patches.

Proposition 8 (fibered pl approximation to maps).  Let X, Y, A and
B be as in §1. Let Z be a simplicial complex.  Choose e > 0. If f: X x A
—► Z x A is a fiber preserving map whose restriction to (X x 77) U (Y x A) is
PL, then there is a fiber preserving PL map g: X x A —>Z x A  that extends
f\(X x 77) U (Y x A) and that homotops to f by an e-homotopy.

Proof.  If Z = Rn, choose S>0 and subdivide X x A  so that the
image of each simplex has diameter < S. Define the restriction of g to the
zero skeleton of the subdivided X x A, to agree with the restriction of /. Ex-
tend linearly.

If Z is an arbitrary complex, PL embed it in R" (for some ri) and let Q be
a regular neighborhood with e/2-PL retraction p: Q —► Z.  Apply the previous
paragraph, with 8 < e/4 and such that the 25 -neighborhood of Z lies in Q, to
define a fiber preserving PL map g': X x A—+ Q x A. Let g = p ° g. Use
Proposition 7 to construct a small homotopy of g  to / in Q. Composition
with p pushes this homotopy into Z.

The following definition is due to Millett. Two subcomplexes S and  T
of (hit Q) x A  are in fibered general position relative to a subcomplex S0 of
S if

(1) dim((5 - S0) n r) < dim(5 - 50) + dim T - dim(ß x A),
(2) for each point aEA, dim((S - S0) n T n (Q x  {a})) <

max {(dim((5 - 50) n (Q x {a})) + dim(T D (Q x {a})) - dim Q), 0}.
Warning.  The zero in condition 2 has powerful effects on fibered PL theory.

Proposition 9 (fibered general position). See Millett [Mi]. Choose
e > 0. Let S and T be subcomplexes of (int Q) x A, where Q is a PL
manifold. Let S0 be a subcomplex of S.  Then there is a fiber preserving PL
ambient isotopy <f>t of Q x A such that

(1) $( | ((bdy 0 x A) U 50 = identity,
(2) 4>f is within  e of the identity,
(3) $y(S) and T are in fibered general position relative to S0.
If B is a subcomplex of A, and if S n (Q x 77) and TC\(QxB) are
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already in fibered general position relative to S0 n (Q x B) then  $, fixes
QxB.

Returning to Theorem 1. Since a finite complex is an ANR, there is a neigh-
borhood of h(X) in Q that retracts to h(X). For each sufficiently small ô-neigh-
borhood of h(X) in Q, N&(h(X)), and any embedding g*:X—*Q within 5
of   h,  the  composition   of  the   retraction  with g*  °  h~l    is  a  close
map of Ns(h(X)) into g*(X). Since g*(X) is locally contractible, this close
map can be converted to a close retraction of N6(h(X)) to g*(X). Thus by
Proposition 7 there is a close homotopy of N6(h(X)) into g*(X). The track of
this homotopy will not generally be in Ns(h(X)), but will be in NS'(h(X))
where  ô' is a function of 5  that goes to zero as S  goes to zero. If 5' is
sufficiently small, the process can be repeated to provide a homotopy of
N6'(h(X)) into g*(X). This, together with Propositions 8 and 9, are just the
components needed for small fibered Stallings-Bing type PL engulfing (cf. [B] ) of
g(X x A*) into N x As, where A'' is a small derived neighborhood of g*(X)
in  Q. The engulfing leaves a neighborhood of g*(X) x As  fixed. This puts the
problem in the context of Theorem 4.

3.  Fibered PL tools.   For the rest of the paper all manifolds and maps are
PL.  If X is a complex, X' denotes a first derived subdivision of X. If  Y is
a subcomplex of X, N( Y, X) denotes the subcomplex of X generated by all
Simplexes of X that intersect  Y.  We mildly abuse notation and write N(Y, X')
for N(Y n X', X'). If a simplex r is a face of a simplex o, we write o> t.
If o > r but  o ¥= t, we call r a proper face of o and write  o > t. A sim-
plex in a complex is principal if it is not a proper face of any simplex in the
complex. If F and ¿  are complexes, we denote their join by K - L.

If AT is a complex and t a simplex in X, the dual set to  r in A"' is

D(t, X')= H N(v, X').
vertices;!' inr

If o and t are Simplexes in X, notice that D(o, X')Ci D(t, X') =
D(o • t, X') if o ' t is a simplex of X and is empty otherwise.  The dual set
D(t, X') is a cone with apex at  f.   If AT is a manifold then D(t, AT') is a
(dim X - dim r)-cell. The frontier of D(t, X') in  X' equals \Jß>T D(ß, %')■

Suppose that M is a manifold, that  Q is a triangulation of M x Ik,
that F is a triangulation of Ik, and that the projection  n: Q —*■ K is simpli-
cial.  Suppose  Q" is any second derived subdivision of Q that projects simpli-
cially to K". Then we have

The fundamental observation (see Figure 3). Let t be a simplex
of Q, and let o = tt(t).  Then for each simplex o * in  bo, N(f, Q")C\License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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N(ir~1(a*)r\T,,Q")    is  contained  in   the  topological  interior of
ir-1(D(o'o*,K"))nN(ir-1(d*)riT',Q") in Tt-l(D(oo*,K")).

o* = S* &

FIGURE 3

Proof.

N(T,Q")nN(TT-1(o*)nT,,Q")= U (     D(v>t,Q")
vertices;i'&r_1(ó>*)'Or'

and

Ti-l(D(od*,K"))-N(iT-l(Ô*) n r', Q") =        U DQx • u, Q").
vertices

Ííe7r_1(5*)'-r'
cjeTr_1(ô)

These sets do not intersect since p and t  do not span a simplex in Q'.

Lemma 10 (dual sets). Let X be a complex. Let L be a triangulation
of X x Ik and K be a triangulation of Ik such that the projection ir. L—+License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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K is simplicial. Suppose further that n: ¿" —*■ K" is simplicial. Suppose p is
a simplex in ¿' and let v = n(p).  Then there is a fiber preserving homeomorphism

hß: D(v, K") x (D(p, L") n *-»$) -+ D(p, L")

such that
(1) hß extends the inclusion of D(p, L") n n~i(v) in D(p, L"),
(2) if t > p and tt(t) = v, then ftM \D(v, K") x (D(t, L") n jr"» (y)) = hT,
(3) hß(D(v,K") x (D(p,¿" n7 x7") ntt" 1 (v))) = D(p,L"nyx 7") for

each simplex y EX, and
(4) hß(D(v, bdy K")   x   (D(ji, L"   n   jr'OdyTQ   n tt" *$))) =

D(p,L"nir-1(bdyK)).
(See Figure 4.)

figure 4

Proof. Inductively on the dimension of K we can assume hß is already
constructed over oK. By extending this homeomorphism we automatically satisfy
(4). By induction on the number of simplexes in X, we can assume that h„ is de-
fined over all but one principal simplex of X. Thus we can assume that X is a
single simplex and that A„ is already defined on its boundary. This takes care of
(3). We will extend this homeomorphism.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIBER PRESERVING EQUIVALENCE 251

Proceed by double induction, first on decreasing dimension of v, and then on
decreasing discussion of p. The induction starts trivially since the identity map
satisfies the lemma if dim v = dim K.

For an arbitrary simplex p, inductively by (2), the homeomorphism hT, r >
p with n(r) = v, and the homeomorphism over bK fit together to give a fiber pre-
serving homeomorphism

hd: D(v, K") x (bDQi, L") n «r>»

—► U      D(t, L") U (DQx, L") O (9A- x /*)).
T>PVn(T)=V

Also by induction, for each simplex \EK' with X > v and dim X =
dim v 4- 1, there is a fiber preserving homeomorphism

px: D(\ K") x (DQx, L") n v~l(\)) -+ U      D(r, ¿">
t>m;t(t)=\

Notice that DQx, 7r_1(X)') is a ball that contains D(ii,ix~l(v)') as a top
dimensional ball in its boundary. Because

U       D(t, 7T- 1(X)') U DQx, it- »(X)' n (9AT x /*))
t>p;tt(t)=v

= Äa(9FM,ff-1(v)' xt'X),

the left-hand side is a collar for DQx, it'1 (v)') in bDQx, 7r_1(X)'). We also have

closure i 9D(jLt, 7r-1(X)')

- \dQx, it- 1 (X)' D (9AT x /*)) U       (J       D(T,v~l (X)')l i

= F0u,¿")ri7r-1(X).

Thus, the right-hand side is a ball homeomorphic to DQx, ¿") f) tt~x(v).   Use
this homeomorphism to extend hd  by

A*»1: {X] x (DO, ¿") n Tr-1^)) -+DQx, L") n tt"1^)

and this, using px, to obtain fiber preserving

hx'n: ¿>(X, F") x (D(p, L") n rr"1^)) -+ F(p, ¿") n jr"1^ K")).

Finally, Alexander's trick can be used to fiber preserving isotop the homeomor-
phisms ft*"11 relative hd  to

hx>m: DCK, K") x (DQx, L") fi iTl(p)) ~+DQx, L") n tT^X, F"))

which have the property that for each pair of Simplexes X and  X contained in
a simplex of K' with X > v, X > v and dim X = dim X = dim v 4- 1
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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AX,III|7J>(XX, K") x (DQi, L") n tt"1^))

= A1-111!¿>(A\, K") x (DQx, L") n ir"1^))-
Define

AMI : ¿\i>,7<-") x (frontier(7)(¿t, L") n vr"1^)) in v~l(p))

U U D(\,K") x (DQi, L") n jr- »(¿))
X>i>;dim X=dim v+1

-*        U       D(T,L")U U (DOi,¿"))nir-1CD(\/í"))
t>/í!w(m)=i' \>i>;dim\=dimi>+l

by *MI = A3 u lA^dimA^dimv+i hKIU- ms extends by coning to yield
hß. It is easy to check that (1) and (2) hold for hß.

If t is a principal simplex of X, and if 7y is a face of t that lies in no
other simplex of X we say 7y is a /ree /ace, and that X collapses to X —
int t — hit Tj, through 7y, or that there is an elementary collapse of X to X -
hit t — hit Tf. Notice X collapses to X — int t — int iy implies Z - int t —
int Tf is a strong deformation retract of X. (The retraction can be made PL
but not simplicial.) If Z is a subcomplex of X, define the image of Z under
the collapse to be the image of Z under any such deformation retraction. It is
a subcomplex of X — int t — int t* and does not depend on the retraction
chosen. Define the track of Z under the collapse similarly. The composition of
a sequence of elementary collapses is called simply a collapse.  The image and
track of a subcomplex Z of X are, in this case, the image and track of Z
under the composition of the.corresponding deformation retractions.

Some more definitions:  Suppose M is a manifold, Q is a triangulation of
M x Ik,K is a triangulation of Ik, and it: Q —>K is simplicial. An elemen-
tary collapse of X C Q to X — int t - int t^ is fiber preserving if it(t) = 7r(rA The
composition of fiber preserving elementary collapse is a fibered collapse. Notice
that although the retractions associated with fiber preserving collapses are not
themselves fiber preserving, the image and track of a fiber preserving collapse
still make sense. If X collapses to  Y write image^-sy Z and trackyNy Z
for the image and track.

Theorem 11 (isotopy following collapse). Add to the above nota-
tion that n: Q" —► K." is simplicial.  Suppose X is a subcomplex of Q and
that X fiber preserving collapses to a subcomplex  Y. Suppose, too, that X —
Y C int Q.  Then there is a fiber preserving ambient isotopy £2f of Q, fixed
outside N(N(vertices in   X4 - Y', Q"), Q'") such that

(1) SlyN(X, Q")=N(Y, Q"),
(2) each point p EN(X, Q") is contained in N(N(o, Q"), Q'") for a unique
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highest dimensional simplex 8 EX, and £lx(p) EN(N(y, Q"), N(X, Q")') for
some simplex y G image^xy 8, and

(3) each point p EN(N(X, Q"), Q'") is contained in N(N(8, Q"), Q'")
fora unique highest dimensional simplex   8 E X, and   £2.0 xAp) E
Uw N(N(co, Q"), Q'") where <o is a simplex in track^-Ny 5.

Proof.  It is sufficient to suppose that X - Y is precisely a principal sim-
plex t and a free face iy, with tt(t) = tt(tA = a. Use the dual cell lemma to
construct a fiber preserving homeomorphism h: N(d, K") x 7r-1(<5) —>
Nfr-1^), Q") such that h(N(d, K") x NQIl, it'1 (5)")) = N(p, Q") for all Sim-
plexes   p G Q   with 7T(p) = a.   Since  A^A" n Tr~l(a), tt~1(5)" =
N(Y n n~ l(ô)") U #(? • rf, tt-^ô)") where N(t • rf, ir'^d)") is a top-di-
mensional ball in int(7T_1(ô)) that intersects N(Y, 7r_1(a)") in a top-dimen-
sional ball in its boundary, it follows that for each regular neighborhood Z of
N(t • Tf, 7r-1(ô)") in ir~1(d) there is an ambient isotopy of n~l(d), fixed
outside Z that takes N(X, ii~l(ô)") onto N(Y, 7r-1(ô)"). Use h  to extend
this ambient isotopy to a fiber preserving ambient isotopy of A^ír-1^), Q").
Notice that the extension takes A^A; Q") n tt"2(int N(S, K")) onto N(Y, Q")
n TT~l(int N(o,K")).

Construct a small fiber preserving collar of N(n~ ' (a), Q" ) in Q, and use
this collar in the usual way to extend the fiber preserving isotopy we just con-
structed to a fiber preserving ambient isotopy  S2f of Q itself that is fixed out-
side the collar.

If we choose Z sufficiently small, we find by the fundamental observation

that N(X, Q")-N(Ti-1(d), Q") (= N(Y, Q") - N(tt~ 1 (â), Q" )) remains set-
wise invariant. Thus Slx(N(X, Q"))=N(Y, Q"). Small choice of Z and the
collar also insures that  £2, is the identity outside N(N(t • Tj-, Q"),Q'"). Thus
Qt satisfies (2) and (3).

Definition ofPk.  Let J = [- 4, k + 1]. If F is a triangulation of
Ik, we define the set PK  in J x K to be

U    {*-dimo}   xN(d,K")
oBK

U    (J    [jfc-dim o, k-dim r]x (N(5, K") n N(t, K")).
o,t<EK

Then J x K - PK  has two components whose closures we call P%  and F¿.
Suppose ¿ is a triangulation of X x J x Ik that projects simplicially to F,
and suppose that X x {/} x Ik  is the underlying space of a subcomplex of ¿
for integers — 4 </ < fc + 1. We then have the following theorem.

Theorem 12 (special uniqueness of regular neighborhoods).   Sup-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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pose W is a subcomplex of L contained in Xx [—4,-1] x/* and containing
X x [-4,-3] x Ik such that for each simplex tEK, some subdivision of LO
(X x  [- 4, -1]   x   {f})  collapses to a subdivision of   W D (X x  [- 4,
— 1]   x   {f}).   If  X   is not a manifold, suppose that under the collapse
y x J x {?} remains invariant, each simplex y EX.  Then there is a fiber pre-
serving isotopy At of X x J x Ik such that

(1) Ay(X xP-) = N(W,L"),
(2) At - identity outside an arbitrary neighborhood of

XxP-- N(W, L"),

(3) the diameter of n      toA,01 ,(p) is small if the projected tracks of
points under the collapses, and the mesh of K, are small, and

(4) y x J x Ik is invariant under Af if it is under the collapses.

FIGURE 5.   Special uniqueness in the case  X = point, k = 1.  The cross hatched sub-
complex is   W.   The slashed region is   Ay(X X Pj¿).

Proof (see Figure 5). Let

TVT = N(W, L" C\(X xj x N(t, K")))

and let
X x p-= X x [- 4, ¿fc-dimT]  x TV(f, K").

By the dual cell lemma there is a fiber preserving homeomorphism

hT ■ N(t, K") x (X x [- 4, k-dim r] x {f})

-+ WiT1(tX L" n (X x [- 4, k-dim t] x Ik))
such that

hT(N(r,K") x N(jl, L" n (7 x [-4, fc-dim r] x   {f})))

= TV(p, ¿" n (7 x [- 4, fc-dim t] x Ik))
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for Simplexes p G¿ with it(p) = r and y EX. Thus, in particular,

hT(N(r,K") x ((XxP¡r-N(W,L") n it~l(T))))

= XxP- -NT.

By nonfibered regular neighborhood theory, there is an isotopy of 7r-1(f), fixed

outside a neighborhood of X x P~   - NTC\ it~l(j), that takes (X x P~)C\
7T-1(f) onto TVT n 7t-1(t). The projection onto X x Ik of the tracks of this
isotopy are small if the projected tracks of the collapse of ¿ n (X x [ — 4, — l]
x {f}) are small.  Similarly, the isotopy preserves whatever y x J x {?} the
collapse does.

Use hT to extend this isotopy to a fiber preserving isotopy of
it~1(N(?, K")). Extend this isotopy to a fiber preserving isotopy ATt  of X x
J x Ik by tailing it off to the identity in a small collar of it~1(N(t, K")) in
X x J x Ik. Then ATt and A^, for Simplexes r and F of the same dimen-
sion, have disjoint support. Let A't be the composition of ah ATf where
dim r = /.  Let Af be the isotopy obtained by running through the  A't in
order of decreasing /.  Sufficiently small choices for the support of the ATt  insure,
by the fundamental observation, that A't fixes Udimií>7 ^m an^i leaves
Udimu</ X x Pp   invariant. Thus, Af satisfies conditions (1) and (2).  Condi-
tions (3) and (4) are satisfied by the individual ATt  and are therefore satisfied by
the composition.

We will need a corollary of the following simple isotopy extension lemma.

Lemma 13.  Let X be a complex and  Y be a subcomplex of X.   Then
for S > 0 if (pt is a fiber preserving ambient isotopy of (Y x J) x Ik  with

(1) <j>t(T xj x Ik) = T x J x Ik, each simplex tEY and each t G [0, 1],
(2) <¡>t I Y x 37 x Ik = identity,

it follows that there is a fiber preserving ambient isotopy <ï>f of (X x J) x Ik
such that

(3) <S>t\Y x J x Ik = <pt,
(4) i>f is the identity outside the 8-neighborhood of Y x J x Ik in

XxJ xlk,
(5) $f | Y x bJ x Ik = identity, and
(6) for each point x in the 8-neighborhood, there is a point y EY x

J x Ik suchthat ^[o.ijW « contained in the 8-neighborhood of 0[O,i](v)-
In addition, if <pt\Y x J x {s} is the identity, t E [0, 1], then so is

<ï>f \X x / x {s}. Finally, all mention of the J factor can be omitted without
affecting the truth of the lemma.

Proof. Induction on the number of Simplexes in X not in   Y reduces
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the lemma to the case X a simplex and  Y its boundary. Let C be a small
fiber preserving collar of Y x J x Ik in X x J x Ik. This means there is a
fiber preserving homeomorphism h: Y x J x Ik x [0, 1] —► C such that
h(YxJ xlk x {0}) = Y x / x /*. Define, for qEXxJ xlk,

!h(Pt-w(y, j, s))   if q = h(y, j, s, w) and if f - w >.0,

identity otherwise.

To satisfy (4) the collar has to be at least S-small. Choose such a collar and re-
strict it to the subcollar h(Y x J x Ik x [0, §']).  If 8' is small enough, and
the collar C is replaced in the above construction by h(Y x J x Ik x [0, S']),
then uniform continuity implies (6). The other conclusions of the lemma are
immediate.

We quote the following theorem of Hudson.  See [H, Theorem 2] for a
proof of the case   Y a manifold. The general case follows from Lickorish's cone
unknotting theorem.

Theorem 14 (covering At-isotopy). Suppose  Y is a subcomplex of a
manifold M, and dim Y < dim M — 3.  Then if g: Y x Ik —> M x Ik is a
fiber preserving embedding for which g~l(bM x Ik) = (Y n bM) x Ik, there is
a fiber preserving homeomorphism G: M x Ik —> M x Ik such that G\Y x Ik
= g-

Corollary 15. Let Y be a subcomplex of a manifold M, with dim Y
< dim M - 3 and dim(Y n bM) < dim M - 4. Let g: Y x J x Ik -^ M x
J x Ik be a fiber preserving embedding with g(Y x J x Ik) n (bM x J x Ik) =
g((Y n bM) x J x Ik). Then for e > 0 if <pt is a fiber preserving isotopy of
(YVbM)xJ x Ik with

(1) <pt(T xJxIk) = T xj x Ik, tE [0,1], each simplex tE(YU bM),
(2) <pt\Y x bJ xlk = identity,

it follows that there is a fiber preserving ambient isotopy <3>f of M xJ x /*
such that

(3) Qt°g = go (pt,
(4) 3>f is the identity outside the e-neighborhood of g((YU bM) x J x

/*) in MxJ x Ik,
(5) $>f \M x bJ x Ik = identity, and
(6) for each point x in the e-neighborhood of g((Y U bM) x J x Ik)

there is a point y E ( Y U bM) x J x Ik such that- *[o,i ] W /s contained in
the e-neighborhood of g(<p^ 01 j (y)).

Moreover, if <pt\(Y U bM) x J x {s} is the identity, t G [0,1], then $t\MxJ
x {s} is the identity, too. Finally, all mention of the J factor can be deleted and
the corollary still holds.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof.  Apply Theorem 14 to the fc-isotopy g to obtain a covering homeo-
morphism G of M x J x Ik to itself. Use Lemma 13 on the isotopy <j>t of
Y x J x Ik being careful to choose S  in Lemma 13 so small that the image
under G of S balls in M x J x Ik have diameter less than  e. Then  G ° 4>f
(Lemma 13) = $f (Corollary 15) is the required isotopy.

4. Proof of the fibered equivalence theorem. The idea of the proof is illus-
trated in Figures" 6—7. We show the nonfibered case, but the same outline is followed
in general. Of course, there is an additional induction on the dimension of the in-
dexing complex A. One might hope this would be ah. In fact, the complicated form
of the fibered regular neighborhoods (see Introduction) leads us to incorporate first
an addendum to Theorem 4, and then a frilly slicing lemma into the inductive
scheme.

The grand induction starts with Theorem 4 (n — 1), Theorem 4 (n,k— 1),
and Theorem 4 (n, j — 1, k). (We omit indices to indicate that they may take
arbitrary values, although ; is always subject to the constraint n-j> 4.) It ends
by showing the truth of Theorem 6 («) in the case A=Ik,B = dlk, dim X = /,
and Y contains the (/ — l)-skeleton of X. This easily implies Theorem 4 («).

Corollary 16 (n, j, k) (addendum to Theorem 4). For e > 0, there is
a 8 > 0 such that if g:  (X x [0, 1]) xA —+(N x [0, 1]) x A is fiber pre-
serving in the A factor, if

(1) g\(Y x [0, 1] x A) U (X x {0, 1} x A) U (X x [0, 1] x 77) =
identity, and if

(2) (p x id^) o irNXA o g is within 8 of (p x id^) o irNXA o inclusion,
then there is a fiber preserving ambient isotopy Vt of (TV x [0, 1]) x A with

(3) *, ° g = identity,
(4) *f |( Y x [0, 1] x A) U (TV x {0, 1} x A) U (TV x [0, 1] x B) =

identity, and
(5) (p x id^) » irNxA ° *i is within   e of (p x idx) ° %Xi4-

If YD(Xn 3TV), then *,| 3TV x [0,1] x A = identity.

Proof.   For an arbitrary positive even integer w we can choose  0 <
e*! < a2 < • • • < aw < tt such that

(1)     g(X x [a2i, 1 - a2j] x Ik) C TV x [a2/_,, 1 - a2j_, ] x Ik   and

g(X x [a2j, 1 - a2j] x Ik) n (TV x [a2/+1, 1 - a2/+1] x Ik)

= g(X x [0, 1] x Ik) n (TV x [a2/+1, 1 -a2j+1] x Ik)

all 0 </ < w/2. Let cot be an isotopy of [0, 1] that is fixed on   {0, 1} and
such that Uy([aj, 1 - aA) = [jl2w, 1 - j/2w], 0 </ < w.  Let Í2f = id xLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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FIGURE 6.   The hypothesis of Theorem 4, fc = 0.   Dimension restrictions are ignored.

after application of the cone unknotting theorem

FIGURE 7.  The slicing lemma is used in a collar of each block to move

g\\_}a^xbN(S, X")  to the inclusion, and at the same time to move g(N(3, X")) into
.-1p     (N(d, X")) all   o e X.   The cone unknotting theorem is then applied to move each

-1,
g\N(a, X")  to the inclusion in   p   l(N(S,X"))  fixing   bp     (N(8, X"))
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M, x id: F x  [0, 1]   x A<-r>. Let  Vt = Q.t\(X x [0, 1] x A) U (N x
[0, 1] x B) (if YD(Xn bN) let   Vt = Slt\(X x  [0, 1]   x A) U
(bdy N x [0, 1] xA)V(Nx [0,1] x B)), and Vt he the close isotopy in
N x [0, 1] x A  covering g° Vt. Then

(4) ~   ,/ \  /    r2/+1     2/ + 1-I    \= £2, » (F^-1 (¿fí* x [0, 1] x A))n (N x \-^r, 1 -^-J x A J.

If w is chosen sufficiently large, Í2j ° (Vx)~   ° # satisfies the hypotheses of
Theorem 4 applied to embeddings of (X x [0,1]) x A in  (A/ x [0, 1]) x A
that are the identity on (X x {0, 1}) x A.  The retraction p x id: A- x [0, 1]
—»■A' x [0, 1]   makes N x [0, 1]   an abstract regular neighborhood of X x
[0, 1]. Theorem 4 then provides a fiber preserving ambient isotopy  Vt of N x
[0, 1] x Ik  that is fixed on N x {0, l}x A  and such that  *, ° Í2. ° (VA~l
0 g is the identity. Thus, £2f ° Ff followed by *f is the desired isotopy.

Millett uses his fibered general position to extend Zeeman's sunny collapsing
to the fibered case [Mi, §4]. The following lemma is a further extension based
on  [Ml , Lemma 3].

Lemma 17 (sunny collapsing).   Suppose M is a manifold and  Y is a
subcomplex of M with  dim Y < dim M — 3. Let Z be a subcomplex of Y
such that each principal simplex of Y not in Z has dimension greater than
zero.  For sufficiently small e > 0, and for arbitrary 8>0,iff: Y x J x Ik
—*M x J x Ik is a fiber preserving (but, in general, not level preserving in the
J direction) embedding satisfying

(1) f\(Z x J x Ik) U (Y x J x blk) = inclusion,
(2) f~l(b(M xJ)xIk)CZ xj xlk, and
(3) (ttj x id k)° f is within  e of (itj x id k)° inclusion,

it follows that there is a fiber preserving and level preserving in the J direction
8-ambient isotopy rjt of M x J x Ik with

(4) t]t fixed outside the 8-neighborhood of f(Y x J x Ik) relative to
f(Z xj xlk) and fixed on M x (J - (- 3, k + 1))

and there is a triangulation of Y x J x Ik  that projects simplicially to a triangu-
lation K of Ik and that contains a subcomplex  W such that
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(5) W is a subpolyhedron of Y x [—4,-1] x Ik and

î?, ° f(W n ((Y - Z) x J x Ik)) C M x [- 4,-1]  x Ik,

(6) W D (UrGdK y x [- 4, - 1] x t) U (UTg/c Z x [- 4, - 1] x r) U
(J x [-4,-3] x7fe),

(7) the shadow set of r¡y ° f(W) intersects r)y ° f(Y x J x Ik) precisely
in t?, °f(W),

(8) for each simplex  t gK, some subdivision of Y x   [—4,-1]  xf
collapses to a subdivision of W C\ n~1 (f), and

(9) for each simplex t, the track under the collapse of each point
(yt t, t)E Y x  [—4,-1] x f lies in the (e + 28)-neighborhood of  {y}x
J x {f}.

Finally, if L  is any subdivision of K, then the lemma holds with the same
r\t for any triangulation of Y x J x Ik  that projects simplicially to L.

One would like Lemma 17 to state that there is a fiber preserving simplicial
collapse of  Y x P~  to  W.   Unfortunately, such a collapse probably does not
exist; at any rate, the proof we have gives fiber preserving cellular collapses, and
the usual proof that cellular collapse implies simplicial collapse falls through in
the fibered case.

Outline of the proof of Lemma 17. Proceed as in [Mi, §3] to obtain
Tjf  such that  tt      k ° T7j ° / is in fibered general position  rel Z x / x Ik.

i x/
Then subdivide to make M x J x Ik —> M x Ik —► Ik  simplicial, and again sub-
divide to make   Y x J x Ik —► Y x Ik —* Ik  simplicial.  Let K be the triangu-
lation so obtained on Ik. It is sufficient to consider the case where K is a
single principal simplex, Afc.  Star each simplex in   Y x J x Ak  at its barycenter.
Build blisters as in [Ml, Lemma 3] for all Simplexes in the singular set that pro-
ject onto Ak, being careful to choose the three points for each blister to lie in
y x / x {Ak}. If this is done, the new triangulation of Y x J x As that con-
tains all the blisters will project simplicially to (3Afe) • Ak. If the Simplexes of
y x J x Ak  that project onto  Ak  are collapsed according to Zeeman, Millett's
fibered extension is obtained.  If the collapse is done according to Miller, Lemma
17 of this paper is proved.  Condition (7) of Lemma 17 results automatically
from the fact that the composition of tj. •/ with the cohapse in   Y x J x Ak
is a sunny collapse in M x J x Ak.

Millett pointed out to me the curious case of zero-dimensional principal
Simplexes.  Let B be one.   If k = 0, then dim(77° x J) = 1  and  dimAf>3,
so simple general position makes any collapse along /(7i0 x /) sunny.  If k >
0, however, it is possible to get zero-dimensional singularities in some fibers. Since
there is no room in a 1-dimensional set to build blisters, Zeeman's sunny collap-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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sing construction does not apply, and we are stuck with our singularities. This
leads to a bit of complication in the slicing lemma which follows. To prepare the
way, we remark that in the case  dim B = 0, we can use the fibered product
neighborhood of f(B x J x Ik) in M x J x Ik  to extend / to an embedding
Z x J x Ik U (B x [- a, a]) x J x Ik —+ M x J x Ik  where a  is a number
such that f(B x [— a, a] x s x t) is contained in an e-neighborhood of
f(B x {0}x s x t), and such that Lemma 17 holds when (ZU(F x [-a/2, a/2]))
x J x Ik is substituted for (Z U F) x J x /*. This is where we slip from codi-
mension 3 to codimension 4. Under the collapse, F x {0} x J x Ik  may not
remain invariant; however, it does stay in F x (- a/4, a/4) x J x Ik.

Let   y be a (/ — l)-dimensional complex, and M be an (n — ̂ -dimen-
sional abstract regular neighborhood of Y with retraction p: M—*■ Y. Suppose
; < n — 4. Let Z be a subcomplex of  Y that contains its (/ — 2)-skeleton
and its intersection with  bM.

Lemma 18 (n, j, k) (slicing). For e > 0, there is a S > 0 such that if f:
Y x J x Ik —* M x J x Ik  is a fiber preserving embedding that satisfies

(1) f\(Z x J x Ik) U (Y x J x blk) = inclusion, and
(2) (p x idj x id k ) ° f is within 8  of the inclusion,

then there is a triangulation K of Ik and a fiber preserving ambient isotopy
*f of M x J x Ik satisfying

(3) Vt\(Z x / x Ik) U b(M x J x Ik) = identity,
(4) diameter((p x id/fc) ° tt^^ ° V[0yX](q)) <e,all qEMxJxIk,

(5) *, o /| Y x PK = identity, and
(6) *! ° f(Y x P+ ) C M x P+, *j ° f(Y x P-) C M x P~.

Proof.   By Theorem 4 (n, j — 1, k), we can assume the extra condition
f\Y x {/} x Ik = inclusion, all integers 0 < / < k. Use the sunny collapsing
lemma to obtain the ambient isotopy r¡t and complex  W. Since we can choose
S  in that lemma so small that r}x ° f also satisfies the hypotheses of the slicing
lemma, and since we can choose r)t to have M x {/} x Ik invariant, we might
as well suppose rjt = identity and f(Y x  {/} x Ik) C M x {/} x Ik, all integers
0 < / < &.   If Y - Z has zero-dimensional principal Simplexes, we might as well
suppose there is just one, and make the modification described above.

Suppose M x {/} x /* and Y x {/} x Ik are subcomplexes of M x J x
Ik and Y xjx Ik for integers - 4 < / < k + 1. Subdivide M xj xIk,Y
x J x Ik, and Ik  to obtain triangulations Q, L, and F on which /, it      k,

and it axe simplicial.  Let

V = Q O (( U   bM x [- 4, - 1] x t) U / (J   Mx[-4,-l]xA
\\t<EK /       \rebK /

U(Mx [-4, -3] xIkU (shadow set of f(W)))
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Then for each tEK,Mx [-4,-1] x {?} collapses to  V n (M x [- 4, - 1]
x {f}) in a way that leaves y x J x Ik  invariant for each simplex y EM.
Special uniqueness therefore yields a fiber preserving ambient isotopy ^f   of
M x J x Ik  with

(7) ¥y(MxP-) = N(V,Q"),
(8) diameter(7T       k ° ^\0,i](q)) is small if S  issmall.

For the next step, if there are no zero-dimensional principal Simplexes, we
again apply special uniqueness to the collapse of Utsjc ^ x [-<*, — 1] x t
to  W, to construct a fiber preserving ambient isotopy  3>f in  Y x J x Ik  that
satisfies

(9) *t(YxP¿)=N(W,L"),
(10) diameter(rr      k ° 4>i0>1i (Q) is small if S  is small,
(11) *f \(Y x(J-(-3,k + I)) x Ik) = identity, and
(12) $t leaves each simplex yEY invariant.

Since the triangulation L" O (Z x J x Ik) is induced from  Q" by the inclu-
sion map, we can have also

(13) 4>f \Z x J x Ik = *J|Z xjxlk.
By (11), (12), and (13), Corollary 15 provides an isotopy ^"  covering /°$(
in M x J x Ik  such that

(14) ¥tl\d(M xj xIk)V(Z xJxIk) = V\\d(MxJxIk)UZ xj x
Ik.

By (10) together with (4) and (6) of Corollary 15, (2) of the slicing lemma, and
(9) of the sunny collapsing lemma,

(15) diameter (p x id k ° it      k° ^|0,i] (i)) ¡s small if °  is small,
ah qEMxJ xlk.

Define *}n = (^J)"1 ° tfj1. Then, from (14), we have
(16) if1 \b(M xj xIk)U(Z xj x Ik) = identity.

From (8) and (15) we have
(17) diameter(p x id k° ir      k° i/zR yAq)) is small if 5  is small, q E

MxJxIk. I       MXI

Finally, recall that the shadow set of f(W) intersects f(Y x J x Ik) only
in f(W). This provides the punch line:

f-l(N(V, Q")) = N(W,L") and

/-1 (frontier TV(F, Q") in Q) = frontier TV(H>, ¿") in ¿.

It follows from (7) and (9) that
¥{" of: Y x (P+, P^.,PK)-^M x (7>+, P^;PK)

is a map of triads.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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In case B is a zero-dimensional principal simplex, collapse

U  (Z U (F x [- a, a])) x [- 4, - 1] x r

to

(i8)   (ju(*4"(^*'tV-fl)))»i-*-«i»)
U(F x [-a, a] x [-4,-3] x /*).

Recall that  W is the complex assigned to

U   (ZU(B x [- a/2,a/2])) x [- 4, - 1] x r

by the sunny collapsing lemma. Let

= W U ( (J  (F x {- a, a}) x [- 4, - 1] x t)

U (F x [- a, a] x [-4,-3] x /*).

Apply special uniqueness to W in (Z U (B x [- a, a])) x J x Ik to obtain an
isotopy 4>f of (Z U (F x [- a, a])) x J x Ik. By the discussion after Lemma
17 and condition (3) of special uniqueness we can assume

$f(F x {0}xJxIk)CBx[-a/2,a/2] x J x Ik

and

QX((Z U (F x [- a, a])) x F¿ ) = N(W, ¿").

Thus,

<&X(B x {0} x J x Ik)C\N(W, L")

= $X(B x {0} x / x Ik)nN(w, L" n (z U \B x R^,| J))  xjxlkj

and

= *!((5x {0})x/>-)

^((F x {0}) x PK) C frontier n(w, L" fl(zu(sx i-y ,| 1 ))  x / x /*)

(zu(fi* [¥■!])) *""'•m

Define *"  and ^fIU  as before. **n  then satisfies (16) and (17).  Since we
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have for sufficiently small S  that the shadow set of  f(W)   intersects
f((Z U (B x [- a/2,a/2])) x J x Ik) in precisely f(W) it follows that

((Z U (77 x [- a/2, a/2])) xjxlk) nf~l(N(V, Q"))

= N(W, L" n ((Z U (B x [- a/2, a/2] )) x J x Ik))

and

((Z U (B x [- a/2, a/2])) xJx 7*) n/"1 (frontier TV(K, Q") in Q)

= frontier N(W, L" n (Z U (B x [- a/2, a/2])) x J x Ik)

in (Z U (B x [- a/2, a/2] )) x J x Ik.

Together with (19) this implies *}"  is the desired map of triads.
Let g = <ír\u ° f.  It remains to move g\Y x PK  to the identity.  Define

pK = Uo<ek {fc-dim a} x TV(5, K"). By Theorem 4 (« - 1), there is a fiber
preserving ambient isotopy  ipt of M x pK  satisfying

(20) \py ° g\Y x pK = identity,
(21) \}/t ° g\((Z U 3TI7) x pK) U(Y x (pK n (/ x 37*))) = identity, and
(22) diameter(p x id k) ° it      k° ^[0)i ](q) is small if 5  is small, all

qEM xpK.
Now M xpK  is collared in T17* =M x ((J/L0{/}) * 7fc, and we can use

the collar to extend  \¡/t to a fiber preserving ambient isotopy in M* that is the
identity outside the collar. The extension satisfies (20)-(22). Again, M* has a
fiber preserving two-sided collar in M x J x Ik, and we can use this collar to
further extend  \¡/f to a fiber preserving ambient isotopy (which we call *'v)
of M x J x Ik, that satisfies (20)-(22) when  ¥¿v  is substituted for  i//f, and
that leaves M x PK  invariant.

Denote by P'K the union over simplexes a EK', dim a — k - j, of the
collection of closures of the components of (PK - pK) r> (D(a, K") x J). Ob-
serve that if a is an element of P'K, then \PjV ° g(Y x a) C M x a and
tyjv ° g\aC\pK = identity. By induction on increasing /, use the addendum
to the equivalence theorem to construct, for each a G P¡K, isotopies of M x a.
Since for a given / their support is disjoint, they fit together to give an isotopy
^^  of M x J x (dual/-skeleton of K") satisfying

(23) *1v'/' » *v>/-i o ... o >t/V,o o xj/jv 0 g = identity.

(24) *^ is the identity on the complement of M x P'R  in M x J x
(dual/-skeleton of K') and on M x J x (dual (J — l)-skeleton of K'),

(25) ^'i\((Z U 3T17) x P'K) U (Y x (P>R n (/ x 37*))) = identity,
(26) diameter ((p x id k) ° n      * ° *ío'i i (<?)) is smah if 8  is smah,

ah qEM x J x (dual/-skeleton of K").
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Use a fiber preserving collar of M x J x (dual /-skeleton) in M x J x Ik
to extend ^J'J  to a fiber preserving isotopy fixed on  (M U pK ) U ((Z U bM)
x J x Ik) U (Y x J x blk). Define ^v = *v,fc ° • • • ° ^iv,°.  Finally de-

fine *f = ^ ° \f"Jv ° ^lu  to complete the proof of the slicing lemma.

Lemma 19 (n, j, k, I). Let X be a complex of dimension j, and let Y be
a subcomplex of X that contains the (j — l)-skeleton. Let X be a triangula-
tion of X.   Then for e > 0, there is a 6 > 0 such that if (N, M, p ) is an
abstract regular neighborhood of X with   Y D (bN n A") and with p~ * (D(o, X'))
an (n — dim o)-ball for each simplex o EX', and if g: X x Ik —>N x Ik is a
fiber preserving embedding with

(1) g~*(bN x Ik) = (Xr\ bN) x Ik,
(2) g\X xbIkUY xlk = inclusion,
(3) (p x id k ) ° g is within 8  of the inclusion,

and also satisfying for each simplex t EX with  dim r < / — 1
(4) g\bN(T,X") x Ik = inclusion,
(5) g(N(?,X") xIk) = g(XxIk)n p-^N^, X")) x Ik,

it follows that there is a triangulation K¡ of Ik and a fiber preserving ambient
isotopy ®'t of N x Ik such that

(6) @¡\((Y U bN) x Ik) U (N x blk) = identity,
(7) ®[° g\X x L¡ = inclusion, where L¡ is the (k — 1) dual skeleton of

K¡ in K'j, and for each simplex pEK¡ there is a homeomorphism h^: X—*
X close to the identity such that

(8) h^Ntf,!")) = N(t,X") for each simplex r EX, with  dim r < / - 1,
and for each simplex t EX, with  dim t < /,

(9) e'x ° £|ÄM(9A/(?,X")) x N(fi, K'j) = inclusion, and
(10) 0¡ o g(hß(N(T, X"))) x N(ß, K'j) = e[ ° g(X x NQx, K'j)) n

hll(N(T,X"))xN(fi,K'j).
In addition,
(11) diameter((p x id k) ° ©L xiQx)) is small if 8 is small, all points

pENxl".

Proof.  Choose a small two-sided collar neighborhood of

u=    jj    bN(fi,x") -    ¡j        WYj
/-Simplexes Simplexes T

M in X in A" if dim</-l

in ^-UsimpiexesTinifofdim«/-!^.^")- Think of this collar as  UxJ where
U x {0} = U. Let  Q = p ~1 (U). By Proposition 5 we may assume that
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(Q, P\Q) is an abstract regular neighborhood of U, and in fact, p~l(U x J) =
Q x J.  After an application of Corollary 15, we can assume g(U x J x Ik)C
Q x J x Ik. Then if we set F = g\U x J x 7*, we can apply the slicing lemma
to find a triangulation K¡ of Ik  and an ambient isotopy  0^ \  For each sim-
plex p in K¡ choose a homeomorphism hß, preserving Simplexes of X, such

that hß(N(T,X") = TV(f, X") for each r EX with dim r < / - 1, and

hß(dN(a,X")- U N(t,X"))
Simplexes r

in X of dim <I-1

= U x {k-dim p} CU xj

for each /-simplex a EX.
Condition (11) follows from (4) of the slicing lemma together with the

fact that we chose the collar  Y x J of Y to be small in the / direction.
We still have to arrange (7) of Lemma 19. But this we do with the equiva-

lence theorem, using ¿; as the index set. (Recall that dimL¡ = k — I.) This
yields a small fiber preserving ambient isotopy of TV x L¡, fixed on

(ßx (7^0(7 x¿z)))U ÍÍYU   U   p-W,*"))) x¿;)
^ tBX

U (TV x (37* n L,)) U (3TV x L¡)

for Simplexes t EX, dim r < / — 1.
Let  0j u  be a smah fiber preserving ambient isotopy of TV x 7*  that

extends the isotopy on TV x L¡, and is the identity on

(Q xPKi)L) ÍÍY U [Jjr1 (N(t, X"))j x A U (TV x 37*) U (3TV x 7*)

for Simplexes r GX, dim t < / - 1. Set ©J = ®\n ° ®'t'1.
Proof of the equivalence theorem. By application of Lemma 19 (n,

j, k, 1) through Lemma 19 (n, j, k, j), 7* = Ua ¿>a, where Da is a fc-ball and
DanDßC dDa n 3¿>0, and

(1) g (*x(jto.))u (Y x IK) = identity.

For each et, there is a small homeomorphism ha : X —► X such that

(2) (      U ha(bN(T, X") x Da)\ = inclusion, and
\ simplexes t in X /
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(3) g(ha(N(T, X") x DJ) =g(X x Da) n (p~ l(ha(N(r, X")) x DJ),

all Simplexes t EX.
We can now apply the fibered version of the cone unknotting theorem to

g\ha(N(T, X")) x ¿V ha(N(T, X")) x Da — p-'QiJ^f, X))) x Da

to obtain a fiber preserving ambient isotopy 0J'a  of p~l(ha(N(f,X"))) x Da
satisfying

(4) ©^/^(p"1^, X")))) xDaU(Yn hJN(T, X"))) xDa = identity,

(5) &;■<* o g(ha(N(T, X")) x Da) = inclusion.

Extend ©J'"  by the identity to obtain a fiber preserving ambient isotopy, also
called ®¡,a, of N x Ik. Define  ®t = composition,. a 0J*a.  Since

int(ß-l(ha(N(T, X"))) x DJ n hxt(p-%(x\(p. *"))) * ¿V = 0

unless t = v and a = ß, the order of the composition is irrelevant.  Since we
can choose ha as close to the identity as we like, we can arrange that
ha(N(r, X")) C N(N(t, X"), X"), and so satisfy (6) of Theorem 6 (n, j, k). Fi-
nally, it is clear that @x ° g = inclusion and

0f LíV x blk U (Y U bN) x Ik = identity.

This completes the proof of Theorem 6 (n, j, k).
To prove Theorem 4 (n) from Theorem 6 (n), choose a triangulation N

of N which retracts simplicially to a triangulation X of X where the mesh of
X is less than e/3. Then, since diameter N(N(f,X"),X")< e, Theorem 4 (n)
follows immediately.
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