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Abstract

Upon binding, proteins undergo conformational changes. These changes often prevent rigid-body 
docking methods from predicting the 3D structure of a complex from the unbound conformations 
of its proteins. Handling protein backbone flexibility is a major challenge for docking 
methodologies, as backbone flexibility adds a huge number of degrees of freedom to the search 
space, and therefore considerably increases the running time of docking algorithms. Normal mode 
analysis permits description of protein flexibility as a linear combination of discrete movements 
(modes). Low-frequency modes usually describe the large-scale conformational changes of the 
protein. Therefore, many docking methods model backbone flexibility by using only few modes, 
which have the lowest frequencies. However, studies show that due to molecular interactions, 
many proteins also undergo local and small-scale conformational changes, which are described by 
high-frequency normal modes. Here we present a new method, FiberDock, for docking refinement 
which models backbone flexibility by an unlimited number of normal modes. The method 
iteratively minimizes the structure of the flexible protein along the most relevant modes. The 
relevance of a mode is calculated according to the correlation between the chemical forces, 
applied on each atom, and the translation vector of each atom, according to the normal mode. The 
results show that the method successfully models backbone movements that occur during 
molecular interactions and considerably improves the accuracy and the ranking of rigid-docking 
models of protein–protein complexes. A web server for the FiberDock method is available at: 
http://bioinfo3d.cs.tau.ac.il/FiberDock.
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INTRODUCTION

Proteins are flexible entities. This flexibility is reflected in the conformational variation 
shown in different crystallized 3D structures of the same protein. Many proteins were 
crystallized when interacting with another protein in a bound conformation, and by 
themselves in an unbound conformation. By comparing the 3D structures of a protein in its 
bound and unbound conformations, one can see conformational changes in both the side 
chains and the backbone.

In docking, our goal is to predict the structure of a complex of two (or more) biological 
molecules, often called receptor and ligand, given their unbound conformations. However, 
predicting only the rigid transformation, which places the unbound ligand on the interaction 
interface of the unbound receptor in the native orientation, is not sufficient. The resulting 
model of the complex will often contain major steric clashes. Consequently, the calculated 
energy value of this near-native model will be very high and it will not be identified among 
a group of docking solution candidates. Additionally, the accuracy of such a model will 
often be poor, as without modeling the conformational changes of the proteins, the native 
chemical interactions, which are important for the complex formation, will not be attained in 
the model. Therefore, docking methods must model the conformational changes that 
proteins undergo upon binding, including both backbone and side-chain movements.

There are two main biological models that explain the structural differences between bound 
and unbound conformations of proteins. The first is called the conformational selection 
model.1–5 According to this model, proteins constantly change conformations, and when, by 
chance, a protein, in its bound conformational state, encounters a complementary molecule, 
they interact and create a complex. The second model is called the induced-fit model.6,7 

This model postulates that the structures of the receptor and the ligand are partially 
compatible, and when they come into proximity of each other, the chemical forces created 
during their interaction induce their conformational changes. In nature, both models are 
likely to hold.8 The binding process begins with conformational selection, followed by an 
induced fit, which likely plays a role in local side chain and relatively minor backbone 
changes to optimize the associatio.9 Docking algorithms should mimic molecular 
recognition.10 The conformational selection model can be mimicked by performing cross 
rigid-docking using pregenerated ensembles of conformations of the receptor and the 
ligand8,11–14 or by the mean-field approach.15,16 The induced-fit model can be mimicked by 
performing flexible refinement of the rigid-docking candidate solutions by molecular 
dynamics,17–20 energy minimization,20,21 Monte-Carlo (MC) technique14,22,23 normal 
mode-based methods,24,25 etc.

Normal mode analysis (NMA)26–28 is a commonly used method for analyzing the flexibility 
of a protein, given a single 3D structure, such as that of the unbound conformation. The 
analysis, described in detail in the Methods section, provides a set of possible movements, 
called normal modes, of the protein backbone and their vibration frequencies. The lowest 
frequency normal modes usually describe the large conformational changes a protein can 
undergo.29–32
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Lindahl and Delarue24 refined near-native complex models by minimizing along the 5–10 
lowest frequency normal mode directions. The method was tested on protein–small 
molecule and protein–DNA complexes with the unbound conformation of the receptors and 
bound conformation of the ligands. The refinement protocol was shown to significantly 
improve the root mean square deviation (RMSD) between the receptor’s modeled structure 
and its bound conformation. May and Zacharias25 performed systematic protein–protein 
docking, starting with thousands of orientations of the ligand around the receptor and 
refining each one by minimizing the interaction energy along five of the lowest frequency 
normal modes. The method was shown to improve both the RMSD and the ranking of the 
solution closest to the native structure when compared with rigid docking.

Petrone and Pande31 attempted to assess the number of the lowest frequency normal modes 
that should be used to model the conformational changes between the unbound and bound 
conformations of proteins. They showed that the first 20 modes can only improve the RMSD 
to the bound conformation by up to 50% (in four test cases). The suggested reason was that 
while an unbound protein is likely to move in the directions of low-frequency normal 
modes, an interaction with another molecule often activates movements in the directions of 
high-frequency normal modes. Thus, high-frequency normal modes should be taken into 
account in flexible docking refinement methods.

Cavasotto et al.33 used high-frequency normal modes to model loop flexibility in binding 
pockets of cAPK kinases. They developed a measure of relevance of a normal mode to a 
loop of interest. Using this measure, they identified a small set of relevant normal modes 
that were used to generate an ensemble of possible loop conformations. When compared 
with rigid docking, an ensemble cross-docking improved the docking accuracy. In addition, 
binders identification was improved in a small-scale virtual screening.

In this article, a new method, called FiberDock, for flexible refinement is presented. The 
method allows both backbone and side-chain flexibility. It minimizes the structural 
conformations of the interacting proteins and optimizes their rigid-body orientation. The 
side-chain flexibility is modeled by a rotamer library, and the backbone flexibility is 
modeled by an a priori unlimited number of normal modes. The method iteratively 
minimizes the structure of the flexible protein along the most relevant modes. The relevance 
of a mode is calculated according to its correlation with the chemical forces applied on each 
atom. The results, detailed later, show that the method considerably improves the accuracy 
and the ranking of rigid-docking models of protein–protein complexes. In addition, we 
compared FiberDock to our previously developed refinement method FireDock34 and to the 
RosettaDock method.35 Both model only side-chain movements and keep the backbone 
rigid. This comparison showed that the modeling of backbone flexibility in the refinement 
process is often critical for creating near-native models with low energy values.

METHODS

Docking refinement aims to refine docking solution candidates and rerank them to identify 
near-native models. The refinement has to take into account both backbone and side-chain 
flexibility. The new method, FiberDock (flexible induced-fit backbone refinement in 
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molecular docking), presented here combines a novel NMA-based backbone flexibility 
treatment with our previously developed flexible side-chain refinement technique, 
FireDock.34 Currently, the refinement algorithm models backbone flexibility in one of the 
proteins (the receptor) and side-chain flexibility in both of them. The algorithm, described in 
the flowchart in Figure 1, contains the following steps:

1. Preprocessing: Normal mode analysis of the flexible protein (the receptor) using 
the anisotropic network model (ANM).27

2. For each docking solution candidate do:

a. Side-chain optimization: Side-chain flexibility of interface residues of both 
proteins is modeled by a rotamer library. The optimal combination of 
rotamers is found by an integer linear programming (ILP) technique.36 At 
the end of this stage, a rigid body minimization is performed by the BFGS 
quasi-Newton algorithm.37,38

b. NMA-based backbone refinement: The backbone refinement performs up 
to N iterations which consist of the following steps: (1) The van der Waals 
(vdW) forces that the ligand applies on the receptor are calculated. (2) The 
10 normal modes with the best correlation to these forces are identified, and 
the receptor’s backbone conformation is minimized along these modes. (3) 
Ten Monte-Carlo (MC) iterations of rigid-body minimization are performed 
(as described in item 2c). (4) A score is calculated for the current result and 
the result is saved if it is superior to the results from previous iterations. The 
iterative process of the backbone refinement step stops if the repulsive van 
der Waals (repVdW) energy value of the current result is below a threshold 
(no significant steric clashes) or if there was no improvement in the result in 
the last five iterations.

c. Rigid body MC minimization: The rigid-body orientation of the ligand is 
optimized by a MC technique (50 iterations), and a BFGS quasi-Newton 
minimization is performed in each MC cycle.37,38

3. Ranking according to an approximation of the energy function: This stage 
attempts to identify near-native solutions among the entire set of refined 
complexes.

In the evaluation experiments, detailed in the Results section, up to 20 iterations of 
backbone refinement were performed (N = 20), and the normal modes with the best 
correlation to the repVdW forces were chosen out of the first 200 modes, with the lowest 
frequencies. The running time of the refinement algorithm on a single docking solution 
varies between 1 and 50 s (average of 14 s) depending on the size of the receptor.

The implementation of the side-chain optimization (item 2a) and the rigid-body MC 
minimizations (item 2c) steps were adopted from the FireDock method.34 The number of 
iterations performed in the rigid-body MC minimization step was chosen according to 
convergence rate of the minimization. The rest of the steps are detailed later.
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Normal mode analysis

NMA enables us to describe protein flexibility as a linear combination of discrete 
movements.26–28 Given a single conformation of a protein, the analysis provides a set of 
vectors (normal modes) that describe typical motions of the analyzed protein. Each normal 
mode vector contains 3N entries, where N is the number of atoms or Cα atoms in the 
protein, depending on the resolution of the analysis. The entire set of normal modes spans 
the conformational space of the protein, that is, any conformation can be expressed as a 
linear combination of normal modes. The coefficient of a normal mode represents its 
amplitude. In addition, the analysis provides the vibration frequency of each mode. The low-
frequency modes usually describe the large scale motions of the protein.

In general, normal modes are calculated as follows. First, the Hessian matrix (K) of the 
second derivative of the potential energy (U) of each atom in each axis is calculated as 
follows:

(1)

The size of the matrix is 3N × 3N, where N is the number of atoms. ri denotes the position of 
atom i in the minimal energy conformation. Then, the matrix is converted to mass-weighted 
coordinates according to the formula:

(2)

where M is a diagonal 3N × 3N matrix containing the atomic masses. The normal modes are 
the eigenvectors of this matrix (K ̃). The vibration frequencies are the square roots of the 
corresponding eigenvalues.

The Anisotropic Network Model (ANM) is a simplified spring model of a protein, which is 
commonly used for NMA.27,39 This model is based on a pairwise harmonic potential 
function, which is calculated for atom pairs whose distance from each other is below a 
threshold. The model treats the analyzed structure as the equilibrium conformation, as 
opposed to the original all-atom-based NMA which requires prior energy minimization. The 

harmonic potential function is detailed in Eq. 3, where Ri is the position of atom i, and  is 
the position of atom i in the equilibrium conformation. kij denotes the force coefficient of the 
spring, which connects atoms i and j in the model.

(3)

In this work, we used the NMA software developed by Lindahl et al.24 The software uses 
the ANM with force coefficients that decay exponentially with distance, as detailed in Eq. 4. 
The analysis was performed on the Cα atoms with screening length (r0) of 3 Å and a 
distance cutoff of 10 Å.
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(4)

Correlation measurement

In each iteration of the backbone refinement procedure, the normal modes with the best 
correlation to the repVdW forces are applied on the flexible protein. The application of the 
repVdW forces only produced better results (i.e., more accurate backbone movements and 
more accurate docking results) when compared with the application of the full van der 
Waals forces. This is probably due to the fact that the correlation to the repVdW forces helps 
us choose normal modes that describe backbone movements that resolve existing steric 
clashes, which often prevent docking methods from succeeding. Resolving steric clashes in 
near-native rigid-docking solutions drastically improves the energy score of the model, 
enabling it to be highly ranked and therefore identified among a group of hundreds or 
thousands solution candidates. Normal modes that correlate well with attractive vdW forces 
often describe unrealistic closing motions of the receptor around the ligand. We believe that 
attractive vdW forces can still improve the results when used with certain regularization 
factors (yet to be found) and plan to continue investigating the optimal application of these 
forces along with other attractive forces in the future.

The vdW forces are calculated according to the derivative of the modified Lennard-Jones 6–
12 potential with linear short-range repulsive score.35 Specifically, the value of the vdW 
force between atom ai and aj is calculated as follows:

(5)

The parameter σij is the sum of the radii of the two atoms. The parameter εij is the energy 
well depth, and its value was taken from CHARMM22 force field parameters.40

A vdW force that a ligand atom applies on a receptor atom is considered to be repulsive if it 
pushes the receptor atom in a direction opposite to the ligand atom. The repVdW forces that 
are applied on the atoms of a certain amino acid are summed, and the resulting force vector 
is assigned to the Cα atom of that amino acid.

The correlation between the forces (F) that are applied on the Cα atoms and a certain 
normal mode (Vi) is calculated as follows:

(6)
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where m is the number of Cα atoms in the receptor, and m ̂ is the number of Cα atoms on 

which a vdW force is applied ( ).  are the 

repVdW forces applied on the Cα atoms, and  are the displacement vectors 

of each Cα atom according to the ith normal mode.  denotes the frequency value of the 
ith normal mode.

The absolute value of the dot product  is higher when the angle between the force 
vector and the normal mode vector (or its inverse vector) is smaller. Therefore, high 
correlation indicates that the forces and the normal mode vectors are in similar directions. 
Additionally, the absolute value of the dot product is higher when the force is stronger (the 
vector’s l2 norm is bigger). Hence, the correlation measurement gives higher weight to an 

agreement with the direction of strong vdW forces. Moreover, the division by 
increases the correlation value of the lowest frequency normal modes and therefore gives 
them a higher priority.

Minimization according to normal modes

In each iteration of the backbone refinement procedure, the 10 most relevant normal modes, 
chosen by the correlation measurement described earlier, and the six rigid-body degrees of 
freedom, represented as six modes that describe translation and rotation movement along the 
three axes, are used for minimizing the structure of the complex (overall, 16 degrees of 
freedom). The energy function of the structure minimization procedure is composed of the 
attractive and repulsive van der Waals energy and a penalty deformation energy term that 
prevents the minimization from over-distorting the structure. The function is specified in Eq. 
7.

(7)

where K is the weight of the attractive van der Waals term in the energy function. The 
choice of K = 5 yields the best performance results. M denotes the number of normal modes, 

the parameter λ is a scaling factor which was set to 0.05.  denotes the frequency of the 

ith normal mode (the frequency of the rigid-body modes is zero), and  denotes its 
amplitude. The vdW energy values are calculated according to the modified Lennard-Jones 
6–12 potential with linear short-range repulsive score.35 If the vdW energy between two 
atoms is a positive number, then it is added to the repulsive van der Waals term ErepVdW, 
otherwise to the attractive van der Waals term EattrVdW.

Using BFGS quasi-Newton algorithm37,38 we find the optimal amplitudes of the 10 
minimized normal modes and the six rigid body degrees of freedom, which result in the 
nearest local energy minimum. The algorithm uses the gradient of the energy function 
above. The gradient in the direction of normal mode Vi is specified in Eq. 8
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(8)

where  is the normal mode Vi multiplied by its amplitude, m is the number of Cα 

atoms in the receptor,  are the vdW forces applied on the Cα atoms (the attractive 

forces are multiplied by K), and  are the displacement vectors of each Cα 

according to the ith normal mode. At the end of each structure minimization step, we apply 
the normal modes on the flexible protein with the optimal amplitudes found, as described 
later.

Applying a normal mode on a protein

A normal mode  is composed of displacement vectors for each Cα atom in 
a protein. When applying normal mode movements on a protein in a naïve manner, that is, 
by adding the displacement vectors, multiplied by an amplitude value, to the points of the 
Cα atom, the protein structure often distorts. We would like to change the conformation of 
the protein according to certain normal modes while preserving the bond lengths and angles, 
that is, by allowing a change only in the backbone dihedral angles, ϕ and ψ.

To overcome this problem, we use a modification of the CCD algorithm,41 a robotics 
algorithm which was adapted for protein loop closure. First, we add the displacement 
vectors of the normal modes to the centers of the Cα atoms and get the desired positions of 
the atoms, denoted by (a1,…,am). Then we start from the Cα atom that moves the least (Cαj, 
where j = argmin|vij|) and change the values of the backbone dihedral angles ϕ and ψ in a 
sequential order in both directions of the backbone chain. For each dihedral angle (θ) of 
Cαk, we choose the value that minimizes the sum of the squared distances between the next 
three moving Cα atoms (ck±1, ck±2, ck±3) and their desired positions (ak±1, ak±2, ak±3) [Eq. 
9]. The value of each angle is calculated by setting the first-order derivative of the sum of 
the square distances to zero (dS/dθ = 0), as described by Canutescu and Dunbrack.41

(9)

The scoring function of the backbone refinement stage

At the end of each iteration in the backbone refinement procedure, a score is calculated for 
the current solution, and the solution with the best score is returned from the procedure. This 
scoring function is identical to the energy function specified in Eq. 7.

Ranking according to an approximation of the energy function

This stage attempts to identify near-native solutions among the entire set of refined 
complexes. The calculated energy score is an approximation of the binding free energy 
function. It includes an interface energy score, adopted from the FireDock method,34 and an 
energy term that approximates the internal deformation energy of the flexible protein (the 
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receptor). The interface energy score includes a variety of energy terms, such as desolvation 
energy (ACE), van der Waals interactions, partial electrostatics, hydrogen and disulfide 
bonds, π-stacking, aliphatic interactions, and more. These terms are described in detail in the 
FireDock paper.34 The added deformation energy term approximates the energy required for 
deforming the unbound backbone structure of the flexible protein according to the calculated 
linear combination of the chosen relevant normal modes. This term is specified in Eq. 10.

(10)

where  denotes the frequency of the ith normal mode and  denotes its amplitude. 
The deformation energy term, Edeform, is added to the interface energy function with a 
weight of λ = 0.05.

RMSD calculations

The root mean square deviation (RMSD) is a common measure of the difference between 
structures of two proteins (or complexes). The RMSD is calculated according to the 
following equation:

(11)

where n is the number of atoms in the compared molecules, vi is the position of the ith atom 
of the first molecule, and ui is the position of the corresponding atom in the second 
molecule. In this work, we evaluated the results by three types of RMSD measurements:

• LRMSD: The RMSD between the predicted location of the ligand and its location 
in the native complex. The calculation was performed on Cα atoms of the ligand 
after superimposing the receptor molecules in the native complex and in the 
predicted complex.

• IRMSD: The RMSD between the interface Cα atoms in the predicted complex 
structure and in the native complex structure after superimposing the two 
interfaces. The interface includes all the residues that contain an atom within 10 Å 
of the other interacting protein in the structure of the native complex, as defined in 
the evaluation protocol of the CAPRI experiment.42

• Rec-IRMSD: The RMSD between the interface Cα atoms in a certain structure of 
the receptor and in the structure of its bound conformation (as in the native 
complex), after superimposing the two interfaces.

Test cases

We used 20 test systems in which the conformation of the receptor’s backbone changes 
upon interaction with the ligand. The test cases are detailed in Table I. The interface RMSD 
between the bound and the unbound conformations of the receptor (Rec-IRMSD) in this data 
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set varies in the range of 0.59–6.08 Å. We classified the motions of the receptors into three 
types: (1) opening motion, where the conformation of the unbound receptor partially blocks 
the binding site of the ligand (nine cases); (2) closing motion, where the receptor closes 
around the ligand and increases the contact area (three cases); and (3) other motions, where 
some of the interface suits the opening criterion and some suits the closing criterion (eight 
cases). In most of the cases, an unbound structure of the ligand was available. In these cases, 
unbound–unbound docking experiments were performed.

RESULTS

To evaluate the contribution of the backbone flexibility modeling within the docking 
refinement process, we compared the performance of the new FiberDock method to the 
performance of our previously developed flexible side chain refinement technique, 
FireDock.34 The only difference between the two methods is the addition of the novel 
NMA-based backbone refinement procedure in FiberDock (step 2b in the algorithm, 
described in “Methods” section). We performed three main experiments. In the first 
experiment, we tested the performance of the method on refining a complex structure, in 
which the ligand, in its unbound conformation, is placed in its native binding orientation and 
the receptor is in its unbound conformation. In the second experiment, we refined, for each 
test case, 500 randomly generated near-native docking solutions. Here, we compared 
FiberDock with both FireDock and RosettaDock,35 and we investigated the influence of the 
backbone refinement procedure on the shape of the energy funnels created around the native 
binding orientation of the ligand. Finally, in the last experiment, we refined the best 500 
results of the PatchDock rigid-body docking method,43,44 and rescored the results. Ranking 
was identified as a major bottleneck in the CAPRI challange.45–47 Therefore, in this last 
experiment, we aim to test to what extent FiberDock improves the ranking of the docking 
procedure.

Docking refinement starting from known binding orientation and unbound conformation of 
the proteins

In this experiment, we check the performance of the refinement method on the native 
complex structures after replacing the bound conformation of each protein with the 
superimposed unbound conformation. These complexes contain steric clashes due to the 
wrong conformation of the proteins. Therefore, their initial energy score is high. The 
refinement of the complex attempts to find a structurally close complex structure with 
minimal energy score. The results of the refinement are detailed in Table II.

The results show that in many cases, FiberDock produced a near-native model with a much 
lower energy value when compared with FireDock. In five of the cases, the energy 
difference was very significant. These include case numbers 8, 9, 10, 11, and 20. In all of 
these cases, the receptor opens its binding site upon interaction with the ligand. Modeling 
these opening movements by Fiber-Dock resolved the steric clashes between the proteins in 
their unbound conformations and therefore significantly improved the energy score of these 
complexes.
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Inspection of the results in Table II also reveals that in 7 of the 20 cases, the refinement by 
FiberDock resulted in a model of a complex in which the conformation of the interface 
deviates less from the bound structure when compared with the model created by FireDock 

(lower IRMSD). In all of these cases, FiberDock also created a conformation of the receptor 
interface, which was closer to the bound conformation when compared with the unbound 
conformation (lower recIRMSD). In three cases, the receptor’s interface RMSD 
(recIRMSD) and the total interface RMSD (IRMSD) got worse, and in the rest of the cases 
(10), the recIRMSD and IRMSD remained unchanged. The best improvements in the 
recIRMSD were in case numbers 9 (1GGI) and 14 (1T6G), where the improvement in the 
recIRMSD was around 25%, when compared with the unbound conformation.

Case number 9 is an antibody–antigen complex, with a flexible loop in the binding site of 
the antibody. The loop movement, which is essential for the interaction, is modeled correctly 
by FiberDock (Fig. 2). The refined structure of the antibody was created by a linear 
combination of low- and high-frequency modes, as described by the formula: 

, where R is the unbound structure, Vi is the ith normal mode, and R
′ is the modeled structure of the receptor. The normal mode that has the highest amplitude in 
this linear combination is mode number 16 (amplitude of 7.92). Figure 3 shows that this 
normal mode describes local deformation of the flexible region that indeed moves upon 
interaction with the antigen. On the other hand, the figure shows that the first normal mode, 
which has a lower amplitude in the linear combination (−2.8), describes a collective 
movement that is not specifically relevant to the flexibility induced by the interaction with 
the antigen. The peak that exists around residue 29 (in both modes) is due to a missing 
segment in the unbound structure that is interpreted as a flanking end by the NMA.

Although the improvement in the IRMSD was modest in this experiment, FiberDock results 
achieved much better energy values. According to the last CAPRI Assessment Meeting,49 

one of the current major challenges in docking is ranking docking solutions and sorting out 
false positives. The energy value is a crucial factor in the final ranking. A relatively accurate 
model (with low IRMSD) which has a high energy value will not be ranked high among a 

Mashiach et al. Page 11

Proteins. Author manuscript; available in PMC 2015 January 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



group of docking solution candidates. Therefore, the improvement in the energy of the 
refined models is very important in the docking scheme.

Docking refinement starting from random orientations of the ligand around the native 
binding orientation

In this experiment, we used FiberDock for local-docking around the native binding 
orientation of the ligand. We created 500 random transformations of the ligand around the 
native orientation and refined each of them. To create the random transformations, we 
sampled the three translation variables (in X,Y,Z axes) from a Gaussian distribution with 
mean 0 Å and standard deviation 3 Å. The three rotation variables (along the X,Y,Z axes) 
were sampled from a Gaussian distribution with mean 0° and standard deviation 8°. These 
selected values of standard deviations are similar to the values used in the perturbation 
studies of Gray et al.35 (standard deviation of 8° for rotation, 3 Å for translation along the 
line of protein centers, and 8 Å for translation in the two perpendicular directions). By 
applying these 500 transformations on the ligand, we created 500 starting docking models 
for refinement.

In almost all of the test cases, the FiberDock refinement protocol produced many more near-
native results with low-energy values than the FireDock method. We defined a good 
solution as a solution in which the energy score is negative and the IRMSD is lower than 4 
Å, which is an acceptable solution according to the CAPRI contest.47 The number of good 
solutions of FireDock and Fiber-Dock, for each test case, is presented in Figure 4.

In 17 of the 20 test cases, the number of good solutions was higher in the results of 
FiberDock when compared with FireDock, in both the unbound–unbound (UU) experiment 
and the unbound–bound (UB) experiment. In eight cases, this number was higher by more 
than 40% (in both experiments). These eight cases include six cases where the binding site 
of the receptor opens upon binding. In one case (1FIN), none of the methods produced any 
good solutions. This is the most difficult case in the data set, with recIRMSD of 6.08 Å.

Figure 5 shows the best IRMSD solution out of the group of good solutions (in the UU 
experiment) of two test case numbers 11 and 18. In both cases, the refinement correctly 
modeled backbone movements, which are necessary for solving steric clashes of the receptor 
and the ligand in near-native orientations. In case number 11 (1IBR), the refinement moved 
a loop that blocks the binding site in the unbound conformation, allowing the ligand to enter 
the binding site in a near-native orientation without any clashes and with a low energy value.
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The refined structure of the receptor was created by a linear combination of both low- and 

high-frequency normal modes, described by the formula: , where R 

is the structure of the unbound receptor, Vi is the ith normal mode, and R′ is the modeled 
structure of the receptor. The five normal modes that have the highest amplitude in this 
linear combination are mode numbers 1, 4, 5, 8, and 11. The influence of each normal mode 
on each residue is shown in Figure 6. The lower frequency modes (numbers 1, 4, and 5) 
describe a collective deformation of the protein, whereas the higher frequency modes 
(numbers 8 and 11) describe local deformation of the loop in the interface (residues 332–
344). Figure 6 also shows the distance between the positions of each residue in the bound 
and unbound conformation. These distances have four high peaks (marked A–D in Figure 
6). The highest peak (C) is between residues 288 and 316. However, these residues are 
located on the opposite side of the ligand, and their movement is not important for correct 
modeling of the interaction. The most important movement is of the interface loop (peak D), 
which is modeled by modes 8 and 11 during the backbone refinement of FiberDock.

In case number 18 (2BUO), the refinement moved a helix and opened the binding site. 
Figure 5(A) clearly shows that the ligand in its native orientation has a major steric clash 
with the receptor in the unbound conformation. Therefore, without modeling the backbone 
movement of the receptor, a low-energy near-native solution cannot be achieved. In this 
case, the structure of the receptor was also created by a linear combination of both low- and 
high-frequency normal modes: R′ = R − 1.99V1 − 0.36V2 − 3.45V3 + 4.22V4 + 0.16V9 + 
3.08V10 − 0.07V14 − 2.18V21 + 3.51V23 + 2.58V26.

Local docking by FiberDock produces more accurate results than RosettaDock

The local docking results of FiberDock were compared with the local docking results of 
RosettaDock3.0, which keeps the backbone rigid and models only side-chain flexibility. For 
both methods, we randomly sampled 500 rigid-body perturbations of the ligand, in the 
bound conformation, from a similar distribution (Gaussian distribution with standard 
deviation of 3 Å for translation and standard deviation of 8° for rotation). For each test case, 
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we compared the accuracy of the lowest IRMSD result in the top 10 solutions (with the 
lowest energy) of the two methods. The comparison is detailed in Table III.

In 11 of the 20 test cases, FiberDock produced more accurate results than RosettaDock (with 
ΔIRMSD = IRMSDFiberDock − IRMSDRosettaDock < −0.2 Å). These cases include most of the 
test cases where the receptor undergoes an opening motion upon binding. Only in two cases 
RosettaDock produced better results (ΔIRMSD > 0.2 Å), and in seven cases, the accuracy of 
the results were about the same (−0.2 Å < ΔIRMSD < 0.2 Å). This comparison shows the 
ability of FiberDock in modeling opening motions of binding sites and its contribution in 
producing accurate models of protein–protein complexes.

Wang et al.22 have recently incorporated explicit backbone flexibility into RosettaDock. 
During each MC iteration of RosettaDock, a random backbone perturbation is performed 
together with a rigid-body perturbation. Although the method enables modeling full 
backbone flexibility for both proteins, in practice, this is extremely computationally 
demanding because of the high number of degrees of freedom. Therefore, it is feasible only 
for very small proteins or very subtle backbone perturbations. A more practical use of this 
method is to predefine the flexible segments of the protein (by a “fold tree”22) and perturb 
backbone conformational changes only in these regions. This, however, requires prior 
knowledge of the flexible regions. FiberDock, on the other hand, minimizes the backbone 
conformation along few degrees of freedom, which are carefully picked by NMA. 
Therefore, the backbone refinement is much faster. In addition, as FiberDock considers both 
low- and high-frequency normal modes, both global and local conformational changes are 
modeled, and no prior knowledge of the flexible regions is required. By the time this article 
was written, backbone flexibility was not yet included in the latest RosettaDock release 
(version 3.0). Hence, we did not compare the performance of the backbone refinement of 
RosettaDock to FiberDock.

FiberDock improves the shape of energetic funnels around near-native results

The formation of energy funnels is known to be a relatively reliable indicator for identifying 
near-native models of protein–protein complexes among a group of solution candidates.50,51 

We used the 500 refined near-native complexes of FiberDock, FireDock, and RosettaDock, 
generated in the local docking experiments described earlier, to draw energy funnels around 
the native orientation of the ligands. In many cases, the shapes of the energetic funnels, 
which were created by FiberDock, were significantly better than the ones created by 
RosettaDock and FireDock. These funnels usually included many more near-native complex 
models and reached lower energy values. The energetic funnels of four of these cases 
(1CGI, 1IBR, 1T6G, 2BUO), using unbound receptors and bound ligands, are shown in 
Figure 7.

The improvement in the shape of the funnels generated by FiberDock when compared with 
FireDock, shown in Figure 7, is clearly due to the backbone refinement procedure, which is 
the only difference between the two methods. However, the figure also shows that FireDock 

generates better looking funnels when compared with RosettaDock, although both methods 
model side-chain flexibility by the same rotamer library and they both optimize the relative 
rigid-body orientation by a similar technique. There are two possible explanations for these 
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differences in the created energy funnels: (1) The energy function of RosettaDock might be 
more sensitive to steric clashes than the energy function of FireDock. In these test cases, all 
of which include backbone conformational changes, most of the near-native (rigid 
backbone) results contain a certain amount of steric clashes. Energy functions that are too 
sensitive to clashes would not show a funnel-shaped energy landscape around the native 
ligand orientation. (2) The side-chain optimization technique is different in these two 
methods. FireDock optimizes the rotamers selection by the ILP approach, which guarantees 
to find the combination of rotamers that globally minimizes the repulsive vdW interface 
energy. RosettaDock, on the other hand, uses the heuristic MC technique for side-chain 
repacking. To fully understand the true reason for these differences in the shape of energy 
funnels, further research should be performed, which is out of the scope of this work.

Docking refinement starting from rigid-body docking candidates

In this experiment, we test the contribution of the backbone refinement procedure to the 
refinement and ranking of rigid-body docking solutions. For each test case, we identified the 
interacting amino acids (residues which contain an atom within 6 Å from the interacting 
protein). Then, we ran the PatchDock43,44 method given the information on the location of 
the binding site.

Some of the proteins in our data set undergo significant conformational changes upon 
binding. Therefore, a completely blind rigid-docking run might not have had a near-native 
solution in its first 500 solution candidates. As we test the refinement and reranking abilities 
of our method, we used the binding site information, which is often known from 
experimental data.

The solutions of PatchDock are ranked by a shape complementarity score. We refined and 
reranked the best 500 solution candidates by FireDock and FiberDock and compared the 
results of the three methods (PatchDock, FireDock, and FiberDock). We performed this 
experiment on the unbound conformation of the receptors and the bound conformation of the 
ligands. The results are presented in Table IV.

Table IV shows the rank of the first acceptable solution (IRMSD < 4.0 Å or RMSD < 10.0 
Å) and the number of acceptable solutions in the top 20 solutions for each of the methods. 
The results show a gradual improvement in these criteria. The rank of the first acceptable 
solution was the best in the results of PatchDock in 6 cases and in the results of FireDock 

and FiberDock in 8 and 14 cases, respectively. The number of acceptable solutions in the 
top 20 solutions also increased gradually. In 4 cases, this number was the highest for 
PatchDock results, and in 7 and 11 cases, it was the highest for the results of Fire-Dock and 
FiberDock, respectively. These results show that backbone refinement can significantly 
improve the ranking of near-native docking solutions, as it often solves steric clashes 
between the interacting proteins that prevent the docking solution from getting a low energy 
value and good ranking (shown earlier).

In case number 14 (1T6G), the first solution of Fiber-Dock was of medium accuracy 
according to CAPRI criteria. However, the second solution was highly accurate, with 
IRMSD of 0.92 Å and RMSD of 3.04 Å (not shown in the table). By examining the structure 
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of the refined model, depicted in Figure 8, one can see that FiberDock automatically 
identified the single loop that slightly moves during the interaction to open the binding site 
and enable the ligand to enter it in the correct orientation. FiberDock moved this flexible 
loop in the right direction and kept the other parts of the protein rigid.

The table also provides details relating to the original PatchDock solution of the first 
acceptable solution of FireDock and FiberDock before the refinement. The refinement by 
both FireDock and FiberDock significantly improves the ranking and the accuracy of the 
rigid-docking results. For example, in case number 4 (1BTH), an inaccurate PatchDock 

solution with RMSD of 14.8 Å and IRMSD of 3.55 Å which was ranked in place 403, was 
refined by FiberDock to a more accurate model (RMSD of 7.98 Å and IRMSD of 1.97 Å) 
which was ranked in first place by its energy function. The refinement by Fire-Dock, on the 
other hand, resulted in a worse model (RMSD of 18.9 Å and IRMSD of 4.64 Å). In this 
case, FiberDock hardly changed the backbone conformation of the receptor (RMSD of 0.15 
Å between the modeled and the unbound conformation of the receptor). However, this case 
shows that even a slight movement of the backbone, which resolve steric clashes, may 
enable the rigid-body optimization stage to converge to a near-native position. The results of 
the refinement by the two methods are shown in Figure 9.

DISCUSSION AND CONCLUSIONS

The structure prediction of protein–protein complexes usually consists of two major stages: 
soft rigid-docking, which allows a certain amount of steric clashes, followed by flexible 
refinement. CAPRI challenges45–47 showed that in many cases the rigid-docking stage 
succeeds in producing a near-native result. However, this result often contains steric clashes, 
and therefore it is ranked low in the list of solution candidates. The goal of the flexible 
refinement stage is to refine thousands of rigid-docking solutions, resolve their steric 
clashes, and evaluate their binding energies which are used for reranking. This is an 
extremely important stage that is necessary for identifying near-native models among a 
group of docking candidates and to create even more accurate models which will help 
scientists study and understand the chemical mechanism of molecular complexes.

In this article, we presented a new method for flexible refinement of docking solution 
candidates, called Fiber-Dock. The method models both side-chain and backbone flexibility 
and performs rigid body optimization on the ligand orientation. The refinement algorithm 
mimics an induced-fit process. The backbone and side-chain movements are modeled 
according to the vdW forces between the receptor and ligand. The backbone movements are 
modeled using the NMA approach. Unlike previous methods,24,25 FiberDock uses both low- 
and high-frequency normal modes, and therefore it is able to model both global and local 
conformational changes such as opening of binding sites and loop movement. The results 
show that the method successfully models backbone movements that occur during molecular 
interactions. The inclusion of the backbone refinement procedure in the refinement process 
was shown to improve both the accuracy and the ranking of near-native docking solution 
candidates. Moreover, accounting for backbone flexibility improves the shape of energy 
funnels around the native docking orientation. These energy funnels can assist in identifying 
near-native solutions among a group of solution candidates.
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Modeling backbone flexibility is necessary not only in cases where the proteins change 
conformation upon binding but also in cases where the 3D structures of the interacting 
proteins are not available and models are used. Backbone refinement might be able to deal 
with the inaccuracy of the models in these cases. In addition, we expect FiberDock to be 
helpful in predicting antibody–antigen complexes. Docking in this field is known to be 
difficult due to the flexible CDR loops. Our data-set contained a single antibody–antigen 
case (HIV-1 neutralizing antibody in complex with its V3 loop peptide antigen, pdb-id: 
1GGI) in which a CDR loop moves upon binding. FiberDock improves the refinement of 
this complex, when compared with FireDock (see Fig. 2). We plan to further investigate the 
performance of the FiberDock method on antibody–antigen complexes.

Currently, the FiberDock method is particularly helpful in cases where the receptor 
undergoes an opening conformational change induced by steric clashes. In general, opening 
movements are easier to handle in docking as modeling the precise alternate conformation is 
not essential for generating an accurate model of the molecular complex with low-energy 
score. The current version of FiberDock will not model movements induced by attractive 
forces, such as closing of a binding site around the ligand, as the correlation measurement, 
used for selecting the relevant modes, uses only the repVdW forces. In the future, we plan to 
incorporate additional chemical forces (e.g., attractive vdW forces, electrostatic forces, and 
hydrogen bonds) in the normal modes selection step of the backbone refinement procedure. 
In addition, we plan to simultaneously model backbone flexibility of both the receptor and 
the ligand. This can be achieved by a minor modification in the backbone refinement 
procedure, by choosing the most relevant normal mode among a set of both the receptor’s 
and ligand’s normal modes.

FiberDock deals with relatively subtle backbone conformational changes that occur upon 
binding. It achieves good refinement results in cases where the receptor interface RMSD 
(recIRMSD) is below 5 Å. In cases with larger conformational changes, an initial near-
native rigid-docking solution cannot be generated, and therefore other approaches should be 
considered. An analysis should be performed prior to the docking to assess the level of 
flexibility of the interacting proteins. One of the common types of backbone flexibility is a 
hinge bending motion. Hinge locations can be predicted by the Hinge-Prot method,52 which 
analyzes the two lowest frequency normal modes. Hinge motions usually result in a large 
conformational change that prevents any rigid-docking method from generating a near-
native model. In these cases, one can perform flexible docking by the FlexDock method.53 

This method divides the flexible protein into its rigid parts, dock each part separately and 
then assemble the partial docking solutions into consistent flexible docking models. Hinge-
bending motions are often coupled with other types of backbone flexibility (e.g., flexible 
loops). These can be handled by refining Flex-Dock solutions using the FiberDock method.

In other cases where a high level of backbone flexibility is predicted, cross-docking of pre-
generated conformations should be performed, followed by flexible refinement of the 
solutions. This will mimic both the conformational selection process and the induced-fit 
process. A similar approach was recently tested by Chadhury and Gray14 with promising 
results. However, cross-docking might produce many more solutions with good energy 
values. Therefore the identification of near-native solutions among them will be more 
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difficult. To correctly rank the solution candidates, a more accurate and robust energy 
function should be developed, and energy funnels should be searched around the lowest 
energy solutions.
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Figure 1. 
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Figure 2. 

The FiberDock refinement result of test case number 9 (1GGI), HIV-1 neutralizing antibody 
in complex with its V3 loop peptide antigen, starting from the known binding orientation of 
the ligand (the antigen) and unbound conformation of the receptor (the antibody). The 
unbound structure of the receptor (the starting conformation of the refinement) is colored in 
blue and the bound structure of the receptor is in green. The bound ligand in the native 
orientation is presented in gray. The refined structure of the receptor, which was created by 
FiberDock, is in red. The refinement predicted accurately the loop movement in the binding 
site of the antibody that occurs during the interaction with the antigen (marked by an arrow). 
This image was produced using the UCSF Chimera package.48
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Figure 3. 

The influence of the highest amplitude modes used by FiberDock to model the backbone 
movement of the antibody in test case number 9 (1GGI). The upper graph shows the lowest 
frequency mode, which describes a collective deformation of the protein (blue line). The 
bottom graph shows a higher frequency mode (number 16), which has the highest amplitude 
in the linear combination of modes used by FiberDock to model the backbone movement of 
the antibody (pink line). This mode describes local deformation of the flexible loops in the 
interface (residues 220–305, marked by an orange line). The dashed black line shows the 
distance between the positions of each residue in the bound and unbound conformation. On 
the right, the structure of the bound (blue) and unbound (green) conformations of the 
antibody are shown. The flexible region of the antibody is marked by an orange circle. The 
image of the structure was produced using the UCSF Chimera package.48
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Figure 4. 

Results of refining 500 random transformations of the ligand around the true binding 
orientation by using the two methods, FireDock with rigid backbone (cyan and blue bars) 
and FiberDock with flexible backbone (orange and red bars). The cyan and orange bars 
show the results of the experiment with both the receptors and the ligands in their unbound 
conformation (UU). The blue and red bars show the results of the experiment with unbound 
structures of the receptors and bound structures of the ligands (UB). The histogram shows 
the ratio of good solutions out of the 500 refined models. A good solution is defined as a 
solution in which the IRMSD is lower than 4 Å and the energy value is negative. The 
histogram is sorted according to the ratio of good solutions of FireDock with unbound 
structures of the receptors and bound structures of the ligands (FireDock-UB). For cases that 
are marked by stars (*), a structure of the ligand in its unbound conformation was not 
available.
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Figure 5. 

The best IRMSD solutions of the FiberDock method, out of the group of good solutions. (A) 
The solution of test case number 18 (HIV-1 capsid C-terminal domain with an inhibitor of 
particle assembly, pdb-id: 2BUO). (B) The solution of test case number 11 (complex of Ran 
with Importin beta, pdb-id: 1IBR). The unbound structures of the receptors (the starting 
conformations of the refinement) are colored in blue and the bound structures of the receptor 
are in green. The bound ligands in the native orientation are presented in gray. The 
refinement solutions, which were created by FiberDock, are in red. The refinement 
accurately predicted the backbone movements which the receptor undergoes during the 
interaction with the ligand. In both cases the refinement correctly modeled backbone 
movements which are necessary for resolving steric clashes of the receptor and the ligand in 
near-native orientations. The locations of these important backbone movements are marked 
by arrows. This image was produced using the UCSF Chimera package.48
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Figure 6. 

The influence of the highest amplitude modes used by FiberDock to model the backbone 
movement of the receptor in test case number 11 (1IBR). The upper graph shows the three 
low-frequency modes (1,4,5) which describe collective deformations of the protein. The two 
higher frequency modes (8,11), shown in the bottom graph, describe local deformation of 
the loop in the interface (residues 332–344). The dashed black line shows the distance 
between the positions of each residue in the bound and unbound conformation. These 
distances have four high peaks (marked A–D) in the most flexible positions. On the right, 
the structure of the bound (blue) and unbound (green) conformations are shown. The 
flexible regions, which correspond to the peaks, are marked by orange circles. The interface 
residues are marked by red lines in the x-axis. The image of the structure was produced 
using the UCSF Chimera package.48
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Figure 7. 

Funnels created by the three refinement methods: RosettaDock, FireDock, and FiberDock, 
using unbound structure of the receptor and bound structure of the ligand. Each row 
compares the funnels created for a certain test case (pdb-id is specified on the left). The x-
axis denotes the IRMSD of the refined complex, and the y-axis denotes its energy score 
value.
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Figure 8. 

FiberDock’s predicted model of test case number 14 (complex of Endo-1,4-beta-xylanase I 
and xylanase inhibitor, pdb-id: 1T6G). This model was ranked in second place after refining 
end reranking the 500 top solutions of PatchDock. The unbound structure of the receptor 
(the starting conformations of the refinement) is colored in blue and the bound structure of 
the receptor is in green. The bound ligand in the native orientation is presented in gray. The 
refinement solution, which was created by FiberDock, is in red. The refinement accurately 
predicted the loop movement that occurs in the receptor during the interaction with the 
ligand. This image was produced using the UCSF Chimera package.48
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Figure 9. 

Refinement of a rigid-docking solution of case number 5 (Thrombin complexed with bovine 
pancreatic trypsin inhibitor, pdb-id: 1BTH) by FireDock (A) and FiberDock (B). The 
receptor in its bound conformation is presented in green. The ligand in the native orientation 
is colored in gray. The original rigid-docking solution (generated by PatchDock), on which 
the refinement was applied, is colored in blue. The position of the ligand after the refinement 
by FireDock is presented in orange, and the position of the ligand after the refinement by 
FiberDock is in red. This case shows a drastic improvement of the docking solution due to 
the flexible refinement by FiberDock. This image was produced using the UCSF Chimera 
package.48
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Table III

Local Docking Results of FiberDock and RosettaDock

Complex ID

Best IRMSD in top 10

FiberDock RosettaDock3.0 ∆IRMSD*

1. 1A0O 1.8 3.11 −1.31

2. 1ACB 2.21 2.49 −0.28

3. 1AY7† 0.89 0.72 0.17

4. 1BTH 1.24 1.24 0.00

5. 1CGI 2.00 2.04 −0.04

6. 1DFJ† 1.11 5.80 −4.69

7. 1E6E 0.63 1.71 −1.08

8. 1FIN† 5.90 5.93 −0.03

9. 1GGI† 1.70 2.58 −1.88

10. 1GOT† 2.59 3.89 −1.3

11. 1IBR† 1.98 9.01 −7.03

12. 1OAZ 2.62 1.55 1.07

13. 1PXV 3.23 3.34 −0.11

14. 1T6G† 0.77 2.34 −1.57

15. 1TGS 1.38 1.31 0.07

16. 1WQ1 1.41 5.06 −3.65

17. 1ZHI 1.12 0.9 0.22

18. 2BUO† 3.62 4.24 −0.62

19. 2KAI 0.75 0.67 0.08

20. 3HHR† 1.89 4.30 −2.41

*
ΔIRMSD is the difference between the best IRMSD in the top 10 solutions of FiberDock and RosettaDock.

†
Cases where the conformation of the unbound receptor partially blocks the binding site of the ligand and the receptors undergoes an opening 

motion upon binding.
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