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FIBERS OF CHARACTERS

IN GELFAND-TSETLIN CATEGORIES

VYACHESLAV FUTORNY AND SERGE OVSIENKO

Abstract. For a class of noncommutative rings, called Galois orders, we study
the problem of an extension of characters from a commutative subalgebra.
We show that for Galois orders this problem is always solvable in the sense
that all characters can be extended, moreover, in finitely many ways, up to
isomorphism. These results can be viewed as a noncommutative analogue
of liftings of prime ideals in the case of integral extensions of commutative
rings. The proposed approach can be applied to the representation theory of
many infinite dimensional algebras including universal enveloping algebras of
reductive Lie algebras (in particular gln), Yangians and finite W -algebras. As
an example we recover the theory of Gelfand-Tsetlin modules for gln.
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1. Introduction

The functors of restriction to subalgebras and induction from subalgebras are
important tools in representation theory. The effectiveness of these tools depends
on the choice of a subalgebra. For a commutative algebra A denote by SpecmA
(SpecA) the space of maximal (prime) ideals in A, endowed with the Zarisky topol-
ogy. In the classical commutative algebra setup, an integral extension A ⊂ B of
two commutative rings (e.g. A = BG, where G is a finite subgroup of the automor-
phism group of B) induces a map ϕ : SpecB → SpecA, whose fibers are nonempty
for every point of SpecA. In particular, every character of A can be extended to a
character of its integral extension B. Moreover, if B is finite over A, then all fibers
ϕ−1(I), I ∈ SpecA, are finite, and hence the number of extensions of a character of
A is finite. The Hilbert-Noether theorem provides an example of such a situation
with B being the symmetric algebra on a finite dimensional vector space V and
A = BG, where G is a finite subgroup of GL(V ).

The primary goal of this paper is to generalize these results to “semicommutati-
ve” pairs Γ ⊂ U , where U is an associative (noncommutative) algebra over a base
field k and Γ is an integral domain. The canonical embedding Γ ⊂ U induces a
functor from the category of U -modules which are direct sums of finite dimensional
Γ-modules (Gelfand-Tsetlin modules1 with respect to Γ) to the category of torsion Γ-
modules. This functor induces a “multivalued function” from SpecmΓ associating
to an ideal m ∈ SpecmΓ the fiber Φ(m) of left maximal ideals of U that contain
m. Our goal is to find natural sufficient conditions for the fibers to be nonempty
and finite for any point in SpecmΓ. On the other hand, for a maximal left ideal
I ⊂ U such that U/I is a Gelfand-Tsetlin module, it is interesting to investigate its
support in SpecmΓ (i.e. the set of m ∈ SpecmΓ, such that Γ/m is a subquotient
of U/I as a Γ-module) and find the multiplicity of Γ/m in U/I.

A motivation for the study of such pairs (U,Γ) comes from representation theory.
The classical framework of Harish-Chandra modules ([D], Ch. 9) is related to a pair
of a reductive Lie algebra F and its reductive subalgebra F ′, where U and Γ are
their universal enveloping algebras respectively. A more general concept of Harish-
Chandra modules (related to a pair (U,Γ)) was introduced in [DFO2].

The case when U is the universal enveloping algebra of a reductive finite dimen-
sional Lie algebra and Γ is the universal enveloping algebra of a Cartan subalgebra
leads to the theory of Harish-Chandra modules with respect to this Cartan subalge-
bra, commonly known as generalized weight modules. Classification of such simple
modules is well known for gl2 and for any simple finite dimensional Lie algebra for
modules with finite dimensional weight spaces, due to Fernando [Fe] and Mathieu
[Ma]. It remains an open problem in general. To approach this classification prob-
lem, the full subcategory of weight Gelfand-Tsetlin U(gln)-modules with respect to
the Gelfand-Tsetlin subalgebra was introduced in [DFO1]. This class is based on

1In the literature sometimes the spelling is “Zetlin” instead of “Tsetlin”.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIBERS OF CHARACTERS 4175

natural properties of a Gelfand-Tsetlin basis for finite dimensional representations
of simple classical Lie algebras [GTs], [Zh], [M], [MazO], [Maz1], [Maz2], [MazC].

Gelfand-Tsetlin subalgebras were considered in [FM] in connection with the
solutions of the Euler equation, in [Vi] in connection with subalgebras of max-
imal Gelfand-Kirillov dimension in the universal enveloping algebra of a simple
Lie algebra, in [KW1], [KW2] in connection with classical mechanics, and also in
[Gr1], [Gr2] in connection with general hypergeometric functions on the Lie group
GL(n,C). A similar approach was used by Okunkov and Vershik in their study
of the representations of the symmetric group Sn [OV], with U being the group
algebra of Sn and Γ being the maximal commutative subalgebra generated by the
Jucys-Murphy elements

(1i) + . . .+ (i− 1i) , i = 1, . . . , n.

In this case the elements of SpecmΓ parametrize basis elements in all irreducible
representations of U . Recent advances in the representation theory of Yangians
([FMO]) and finite W -algebras ([FMO1]) are also based on similar techniques.

What is the intrinsic reason for the existence of Gelfand-Tsetlin formulae and
for the successful study of Gelfand-Tsetlin representations of various classes of
algebras? This question led us to the introduction in [FO1] of the concepts of
Galois rings and Galois orders in invariant skew monoidal rings.

For the rest of the paper we assume that Γ is a commutative domain, K the field
of fractions of Γ, K ⊂ L a finite Galois extension, and M ⊂ AutL a submonoid
closed under conjugation by the elements of the Galois group G = G(L/K). We
will always assume that for any ϕ1, ϕ2 ∈ M the equality

ϕ1|K = ϕ2|K
implies ϕ1 = ϕ2 (we call such M separating with respect to K).

The group G acts on the skew monoidal ring L ∗M via the action (lϕ)g = lgϕg,
where ϕg = g−1ϕg. We denote by K the subring (L∗M)G of G-invariants in L∗M.

Definition 1.1. A Galois ring U over Γ is a finitely generated over Γ subring in
K such that KU = UK = K. A Galois ring U over Γ is called a right (respectively
left) order if for any finite dimensional right (respectively left) K-subspace W ⊂ K
(respectively W ⊂ K), W ∩ U is a finitely generated right (respectively left) Γ-
module. A Galois ring is an order if it is both a right and a left order ([FO1]).

Galois orders are natural versions of “noncommutative orders” in skew monoidal
rings of invariants. In comparison with the classical notion of an order we note that
Γ ⊂ U is not central.

The class of Galois orders includes, in particular, the following subrings in the
corresponding skew group rings ([FO1]): Generalized Weyl algebras over integral
domains with infinite order automorphisms, e.g. the n-th Weyl algebra An, the
quantum plane, the q-deformed Heisenberg algebra, quantized Weyl algebras, the
Witten-Woronowicz algebra ([Ba], [BO]), the universal enveloping algebra of gln
over the Gelfand-Tsetlin subalgebra ([DFO1], [DFO2]), associated shifted Yangians
and finite W -algebras ([FMO], [FMO1]), and certain rings of invariant differential
operators on a torus. In Section 2 we present some necessary facts about Galois
orders.

In this paper we develop a representation theory of Galois orders. The main tool
for our investigation of categories of representation is a technique from [DFO2]. In
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Section 3 we give a detailed exposition of the results from [DFO2] adapted for the
case of a commutative subalgebra considered in this paper.

The last two sections are devoted to the representation theory of Galois orders.
We emphasize that the theory of Galois orders unifies the representation theories
of universal enveloping algebras and generalized Weyl algebras. Our main result
establishes sufficient conditions for the fiber Φ(m) to be nontrivial and finite. Let
�m be any lifting of m to the integral closure of Γ in L, and Mm be the stabilizer of
�m in M. Note that the group Mm is defined uniquely up to G-conjugation, hence
its cardinality is well defined.

Our main result is the following

Main Theorem. Let Γ be a commutative domain which is finitely generated as a
k-algebra, U a right Galois order over Γ, and m ∈ SpecmΓ. Suppose that Mm is
finite.

• The fiber Φ(m) is nonempty.
• If U is a Galois order over Γ, then the fiber Φ(m) is finite.

For any m ∈ SpecmΓ with finiteMm we obtain an effective estimate for the num-
ber of isomorphism classes of simple Gelfand-Tsetlin modulesM whose support con-
tains m and for the dimension of generalized weight spaces M(m) (Theorem 4.12).
In particular, for U = U(gln) these numbers are bounded by 1! 2! . . . (n− 1)!.

We note here an important connection which arose in the case when U = U(gln)
and Γ ⊂ U is the Gelfand-Tsetlin subalgebra. In this case an important role is
played by the variety of the so-called strongly nilpotent matrices ([Ov2]). It was
shown in [Ov2] that this variety is a complete intersection. In particular, this implies
that U is free both as a right and as a left Γ-module ([FO2]). Kostant and Wallach
([KW1], [KW2]) introduced a generalization of the variety of strongly nilpotent
matrices and revealed a deep relation between this variety and the hamiltonian
mechanics. A connection between Gelfand-Tsetlin representations of U and the
structure of the Kostant-Wallach variety is evidently important and should be a
topic of further study.

In this paper we apply the theory only to Lie algebras of type A, but we believe it
can be extended to other types. This technique was used in [FMO1] to address the
classification problem of irreducible Gelfand-Tsetlin modules for finite W -algebras
and shifted Yangians associated with gln and to prove an analogue of the Gelfand-
Kirillov conjecture for these algebras.

2. Preliminaries

All fields in the paper contain the base field k, which is algebraically closed
of characteristic 0. All rings in the paper are k-algebras. If A is an associative
ring, then we let A−mod denote the category of finitely generated left A-modules.
Let C be a k-category, i.e. all HomC-sets are endowed with the structure of a k-
vector space and all the composition maps are k-bilinear. The category C − Mod
of C-modules is defined as the category of k-linear functors M : C −→ k − Mod,
where k − Mod is the category of k-vector spaces. Submodules and quotients are
defined naturally. A C-module M is called locally finitely generated if there exists a
family of finite dimensional subspaces {M ′(i) | i ∈ Ob C}, such that the submodule
N ⊂ M generated by all M ′(i), i.e. the minimal submodule with the property
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M ′(i) ⊂ N(i), coincides with M . The module M is called finitely generated if the
M ′(i)’s above can be chosen such that only finitely many of them are nonzero.

We denote by C −mod the category of locally finitely generated C-modules. If G
is a group and X a G-set, then by X/G we denote the corresponding set of orbits
and by XG the set of G-invariants. For a set X by |X| we denote the cardinality
of X.

2.1. Integral extensions. Let A be an integral commutative domain, K its field
of fractions and Ã the integral closure of A in K. The ring A is called normal if
A = Ã. The following is standard (e.g. [AM]).

Proposition 2.1. Let A be a normal noetherian ring, K ⊂ L a finite Galois
extension and let Ā be the integral closure of A in L. Then Ā is a finitely generated
A-module.

Let ı : A ↪→ B be an integral extension of k-algebras. Then it induces a surjective
map SpecmB → SpecmA (SpecB −→ SpecA). In particular, for any character
χ : A → k there exists a character χ̃ : B → k such that χ̃|A = χ. If, in addition, B
is finitely generated as an A-module, then the number of different characters of B
which correspond to the same character of A is finite.

Corollary 2.2 ([S], Ch. III, Prop. 11, Prop. 16). If A is a finitely generated
k-algebra, then for any character χ : A → k there exist finitely many characters
χ̃ : Ā → k such that χ̃|A = χ.

The following statement is probably well known, but in [FO1] we included the
proof for the convenience of the reader.

Proposition 2.3 ([FO1]). Let i : A ↪→ B be an embedding of integral domains
with a regular A. Assume that the induced morphism of varieties i∗ : SpecmB →
SpecmA is surjective (e.g. A ⊂ B is an integral extension). If b ∈ B and ab ∈ A
for some nonzero a ∈ A, then b ∈ A.

We consider Proposition 2.3 as a motivation for introducing the notion of a
Galois order.

2.2. Skew monoidal rings. Below we present the necessary facts from [FO1]. Let
M be a monoid acting on a set S. The result of the left action of ϕ ∈ M on s ∈ S
will be denoted as ϕ · s (or sϕ when convenient), so we have

ϕ2 · (ϕ1 · s) = (ϕ2ϕ1) · s, (sϕ1)ϕ2 = sϕ1ϕ2 , ϕ1, ϕ2 ∈ M.

By ϕ · S′ or S′ϕ we denote the induced actions of M on the subset S′ ⊂ S and by
SM ⊂ S the set of all M invariants.

We use the following notation from [FO1]. Let H be a group acting on a set X,
X/H the set of orbits, and let F (x) be an expression depending on x ∈ X such

that F (x) is constant on the orbit. Then the notation
∑

x∈X/H

F (x) means that the

sum is taken over some set of representatives of the orbits and the sum does not
depend on this choice. In particular, we use this notation in the case where H is a

subgroup of a finite group G and the sum
∑

x∈G/H

F (x) is taken over the set of left

cosets (e.g., see (2)). Similarly for
⊕

x∈X/H

.
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Let R be a k-algebra, AutR the group of all k-algebra automorphisms of R,
M ⊂ AutR a submonoid and G a finite subgroup of AutR, normalizing M, i.e.
M = gMg−1 for any g ∈ G. We will use the notation ϕg for gϕg−1, g ∈ G, ϕ ∈ M.
The skew monoidal ring R ∗ M is a free left R-module with a basis M and with
the multiplication

(r1ϕ1) · (r2ϕ2) = (r1r
ϕ1

2 )(ϕ1ϕ2), ϕ1, ϕ2 ∈ M, r1, r2 ∈ R.

Under the assumptions above, G acts on R ∗M by automorphisms as follows:

(rϕ)g = rgϕg, r ∈ R, ϕ ∈ M, g ∈ G.

Denote by K = (R ∗M)G the algebra of invariants of this action. If x ∈ R ∗M
and ϕ ∈ M, then denote by xϕ the element in R such that x =

∑
ϕ∈M

xϕϕ. Set

supp x = {ϕ ∈ M|xϕ �= 0}.

For ϕ ∈ M denote its G-stabilizer and G-orbit by

(1) Hϕ = {h ∈ G|ϕh = ϕ}, Oϕ = {ϕg | g ∈ G},

respectively. Also set

Kϕ =
{
[aϕ] | a ∈ RHϕ

}
.

The following lemma describes a set of additive generators of K.

Lemma 2.4 ([FO1], Lemma 2.1). Under the assumption above, the following holds:

(a) x ∈ R∗M is G-invariant if and only if xϕg = xg
ϕ for all ϕ ∈ M, g ∈ G, and

in particular xϕ is constant on the classes M/Hϕ. In this case suppx ⊂ M
is a finite G-invariant set.

(b) Let ϕ ∈ M, a ∈ RHϕ . Then

(2) [aϕ] =
∑

g∈G/Hϕ

agϕg

is G-invariant.
(c) Let ϕ ∈ M. Then Kϕ is an RHϕ-bimodule (hence RG-bimodule), where RHϕ

acts on Kϕ by left and right multiplication:

r · [aϕ] = [(ra)ϕ], [aϕ] · r = [(arϕ)ϕ], r ∈ RHϕ .

(d) As an RG-bimodule

K =
⊕

ϕ∈M/G

Kϕ.

2.3. Galois rings. We will use the notation and results from Subsection 2.2 in
the case when R = L is a field, K ⊂ L is a finite Galois extension of fields, and
G = G(L/K) its Galois group. We will denote by ı the canonical embedding
K ↪→ L. Denote by iΓ the canonical embedding Γ ↪→ U ,

Recall that the monoidM ⊂ AutL from the definition of a Galois ring is assumed
to be separating (with respect toK) if for any ϕ1, ϕ2 ∈ M the equality ϕ1|K = ϕ2|K
implies ϕ1 = ϕ2. An automorphism ϕ : L −→ L is called separating (with respect
to K) if the monoid generated by {ϕg | g ∈ G} in AutL is separating.
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Lemma 2.5 ([FO1], Lemma 2.2). Let M be a separating monoid with respect to
K. Then

(a) M∩G = {e}.
(b) For any ϕ ∈ M, ϕ �= e, there exists γ ∈ K such that ϕ(γ) �= γ.
(c) If Gϕ1G = Gϕ2G for some ϕ1, ϕ2 ∈ M, then there exists g ∈ G such that

ϕ1 = ϕg
2.

(d) If M is a group, then statements (a), (b), (c) are equivalent and each of
them implies that M is separating.

Let S ⊂ M be a finite G-invariant subset and B ⊂ K a Γ-subbimodule. Then
we introduce the following Γ-subbimodule in B:

(3) B(S) = {x ∈ B | supp x ⊂ S}.

Under the assumptions above both the right and the left dimensions of K(S)
over K coincide with |S/G|. In particular, both dimensions of Kϕ over K are equal
to

(4) [LHϕ : K] = [G : Hϕ] = |Gϕ|

for any ϕ ∈ M. It was shown in [FO1] that Kϕ is irreducible as a K-bimodule
(there it was denoted by V (ϕ)).

A finitely generated K-bimodule V is called balanced (over L) provided that
the L-bimodule L ⊗K V ⊗K L is a direct sum of L-subbimodules, which are one
dimensional over L both as left and right spaces ([FO1]). It was shown in [FO1] that
any simple balanced K-bimodule has the form V (ϕ) = LHϕ for some ϕ ∈ Autk L
where x · 1 = x, 1 ·x = xϕ, 1 ∈ LHϕ , x ∈ K. Moreover, for ϕ ∈ M and a ∈ LHϕ we
have KϕK 	 K[aϕ]K 	 V (ϕ). Finally, K is a balanced K-bimodule (in particular,
semisimple) and

K =
∑

ϕ∈M/G

KϕK 	
⊕

ϕ∈M/G

V (ϕ).

The details can be found in [FO1].

Remark 2.6. Below we will always identify the structure of a K-bimodule with the
structure of a left K ⊗k K-module, where the first factor acts from the left and
the second factor acts from the right. Similarly, we identify a Γ-bimodule structure
with a Γ⊗k Γ-module structure.

Lemma 2.7 ([FO1], Lemma 4.1). Let u ∈ U be a nonzero element, and

T = supp u, u =
∑

ϕ∈T/G

[aϕϕ].

Then

K(ΓuΓ) = (ΓuΓ)K = KuK =
⊕

m∈T/G

V (amm),

where V (aϕϕ) = K[aϕϕ]K is an irreducible K-bimodule.

In particular, this shows that for every ϕ ∈ M the algebra U contains some
elements [b1ϕ], . . . , [bkϕ] such that b1, . . . , bk is a K-basis of LHϕ .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4180 VYACHESLAV FUTORNY AND SERGE OVSIENKO

Note also that K is a left and right torsion free Γ-module and we have the
canonical isomorphisms

U ⊗Γ K −→ K, u⊗ x 
→ ux, u ∈ U, x ∈ K,(5)

K ⊗Γ U −→ K, x⊗ u 
→ xu, u ∈ U, x ∈ K

of Γ−K and K − Γ-bimodules respectively.
Let e ∈ M be the unit element and Ue = U ∩ Le.

Theorem 2.8 ([FO1], Theorem 4.1). Let U be a Galois ring over Γ. Then

(a) Ue ⊂ K.
(b) U ∩K is a maximal commutative k-subalgebra in U .
(c) The center Z(U) of U equals U ∩KM.

2.4. Galois orders and Harish-Chandra subalgebras. In this section we recall
basic properties of Galois orders following [FO1]. For simplicity we only consider
right Galois orders. Let M be a right Γ-submodule of a Galois order U over Γ. Set

Dr(M) = {u ∈ U | there exists γ ∈ Γ, γ �= 0 such that u · γ ∈ M}.
We have the following characterization of Galois orders.

Proposition 2.9 ([FO1], Corollary 5.1). A Galois ring U over a noetherian Γ is
a right order if and only if for every finitely generated right Γ-module M ⊂ U , the
right Γ-module Dr(M) is finitely generated.

In particular, if U is right integral, then Γ ⊂ Ue is an integral extension and Ue

is a normal ring.
Recall that Γ is called a Harish-Chandra subalgebra in U if ΓuΓ is finitely gen-

erated both as a left and as a right Γ-module for any u ∈ U . This is a particular
(commutative) case of a general notion of a Harish-Chandra subalgebra introduced
in [DFO2]. We will also say that Γ is a right (left) Harish-Chandra subalgebra if
ΓuΓ is finitely generated as a right (left) Γ-module for any u ∈ U . Note that this
property is enough to check for some set of generators of the ring U over Γ. If U is
a Galois order over Γ and Γ is a noetherian k-algebra, then Γ is a Harish-Chandra
subalgebra in U ([FO1], Corollary 5.4).

The next lemma is the main technical tool in our study of representations of
Galois orders. Following Remark 2.6, the K-bimodule structure on K will be con-
sidered as the left K ⊗k K-module structure: ν1vν2 = (ν1 ⊗ ν2)v, ν1, ν2 ∈ K, v ∈ K.

Denote by Γ̄ the integral closure of Γ in L. Let S ⊂ M be a finite G-invariant
subset. As in (3) consider a Γ-subbimodule U(S) ⊂ U . For every f ∈ Γ consider
fr
S ⊂ Γ⊗k K as follows:

(6) fr
S =

∏
s∈S

(f ⊗ 1− 1⊗ fs−1

) =

|S|∑
i=0

f |S|−i ⊗ Ti (T0 = 1).

Similarly we define f l
S =

∏
s∈S

(fs⊗ 1− 1⊗ f) ∈ K⊗k Γ. If ϕ
−1(Γ) ⊂ Γ̄ (ϕ(Γ) ⊂ Γ̄

respectively) for all ϕ ∈ M, then for any G-invariant subset S ⊂ M and fS = fr
S

(fS = f l
S respectively) there holds fS ∈ Γ⊗k Γ. We formulate the following lemma

for fr
S ; the case f l

S is analogous.

Lemma 2.10 ([FO1], Lemma 5.2). Let ϕ−1(Γ) ⊂ Γ̄, S ⊂ M a G-invariant subset,
and fS = fr

S ∈ Γ⊗k Γ.
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(a) An element u ∈ U belongs to U(S) if and only if fS ·u = 0 for every f ∈ Γ.
(b) If T = supp u \ S, then fT · u ∈ U(S) for every f ∈ Γ.

(c) If fS =

n∑
i=1

fi ⊗ gi, [aϕ] ∈ L ∗M, then

fS · [aϕ] = [(

n∑
i=1

fig
ϕ
i a)ϕ] = [

∏
s∈S

(f − fϕs−1

)aϕ].

(d) Let S be a G-orbit and T a G-invariant subset in M. Then either the Γ-
bimodule homomorphism PT

S (= PT
S (f)) : U(T ) −→ U(S), u 
→ fT\S ·u, f ∈

Γ, is zero or KerPT
S = U(T \ S).

(e) Let S = S1 � · · · � Sn be a decomposition of S into G-orbits and PS
Si

:
U(S) −→ U(Si), i = 1, . . . , n, be the nonzero homomorphisms defined in
(d). Then the homomorphism

(7) PS : U(S) −→
n⊕

i=1

U(Si), PS = (PS
S1
, . . . , PS

Sn
),

is a monomorphism.

We have the following equivalent conditions for a Galois ring to be a Galois
order.

Theorem 2.11 ([FO1], Theorem 5.1). Let U be a Galois ring over a noetherian
Γ and assume that Γ is a right (left) Harish-Chandra k-subalgebra of U . Then the
following statements are equivalent:

(a) U is a right (respectively left) Galois order over Γ.
(b) U(S) is a finitely generated right (respectively left) Γ-module for any finite

G-invariant S ⊂ M.
(c) U(G · ϕ) is a finitely generated right (respectively left) Γ-module for any

ϕ ∈ M.

Theorem 2.12 ([FO1], Theorem 5.2). Let U be a Galois ring over a noetherian Γ
and M a subgroup of AutL.

(a) If Ue is an integral extension of Γ and ϕ−1(Γ) ⊂ Γ̄ (respectively ϕ(Γ) ⊂ Γ̄)
for any ϕ ∈ M, then U is a right (respectively left) Galois order.

(b) If Ue is an integral extension of Γ and Γ is a Harish-Chandra k-subalgebra
in U , then U is a Galois order over Γ.

3. Gelfand-Tsetlin categories

3.1. Motivation. The constructions of this section are the main tools we will use
to investigate the class of Gelfand-Tsetlin U -modules. The first such constructions
appeared in [DFO2] in the general setting, but for our purposes here we consider
a special case of a commutative subalgebra Γ and present it in detail. In this
section we assume that Γ is a commutative Harish-Chandra subalgebra of a finitely
generated associative algebra U .

Before going into detail we give some motivation for the constructions below
(see [GR], Section 3.4). Let U be a finite dimensional associative algebra over k,
R ⊂ U its Levi subalgebra, and Γ ⊂ U the center of R. Then Γ =

⊕n
i=1 kei, where

{e1, . . . , en} is the complete (i.e. e1 + · · ·+ en = 1) family of mutually orthogonal
idempotents. Obviously, Γ ⊂ U is a Harish-Chandra subalgebra.
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The algebra U is isomorphic to the algebra of n × n matrices of the form
(ejUei)i,j=1,...,n via the map

(8) u 
−→

⎛
⎜⎝

e1ue1 . . . e1uen
...

. . .
...

enue1 . . . enuen

⎞
⎟⎠ .

This presentation is called the two-sided Pierce decomposition of U . In addition,
we can associate to U a k-linear category

A = A(U ; Γ), where ObA = {1, . . . , n}, A(i, j) = ejUei,

and the composition of morphisms is defined by the multiplication in U . One simple
but important observation is the existence of an equivalence

(9) U −Mod 	 A−Mod .

If Γ = R or, equivalently, U is a basic (or Morita reduced) algebra, then the
category A is usually presented as a quiver with relations. This presentation is the
key feature in the study of finite dimensional representations of U (see e.g. [DK],
[GR] for details).

In the last case the definition ofA can be rewritten as follows. Define the category
A′ with objects SpecmΓ = {m1, . . . ,mn}, where mi is the kernel of the projection
of Γ onto kei, and morphisms A′(mi,mj) = Γ/mj ⊗Γ U ⊗Γ Γ/mi for all i and j.
Then there exist obvious canonical isomorphisms Γ/mj⊗ΓU ⊗ΓΓ/mi 	 ejUei and,
hence, A is isomorphic to A′. It allows us to endow A with the composition of
morphisms induced by the multiplication in U .

The construction of the category A in [DFO2] can be considered as a general-
ization of the two-sided Pierce decomposition. The construction below (see Defini-
tion 3.5) is a special case of [DFO2] in the case of a commutative Harish-Chandra
subalgebra Γ ⊂ U , where U is not necessarily finite dimensional. As above, we
associate with the pair Γ ⊂ U a category A with ObA = SpecmΓ. Unfortunately,
there is no equivalence between the categories of U -modules and A-modules. In-
stead we have a weaker result for the full subcategory of Gelfand-Tsetlin U -modules
(see Theorem 3.14).

3.2. Gelfand-Tsetlin modules. We assume U is an algebra over k and Γ ⊂ U
is a commutative finitely generated subalgebra. We will always assume that Γ is a
Harish-Chandra subalgebra. The following is the key notion of this paper.

Definition 3.1. A finitely generated U -module M is called a Gelfand-Tsetlin mod-
ule (with respect to Γ) provided that the restrictionM |Γ is a direct sum of Γ-modules

(10) M |Γ =
⊕

m∈SpecmΓ

M(m),

where

M(m) = {v ∈ M |mkv = 0 for some k ≥ 0}.

Since Γ is commutative, the Γ-submodules M(m) are canonically defined. For a
Gelfand-Tsetlin U -module M and m ∈ SpecmΓ denote by pm : M −→ M(m) the
canonical projection.
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A Gelfand-Tsetlin module M is called a weight module (with respect to Γ)
provided that mx = 0 for all m ∈ SpecmΓ and all x ∈ M(m). We denote by
Mm the subspace of m-weight vectors with respect to m ∈ SpecmΓ, i.e.

(11) Mm = {x ∈ M(m) | mx = 0}.
More generally, for a left (right) Γ-moduleX andm ∈ SpecmΓ we call an element

x ∈ X left (right) m-nilpotent, provided that mkx = 0 (xmk = 0) for some k ≥ 1.
All Gelfand-Tsetlin modules form a full, abelian and extension closed subcate-

gory H(U,Γ) of U −mod. We denote by HW (U,Γ) the full subcategory of H(U,Γ)
consisting of all weight modules.

The support of a Gelfand-Tsetlin module M is the set

suppM = {m ∈ SpecmΓ | M(m) �= 0}.
For D ⊂ SpecmΓ denote by H(U,Γ, D) the full subcategory in H(U,Γ) formed by
M such that suppM ⊂ D.

Since k is algebraically closed and Γ is finitely generated as an algebra, for a given
m ∈ SpecmΓ we have the canonical isomorphism Γ/m 	 k. Then we denote by
χm : Γ −→ Γ/m 	 k the corresponding character of Γ. Conversely, for a character
χ : Γ −→ k denote mχ = Kerχ, so we will identify the set of all characters of Γ
with SpecmΓ. If there exists a Gelfand-Tsetlin module M with M(m) �= 0, then
we say that m (and the character χm) lifts, or extends to M .

For a Γ-bimodule V , any pair (m, n) ∈ SpecmΓ× SpecmΓ and m,n ≥ 0 we will
use the following notation:

nnV = V/nnV, Vmm = V/Vmm, nnVmm = V/(nnV + Vmm).

Lemma 3.2. Let a ∈ U , V = ΓaΓ and m, n ∈ SpecmΓ. Then under the assump-
tions above the following holds:

(a) All the modules nnV and Vmm are finite dimensional.
(b) The following conditions are equivalent:

1. Γ/n is a subquotient of Vmm as a left Γ-module;
2. Γ/m is a subquotient of nnV as a right Γ-module;
3. Γ/n⊗Γ ΓaΓ⊗Γ Γ/m �= 0.

We denote by X(a) the subset of SpecmΓ × SpecmΓ consisting of (m, n)
satisfying these equivalent conditions.

(c) For m, n ∈ SpecmΓ define the set

Xa(m) = {n ∈ SpecmΓ | (m, n) ∈ X(a)}
and the set

Xa(n) = {m ∈ SpecmΓ | (m, n) ∈ X(a)}.
Then both Xa(m) and Xa(n) are finite.

(d) Let M be a Gelfand-Tsetlin U-module, m ∈ SpecmΓ. Then

(12) aM(m) ⊂
∑

n∈Xa(m)

M(n).

(e) Let M be a Gelfand-Tsetlin U-module. Then for every m �∈ Xa(n) we have

(13) pn(aM(m)) = 0.

(f) If X is a finite dimensional Γ−module, then U ⊗Γ X is a Gelfand-Tsetlin
module.
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Proof. We will prove the statements for Vmm ; the case of nnV is analogous.
Since Γ is finitely generated, we have dimk Γ/m

m < ∞. Then Vmm 	 ΓaΓ ⊗Γ

Γ/mm is finite dimensional, since ΓaΓ is finitely generated as a right Γ-module. This

proves (a). If Vmm =
t
⊕
k=1

Lk is a decomposition into a direct sum of indecomposable

left Γ-modules, then for every k = 1, . . . , t there exists nk ∈ SpecmΓ and nk ≥ 1
such that nnk

k Lk = 0. In particular, all subquotients of Lk are isomorphic to Γ/nk.
On the other hand, Γ/n ⊗Γ Lk 	 Lk/nLk is nonzero if and only if n = nk, which,
together with (a), implies (b) and (c). To prove (d) consider any x ∈ M(m). Then
there exists m > 1, such that mmx = 0. It follows that the left Γ-submodule
ΓaΓx ⊂ M is a subquotient of Vmm . Then (d) follows from (c). Statement (e) is
proved analogously. To show (f) it is enough to consider the case dimk V = 1. But
then the statement follows from (a). �

Denote by Δ the minimal equivalence on SpecmΓ containing all X(a), a ∈ U ,
and by Δ(U,Γ) the set of the Δ−equivalence classes on SpecmΓ.

Lemma 3.3. Let M,M ′ be Gelfand-Tsetlin modules, suppM ⊂ D, and suppM ′ ⊂
D′, where D and D′ are different classes of Δ-equivalence. Then

HomU (M,M ′) = 0, Ext1U (M,M ′) = 0.

Proof. Obviously, HomΓ(M,M ′) = 0. As HomU (M,M ′) ⊂ HomΓ(M,M ′), it fol-
lows that HomU (M,M ′) = 0. It is enough to prove that every exact sequence

0 −→ M ′ −−→ N −−→ M −→ 0

splits in U −mod.
Since D ∩D′ = ∅, for every m ∈ suppN we have

N(m) = M ′(m)⊕M(m),

where either M ′(m) = 0 or M(m) = 0. For a ∈ U we have aM ′(m) ⊂ M ′ and
aM(m) ⊂ M , by Lemma 3.2, (d). Hence M ′ and M are U -submodules in N . �

Immediately from Lemma 3.2, (d), (e) and Lemma 3.3 we obtain the following.

Corollary 3.4.

H(U,Γ) =
⊕

D∈Δ(U,Γ)

H(U,Γ, D).

For D ∈ Δ(U,Γ) the subcategory H(U,Γ, D) will be called a block of H(U,Γ).

3.3. The category A. We assume Γ to be noetherian. For m ∈ SpecmΓ denote

by Γ̂m the completion lim←−
m

Γ/mmof Γ by the maximal ideal m.

For a Γ-bimodule V denote by nV̂m the I-adic completion of the Γ⊗k Γ-module
V , where I ⊂ Γ⊗ Γ is the maximal ideal I = n⊗ Γ + Γ⊗m; in other words,

nV̂m = lim←−
n,m

nnVmm .

It has the structure of a completed Γ-bimodule or a completed Γ− Γ-module, that

is, nV̂m is a topological (Γ̂⊗ Γ)I -module, where (Γ̂⊗ Γ)I is the completion of Γ⊗kΓ

by the ideal I = n⊗ Γ + Γ⊗m. We will denote (Γ̂⊗ Γ)I by Γ̂n⊗̂Γ̂m. Moreover, let
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V and W be completed Γ̂p − Γ̂n and Γ̂n − Γ̂m bimodules correspondingly. Then the

completed tensor product V ⊗̂
̂Γn
W is defined as

V ⊗̂
̂Γn
W = lim←−

k,l

V⊗
̂Γn
W/(Vmk ⊗W + V ⊗mlW ).

There exists the canonical Γ̂p−Γ̂m bimodule homomorphism ϕ : V⊗
̂Γn
W → V ⊗̂

̂Γn
W

as the morphism to the inverse limit.
Let B be a Γ-bimodule satisfying the following Harish-Chandra condition: every

finitely generated bimodule in B is finitely generated both as a left and as a right
module. If Γ is a Harish-Chandra subalgebra in U , then every finitely generated
Γ-subbimodule has this property. Denote by F (B) the set of all finitely generated

Γ-subbimodules in B. For V ∈ F (B) we have nV̂m = (Γ̂⊗ Γ)I ⊗Γ⊗kΓ V , hence if
V,W ∈ F (B) and V ⊂ W , then the canonical embedding induces a monomorphism

nV̂m ↪→ nŴm ([Mat], Theorems 8.7 and 8.8).

The finitary completion nB̃m of the bimodule B by the ideal I = n⊗ Γ + Γ⊗m
is defined as

(14) nB̃m = lim−→
V ∈F (B)

nV̂m.

For any V ∈ F (B), m, n ∈ SpecmΓ, m, n > 0, we have the following Γ-bimodule
morphisms:

nV̂m −→ nnVmm −→ nnBmm ,

where the first one is the canonical map from the projective limit and the second
one is induced by the embedding V ⊂ B. This family defines a homomorphism

Ψ : nB̃m = lim−→
V ∈F (B)

nV̂m −→ lim←−
n,m

nnBmm = nB̂m.

If B is finitely generated as a Γ-bimodule, then Ψ is an isomorphism.

Definition 3.5. The category A = AU,Γ is defined to have objects ObA =
SpecmΓ. The space of morphisms from m to n is defined as follows:

A(m, n) = nŨm

(
= lim−→

V ∈F (U)

nV̂m = lim−→
V ∈F (U)

lim←−
n,m

nnVmm

)
.

The rest of this subsection is devoted to the definition of the composition of
morphisms in A. The spaces A(m, n) are endowed with the standard topology
defined by the limits. Further, any A(m, n) is endowed with the canonical structure

of a completed Γ̂n − Γ̂m-bimodule.
For a (not necessarily finitely generated) Γ-bimodule V ⊂ U and p ∈ SpecmΓ

set

pVmm = {ā ∈ Vmm | ppā = 0 for some p ≥ 1},
nn V p = {b̄ ∈ nnV | b̄pp = 0 for some p ≥ 1}.

By Lemma 3.2, (c), for every a ∈ V there exists a finite set Xa(m) = {n1, · · · , nk}
and N = N(a,m) ≥ 1 such that nN1 . . . nNk annihilates the class ā of a in V/Vmm.
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Hence, by the Chinese remainder theorem we have

Vmm =
⊕

p∈Xm(V )

pVmm , where Xm(V ) =
⋃
a∈V

Xa(m)

and(15)

nnV =
⊕

p∈Xn(V )

nn V p , where Xn(V ) =
⋃
a∈V

Xa(n).

Lemma 3.6. (a) Let D �= D′ be Δ-equivalence classes with m ∈ D, n ∈ D′.
Then A(m, n) = 0.

(b) We have the following decomposition of A into a direct sum of its full sub-
categories:

A =
⊕

D∈Δ(U,Γ)

AD,

where ADis the full subcategory of A such that ObAD = D.
(c) If n �∈ Xa(m) for a ∈ U , then the class of a in A(m, n) equals 0.
(d) If m �∈ Xa(n) for a ∈ U , then the class of a in A(m, n) equals 0.

Proof. Let m ∈ SpecmΓ and m ≥ 1. Then for every Γ-subbimodule V ⊂ U ,

nnVmm = Γ/nn ⊗Γ Vmm = Γ/nn ⊗Γ

⊕
p∈Xm(V )

pVmm =
⊕

p∈Xm(V )

Γ/nn ⊗Γ
pVmm .

If m and n belong to different classes of Δ-equivalence, then all summands in the
last sum equal 0, since n �= p. This proves (a), and (b) follows. Statements (c) and
(d) are proved analogously to (a). �

Let V and W be finitely generated Γ-subbimodules in U . Since Γ is a Harish-
Chandra subalgebra in U , the bimodule T ⊂ U , spanned by all products vw, v ∈ V,
w ∈ W , is finitely generated. Denote by μ : V ⊗ΓW −→ T the map μ(v⊗w) = vw,
v ∈ V,w ∈ W.

For a Γ-bimodule B denote by nn�mm (= nn�mm(B)) the canonical epimorphism

nn�mm : B −→ B/(nnB +Bmm).

Lemma 3.7. Let V,W ⊂ U be finitely generated Γ-bimodules, T = VW, S(V,W ) =
Xn(V ) ∩Xm(W ), m, n ∈ SpecmΓ, m, n ≥ 0.

(a) For p, p′ ∈ SpecmΓ, p �= p′ we have nn V p ⊗Γ
p′Wmn = 0.

(b) The induced by the decomposition (15) homomorphism

Φ :
⊕

p∈S(V,W )

(nn V p ⊗Γ
pWmn) −→ nnV ⊗Γ Wmm

is an isomorphism of Γ-bimodules.
(c) There exists P = P (m, n,m, n, V,W ) > 0 such that for any p ≥ P the

canonical projections

nnπpp : nnV −→ nnVpp , ppπmm : Wmm −→ ppWmm

induce the canonical isomorphisms

nn πpp : nn V p −→ nnVpp ,
ppπmm : pWmm −→ ppWmm .
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(d) There exists P such that for all p ≥ P there exists a unique homomorphism

μ̂(mm, nn, p) :
⊕

p∈S(V,W )

(nnVpp⊗̂Γp
ppWmn) −→ nnTmm ,

which makes the diagram below commutative:

V ⊗Γ W
nn�mm ��

μ

��

nnV ⊗Γ Wmm

nnμmm

��

Φ
⊕

p∈S(V,W )

(nn V p ⊗Γ
pWmn)��

⊕pcp(p)

��
T

nn�mm ��
nnTmm

⊕
p∈S(V,W )

(nnVpp⊗̂Γp
ppWmn)

μ̂(mm,nn,p)��

Here nnμmm is induced by μ, Φ is given by claim (b) and

cp(p) : nn V p ⊗Γ
pWmn

nn πpp ⊗ ppπmm−−−−−−−−−−−−−→ nnVpp⊗ΓppWmn −→ nnVpp⊗̂Γp
ppWmn .

(e) Assume that p > P , where P satisfies (c) and (d). Then the diagram

⊕
p∈S(V,W )

(nnVpp+1⊗
̂Γp

pp+1Wmn)
μ̂(mm,nn,p+1) ��

cp(p)(cp(p+1))−1

��

nnTmm

⊕
p∈S(V,W )

(nnVpp⊗̂Γp
ppWmn)

μ̂(mm,nn,p) ��
nnTmm

is commutative. After identification of the bimodules nnVpp⊗̂Γp
ppWmn for

p > P through the isomorphisms cp(p)(cp(p+ 1))−1, we use the notation

μ̂(mm, nn) :
⊕

p∈S(V,W )

nnVpp⊗̂Γp
ppWmn → nnTmm

instead of μ̂(mm, nn, p).
(f) Denote

μ̂p(m
m, nn) : nnVpp⊗̂Γp

ppWmn −→ nnTmm

as the restriction of μ̂(mm, nn), i.e.

μ̂(mm, nn) =
∑

p∈S(V,W )

μ̂p(m
m, nn).

For all p > P , where P satisfies (c) and (d), there exists S ≥ 1 such that
for every p ∈ S(V,W ), v ∈ V, w ∈ W , the corresponding classes v̄ ∈ nnVpp ,
w̄ ∈ ppWmn , s ≥ S, and any γ ∈ Γ satisfying

(16) γ ≡ 1mod ps, γ ≡ 0mod qs, q ∈ S(V,W ), q �= p

(such γ exists by the Chinese remainder theorem), the following holds:

μ̂p(m
m, nn)(v̄ ⊗ w̄) = vγw,

where vγw is the class of vγw in nnTmm .
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(g) Let m′ ≤ m, n′ ≤ n be integers. Then for all p > P , where P is given

by (c) and (d), we have the following commutative diagram of Γ̂n − Γ̂m

homomorphisms:

nnVpp ⊗
̂Γp

ppWmn

μ̂p(m
m,nn)

��

��
nn′Vpp ⊗

̂Γp
ppWmm′

μ̂p(m
m′

,nn
′
)

��
nnTmm ��

nn′Tmm′ ,

where the horizontal arrows are induced by the canonical projections.
(h) Let V ⊂ V ′, W ⊂ W ′ be finitely generated Γ-subbimodules in U, T ′ = V ′W ′.

Then for p > P , where P is given by (d), we have the following commutative

diagram of Γ̂n − Γ̂m homomorphisms:

nnVpp ⊗̂Γp
ppWmn

μ̂p(m
m,nn)

��

��
nnV

′
pp ⊗̂Γp

ppW
′
mm

μ̂p(m
m,nn)

��
nnTpp

��
nnT

′
pp ,

where the horizontal arrows are induced by the canonical embeddings.

Proof. Statement (a) easily follows from the Chinese remainder theorem. Statement
(b) follows from decomposition (15) and from statement (a). To prove statement
(c) note first that the sequence of finite dimensional modules nnVpp stabilizes when
p exceeds some P . Hence nn V p is a quotient of nnVpp , p ≥ P . On the other hand
every nnπpp factorizes through nn V p , which proves (c) for V . The case of W is
considered analogously.

The left square in the diagram from (d) is obviously commutative. From (c)
it follows that for sufficiently large p all cp are isomorphisms: the first map in the
definition of cp is an isomorphism due to (c), and the second map is an isomorphism,
since both factors of the tensor product are finite dimensional p-torsion modules.
Hence, the third vertical arrow in the diagram is an isomorphism. In addition, Φ
is an isomorphism by (b) and

(17) μ̂p(m
m, nn, p) = nnμmm ◦ Φ ◦ (

⊕
p

cp(p))
−1,

which implies (d). The commutativity of the diagram from (e) follows from (17).

Let v̄ =
∑

p∈Xn(V )

v̄p, w̄ =
∑

p∈Xm(W )
pw̄ be the decompositions from (15). Then for

a fixed p ∈ S(V,W ), for γ′, γ′′ ∈ Γ satisfying (16) and for s big enough we have
v̄γ′ = v̄p, γ

′′w̄ = pw̄, where v̄ and w̄ are the classes of v and w in nnVpp and ppWmn ,
respectively.

From the commutativity of the diagram in (d) we obtain

nn�mm ◦ μ = (nnμmm) ◦ (nn�mm) = μ̂(mm, nn, p) ◦ (⊕
p
cp) ◦ Φ−1 ◦ nn�mm .

Applying the first morphism to vγ′⊗γ′′w we obtain vγ′γ′′w, and applying the third
morphism we obtain μ̂(mm, nn, p)(vp ⊗ pw), which, by definition, equals

μ̂p(m
m, nn)(vp ⊗ pw).

Setting γ = γ′γ′′ implies (f).
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Statements (g) and (h) follow from (f) in the following way. Consider an element
v ⊗ w ∈ V ⊗Γ W . The upper horizontal arrows send a class of v ⊗ w to its class
in respective tensor products. Assume that p satisfies the conditions of (c) and (d)
for all tensor products in (g) and (h). Following (f), for a sufficiently large s we
can choose γ ∈ Γ such that all four vertical arrows send a class of v ⊗ w into a
class of vγw. So in both statements the restriction on the class of v ⊗ w gives the
commutative diagram

v ⊗ w � ��
�

��

v ⊗ w�

��
vγw � �� vγw,

since in both cases the lower horizontal arrows send the class to the class of the
same element from T . �

Now the composition in the category A is defined as follows. Since direct limits
commute with the tensor product, for p,m, n ∈ SpecΓ we can write

A(p, n)⊗
̂Γp

A(m, p) 	 lim−→
V ∈F (U)

lim−→
W∈F (U)

nV̂p ⊗̂Γp
pŴm.

Then for sufficiently large m,n and p we have the following composition:

(18) nnVpp ⊗̂Γp
ppWmm

μ̂p(m
m,nn)−−−−−−−−→ nnTmm

inn,mm−−−−−→ A(m, n),

where the first homomorphism is constructed above and the second is the canonical
map in the direct limit. Taking the inverse limit by m,n, p from the commutative
diagram in Lemma 3.7, (g), we have the well-defined maps

̂
nVp ⊗̂Γp

pWm
μ̂p(m,n)−−−−−−→ nT̂m

ın,m−−−→ A(m, n).

Since the first member in the sequence above is just nV̂p⊗̂̂Γp
pŴm, we obtain well-

defined bimodule maps

(19) nV̂p⊗̂Γp
pŴm

ϕ−−−→ nV̂p⊗̂̂Γp
pŴm

μ̂p(m,n)−−−−−−→ nT̂m
ın,m−−−→ A(m, n).

Taking the direct limit by V,W and T we obtain the required composition in A,

A(p, n)×A(m, p) −→ A(p, n)⊗
̂Γp

A(m, p) −→ A(m, n),

where the first mapping is the standard bilinear mapping and the second one is the
limit bimodule mapping.

Remark 3.8. Let v, w ∈ U . To calculate the product of their classes in A(m, p) and
A(p, n), respectively, we could use the following procedure. Consider two finitely
generated subbimodules V,W in U such that v ∈ V , w ∈ W (e.g. V = ΓaΓ,
W = ΓwΓ). Then for m,n ≥ 0 consider γ = γm,n satisfying the conditions of
Lemma 3.7, (f) and the class vγm,nw of vγm,nw in nn(VW )mm . Then the element
lim←−m,n

vγm,nw ∈ n(VW )m is the necessary product since all mappings in direct

limits are injective.

Lemma 3.9. The above-defined composition in A is associative and the image of
1 ∈ U in A(m,m), m ∈ SpecmΓ, is the identity morphism.
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Proof. For i = 1, 2, 3, 4 let ni ∈ SpecmΓ, Vi ⊂ U be finitely generated Γ-bimodules
and vi ∈ Vi. For i = 1, 2, 3 denote by vi the class of vi in A(ni, ni+1). We need to
prove that (v3v2)v1 = v3(v2v1) ∈ A(n1, n4). Denote T = V3V2V1 and fix n1, n4 > 1.
Using Lemma 3.7, (f) we prove that the classes of both products above in n

n4
4
Tn

n1
1

coincide, which implies the lemma. First compute a representative of (v3v2)v1 in

n
n4
4
Tn

n1
1
. Using Lemma 3.7, (c) choose n3, n2, n

′
2 > 0 such that

n
n4
4

(V3)
n3 = n

n4
4
(V3)nn3

3
, n

n3
3

(V2)
n2 = n

n3
3
(V2)nn2

2
, n2(V1)nn1

1
=

n
n′
2

2

(V1)nn1
1
.(20)

We may assume n2 ≥ n′
2. With such a choice of ni’s, by Lemma 3.7, (d) we may

compute the class (v3v2)v1 in n
n4
4
Tn

n1
1

as

(21) μ̂(nn1
1 , nn4

4 )

(
μ̂(nn2

2 , nn4
4 )

(
v3 n3 ⊗ n3v2

)
⊗ n2v1

)
.

By Lemma 3.7, (f) this equals the class of (v3γ3v2)γ2v1, γ3, γ2 ∈ Γ, where γ3 − 1
(respectively, γ2 − 1) belongs to a sufficiently large power of n3 (respectively, n2)
and γ3 (respectively, γ2) belongs to sufficiently large powers of some finite set of
maximal ideals of Γ.

Computing analogously the class of v3(v2v1), we see that it coincides with the
class of v3γ

′
3(v2γ

′
2v1), γ

′
3, γ

′
2 ∈ Γ, where γ′

3 − 1 and γ′
2 − 1 belong to sufficiently

large powers of n3 and n2 respectively, while γ′
3 (respectively, γ′

2) belongs to suffi-
ciently large powers of some finite set of maximal ideals of Γ. Then by the Chinese
remainder theorem we can choose γ3 = γ′

3, γ2 = γ′
2, and the associativity follows.

The statement about units is analogous. �

Corollary 3.10. The canonical map im : Γ̂m −→ A(m,m) is a monomorphism of
algebras.

Proof. Let V = Γ · 1 · Γ. Then mV̂m = Γ̂m, which proves injectivity. Remark 3.8
shows that im is a homomorphism. �

3.4. Generalized Pierce decomposition. We start from the following cate-
gorical statement. Assume that C is a k-category with sums and products and
{Ci | i ∈ I} is a family of objects from C. Denote by (*) the following properties
of this family:

(*) for every j ∈ I there exist finitely many i ∈ I, such that C(Ci, Cj) and
C(Cj , Ci) are nonzero.

Consider the vector space

ΠI =
∏

(i,j)∈I×I
C(Cj , Ci),

written as I × I matrices, where the j’s correspond to columns and the i’s corre-
spond to rows. In general, the standard “column-by-row” product of such matrices
is not well defined. Denote by MI the subspaces of ΠI , formed by the matrices
with finitely many nonzero elements in any column and in any row. Then the
“column-by-row” product turns it into a k-algebra.

Let CI be the full subcategory of C whose objects are Ci, i ∈ I, and MI−Modr be

the full subcategory in MI−Mod consisting of modules M, such thatM =
⊕
i∈I

eiiM,

where eii = IdCi
, i ∈ I.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIBERS OF CHARACTERS 4191

Lemma 3.11. Assume that the family {Ci | i ∈ I} of objects from C satisfies (*).
Then the following holds:

(a) There exists a canonical isomorphism of k-algebras,

MI 	 EndC(
⊕
i∈I

Ci),

where EndC denotes the endomorphism ring in the category C.
(b) There exist a canonical equivalence provided by the following functors:

FI : CI −Mod 	 MI −Modr, GI : MI −Modr 	 CI −Mod,

where FI(N) =
⊕
i∈I

N(Ci) for N ∈ CI −Mod, FI(f) =
⊕
i∈I

f(i) for f : N →

N ′, GI(M)(Ci) = eiiM with a natural action of GI(M) on the morphisms
of CI , for M ∈ MI − Modr. For f : M → M ′ we have GI(f)(Ci, Cj) =
fij = M ′(ejj)fM(eii), i, j ∈ I.

Proof. Every element (fij | i, j ∈ I) ∈ ΠI defines canonically a homomorphism

f :
⊕

i∈I Ci −→
∏
i∈I

Ci. From condition (*) it follows that the image of f belongs

to
⊕

i∈I Ci ⊂
∏
i∈I

Ci. The second statement is standard (see for example [GR],

Section 2, Example 3). �

The following statement is an analogue of the two-sided Pierce decomposition
for the pair Γ ⊂ U. Denote by MA the algebra MObA.

Theorem 3.12. For u ∈ U denote by [u] the matrix from MA such that [u]m,n =
un,m, m, n ∈ SpecmΓ, where un,m is the image of u in A(n,m).

(a) The mapping Ω : U −→ MA, which sends u ∈ U to [u], is a homomorphism
of k-algebras.

(b) Let D ⊂ SpecmΓ be a class of Δ-equivalence and pD : MA → MD the
canonical projection. Then the image of ΩD,

ΩD : U
Ω−−−→MA

pD−−−−→MD,

is dense in MD, where the topology on MD is induced from ΠD, endowed
with the topology of a direct product.

Proof. Following Lemma 3.6, (c), (d), the matrix [u] has finitely many nonzero
elements in any row and any column, hence [u] ∈ MA. Obviously, [1] is the unit
matrix. Fix v, w ∈ U, m, n ∈ SpecmΓ, m, n ≥ 1. Also fix V,W, T satisfying the
conditions of Lemma 3.7 and P > 0 satisfying Lemma 3.7, (c) and (d). As in the
proof of Lemma 3.7, (f) it follows that

vw =
∑

p∈S(V,W )

μ̂p(m
m, nn)(v̄p ⊗ pw̄),

where vw is the class of vw in nnTmm . Following (18) and (19) we obtain that the
product μ̂(mm, nn)(v̄p ⊗ pw̄) converges to vp,nwm,p when m,n −→ ∞. In the limit
we obtain

[vw]m,n =
∑

p∈S(V,W )

[v]n,p[w]p,m,

which proves the first statement.
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To prove the second statement note that, by definition, any D is at most count-
able. Let m, n ∈ D. Consider A(m, n) as a subset in MD, formed by the matrices
from MD whose entries are all zero except the one in position (n,m). It is enough
to show that A(m, n) belongs to the closure of [U ]. First note that the image of U
is dense in the image of A(m, n) ⊂ MD. Let f ∈ A(m, n) be the class of u ∈ U .
Consider an increasing sequence of finite subsets Si ⊂ D, i = 1, 2, . . . , such that
∞
∪
i=1

Si = D and some elements μi, νi ∈ Γ such that{
μi ≡ 1 mod mi,

μi ≡ 0 mod m′i, m′ ∈ Si,m
′ �= m

and {
νi ≡ 1 mod ni,

νi ≡ 0 mod n′i, n′ ∈ Si, n
′ �= n.

Then ΩD(μi) (respectively ΩD(νi)) converges in MD to the diagonal matrix unit
in position m (respectively n). Hence the sequence ΩD(νiuiμi) = ΩD(νi) ΩD(ui)
ΩD(μi) converges to f since it converges to 0 in all positions except (n,m) and to
f in position (n,m). �

3.5. Gelfand-Tsetlin modules as A-modules. We consider the category k −
Mod endowed with the discrete topology and the category A−Modd of continuous
functors M : A−→k −Mod (called discrete modules in [DFO2]). That is, for any
M ∈ A − Modd and every m ∈ SpecmΓ there exists m = m(m) ≥ 0 such that
mmM(m) = 0. The corresponding subcategory of MA − Mod will be denoted by
MA −Modd.

Corollary 3.13. (a) Let m, n ∈ SpecmΓ and P be a Gelfand-Tsetlin module.
Then the action of U on P induces the mapping A(m, n)× P (m) → P (n),
such that for every u ∈ U and x ∈ P (m) we have munx = pn(ux).

(b) The action above defines an action MA × P → P , and for every u ∈ U
and x ∈ P (m) we have ux = [u]x. This endows P with the structure of an
MA-module.

(c) The MA-module structure introduced in (b) defines a faithful functor Ω∗ :
H(U,Γ) → MA−Modd, which is the identity both on objects and morphisms.

Proof. Consider a sequence νnuμn ∈ ΓuΓ, n ≥ 1, such that νn → 1 in Γ̂n and

νn → 0 in Γ̂n′ for any n′ ∈ Xu(m), n′ �= n and such that μn → 1 in Γ̂m and μn → 0

in Γ̂m′ for any m′ ∈ Xu(n), m′ �= m, while n tends to ∞. The image of νnuμn

in A(m, n) tends to mun and νnuμnx ∈ P stabilizes for large enough n and equals
pn(ux).

To prove that this action defines on P the structure of an MA-module, it is
enough to show that [uv] ·x = [u] · ([v ·x]), where u, v ∈ U, x ∈ P (m) and the action
“·” is extended from the action defined in (a) by the “row to column” rule. Denote
S(u, v) = Xu ∩Xv. We have

m(uv)n · x = pn((uv)x) = pn(u(vx))

=
∑

p∈S(u,v)

pn(upp(vx)) =
∑

p∈S(u,v)

pun · (pp(vx)) =
∑

p∈S(u,v)

pun · (mvp · x),

which proves (b). Statement (c) is obvious. �
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We define the functor G : H(U,Γ) −→ A−Modd as the composition

G : H(U,Γ)
[ ]∗−−−−→MA −Modd

GA−−−−→A−Modd .(22)

For a discreteA−moduleM define a Gelfand-Tsetlin U−module F(M) by setting

F(M) =
⊕

m∈SpecmΓ

M(m).(23)

For x ∈ M(m) and u ∈ U set

ux =
∑

n∈SpecmΓ

um,nx.

If f : M−→N is a morphism in A − modd, then define F(f) =
⊕

m∈SpecmΓ

f(m).

Consider the composition

A−Modd
FA−−−−→MA −Modd

[ ]∗−−−−→U −Mod

of the canonical equivalence FA (Lemma 3.11, (b)) and the functor of restriction
Ω∗, induced by the homomorphism [ ]. Since the image of this functor belongs to
H(U,Γ), it induces the functor Ω∗

d : MA − Modd −→ H(U,Γ). Then the functors
Ω∗

d ◦ FA and F are isomorphic.

Theorem 3.14 ([DFO2], Theorem 17). The functors F and G are mutually quasi-
inverse and hence define an equivalence of categories A−modd and H(U,Γ). More-
over, F induces a functorial isomorphism

Ext1A(F(X),F(Y )) 	 Ext1U (X,Y ),

for every X,Y ∈ H(U,Γ).

Proof. It is enough to prove that the functors [ ]∗ : H(U,Γ) −→ MA − Modd and
[ ]∗d : MA − Modd −→ H(U,Γ) are quasi-inverse. By definition both functors are
identical on objects and on morphisms, which implies the first statement. The
statement about Ext1 follows from the fact that both F and G preserve exact
sequences and from the easy observation that A −modd is a Serre subcategory of
A−mod. �

We will identify a discrete A-module N with the corresponding Gelfand-Tsetlin
module F(N). For m ∈ SpecmΓ denote by m̂ the completion of m. Consider the
two-sided ideal I ⊂ A generated by m̂ for all m ∈ SpecmΓ and set A(W ) = A/I.
Then Theorem 3.14 implies, by restriction, the following corollary.

Corollary 3.15. The categories HW (U,Γ) and A(W )−modd are equivalent.

The following statement is standard. It can be shown using the standard restric-
tion and induction technique. We leave the details to the reader.

Lemma 3.16. Let M be a simple A-module, m ∈ SpecmΓ, M(m) �= 0, and N a
simple A(m,m)-module. Then the correspondences

M 
−→ M |A(m,m) and N 
−→ (A⊗A(m,m) N)/J,

where J is the unique maximal A-submodule of A⊗A(m,m)N , realizes a bijection be-
tween the sets of isomorphism classes of simple A(m,m)-modules and isomorphism
classes of simple A-modules M such that M(m) �= 0.
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Lemma 3.16 shows usefulness of the category A for the study of simple Gelfand-
Tsetlin modules over U .

The subalgebra Γ is called big at m ∈ SpecmΓ if A(m,m) is finitely generated as

a right Γ̂m−module. The importance of this concept is described in the following
statement.

Lemma 3.17 ([DFO2], Corollary 19). If Γ is big at m ∈ SpecmΓ, then there exist
only finitely many nonisomorphic irreducible Gelfand-Tsetlin U−modules M such
that M(m) �= 0. For any such module M holds dimk M(m) < ∞.

3.6. Examples of computation of A. The first example was given at the be-
ginning of Section 3, namely, the presentation of a basic associative algebra as a
quiver with relations.

Now we illustrate our techniques by considering representations of skew group
algebras and by obtaining well-known results on the irreducible representations of
a finite group G = N �H with abelian N.

The case of a skew group algebra is summarized in the following statement.

Proposition 3.18. Let Λ be a commutative noetherian algebra, M a group acting
on Λ, and U = Λ ∗M the corresponding skew-group algebra (see Subsection 2.2).
For m, n ∈ SpecmΛ set

M(m, n) = {ϕ ∈ M | ϕ ·m = n}.

Then Λ ⊂ U is a Harish-Chandra subalgebra and the following hold:

(a) Blocks of the category A = AU,Λ correspond to elements from SpecmΛ/M
(i.e. to orbits of M on SpecmΛ). For D ∈ SpecΛ/M the set of objects of
AD coincides with D, all objects in D are isomorphic and for m ∈ D we

have A(m,m) 	 Λ̂m ∗M(m,m).
(b) Every block contains a simple Gelfand-Tsetlin module. Moreover, if m ∈

SpecmΛ belongs to a block, then simple modules in this block are in a natural

bijection with simple Λ̂m ∗M(m,m)-modules.
(c) If the action of M on D is free, then AD−modd is equivalent to the category

of finite dimensional modules over Λ̂m for any m ∈ D.

Proof. We compute A(m, n) using Definition 3.5. Note that every finitely generated

Λ-bimodule in U is contained in a bimodule V =
∑
ϕ∈S

ΛϕΛ for some finite S ⊂ M.

By Lemma 2.4, (c) we have V =
⊕
ϕ∈S

Λϕ and

V/(nnV + Vmm) 	
⊕

ϕ∈S∩M(m,n)

(Λ/nk)ϕ, where k = min{m,n}.

In the definition of A(m, n) we can consider only V containing M(m, n), hence tak-

ing the inverse limit we obtain nV̂m 	 Λ̂nϕ 	 ϕΛ̂m. The last isomorphism is defined
as the inverse limit of the isomorphisms of Λ-bimodules (Λ/nk)ϕ 	 ϕ(Λ/mk), k ≥ 1.
The direct limit gives

A(m, n) 	
⊕

ϕ∈M(m,n)

Λ̂nϕ 	
⊕

ϕ∈M(m,n)

ϕΛ̂m.
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The equality (Λϕ)(Λψ) = Λϕψ together with the isomorphism above defines the
composition in A. In particular, if M(m, n) �= ∅, then every ϕ ∈ M(m, n) defines

an isomorphism between m and n, and A(m,m) is isomorphic to
⊕

ϕ∈M(m,m)

Λ̂mϕ as

a Λ-bimodule, which is in turn isomorphic to Λ̂m ∗ M(m,m) as an algebra. This
proves (a).

By Lemma 3.16, statement (a) reduces the problem of classification of simple

Gelfand-Tsetlin U -modules to the problem of classification of simple Λ̂m∗M(m,m)-

modules, m ∈ SpecmΛ. But the Λ-bimodule Λ̂m is a direct summand of Λ̂m ∗
M(m,m) as a Λ̂m-bimodule, hence U/Um �= 0. Statement (b) follows. Statement
(c) is obvious, since in this case M(m,m) = {e}. �

Next we will show how the theory of Gelfand-Tsetlin modules can be applied
to study group representations induced from subgroups (cf. [FO3]). Let G be a
finite group and N an abelian normal subgroup in G. We allow the field k to
have a positive characteristic which is coprime with |G|. We set U = k[G] and
Γ = k[N ]. Obviously, Γ is a Harish-Chandra subalgebra in U . Denote by Ň the
set of characters of N . The group G acts on N by conjugation which induces an
action of G on Ň . Denote by StG χ the stabilizer of χ ∈ Ň .

Proposition 3.19 ([FO3]). Let Y = Y(G,N) be the groupoid such that

ObY = Ň , Y(χ1, χ2) = {g ∈ G |χ1 = χg
2}, χ1, χ2 ∈ Ň ,

and N be a subgroupoid of Y, such that N (χ, χ) = N for any χ ∈ Ň and empty
otherwise, X = Y/N and kX be its k-linear envelope. Then there exists a canonical
isomorphism of categories Φ : kX −→ A which sends a character from Ň to its
kernel. In addition

1. A(χ, χ) 	 k[StG χ].
2. χi, χj ∈ ObA are isomorphic if and only if χg

i = χj for some g ∈ G.

4. Representations of Galois orders

4.1. Extension of characters for Galois orders. If � ∈ Specm Γ̄ projects onto
m ∈ SpecmΓ, then we will write � = �m, π(�) = m and say that �m is lying
over m. Note that given m ∈ SpecmΓ the number of different �m is finite due to
Corollary 2.2. Given m ∈ SpecmΓ fix �m ∈ Specm Γ̄ and denote by M�m ⊂ M
(G�m ⊂ G) the stabilizer of �m in M (in G). The ideal m defines M�m and G�m

uniquely up to G-conjugation. This allows us to use the notation Mm instead of
M�m and Gm instead of G�m .

Let m ∈ SpecmΓ and f ∈ Γ. Then f(m) will denote the “evaluation” of f in m,
i.e. the image of f under the natural projection Γ → Γ/m. If π(�) = m, then set
f(�) = f(m).

Let �m and �n be some maximal ideals of Γ̄ lying over m and n, respectively.
Denote by S(m, n) the following G-invariant subset in M:

(24) S(m, n) = {μ ∈ M| �n ∈ GmG · �m}

= {μ ∈ M| g2�n = μg1�m for some g1, g2 ∈ G}.
Obviously, this definition does not depend on the choice of �m and �n.
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Lemma 4.1. Let m ∈ SpecmΓ. Assume that M is a group. Then

(a) |Mm| < ∞ if and only if for some n ∈ SpecmΓ at least one from the sets
S(m, n) or S(n,m) is nonempty and finite. If |Mm| < ∞, S(m, n) �= ∅ and
S(n,m) �= ∅, then |Mn| < ∞ and |S(m, n)| = |S(n,m)|.

(b)

|S(m, n)| ≤ |G|2|Mm|
|Gm||Gn|

.

(c)

|S(m, n)/G| ≤ |{ϕ ∈ M | π(ϕ�m) = n}|.

Proof. The set S(m, n) is infinite if and only if for some g ∈ G, �m and �n the set

M(�m, �n, g) = {μ ∈ M | μg�m = �n}

is infinite. In this case for any τ ∈ M(�m, �n, g) we have

g−1τ−1M(�m, �n, g)g ⊂ Mm, M(�m, �n, g)τ
−1 ⊂ Mn.

Observe that μ ∈ S(m, n) if and only if μ−1 ∈ S(n,m). This proves (a). If
|Mm| < ∞, then there exist at most |Mm| elements ϕ ∈ M such that �n =

ϕ�m. Considering the G-orbits of �m and �n, which have lengths
|G|
|Gm|

and
|G|
|Gn|

,

respectively, we obtain inequality (b). Assume ϕg1�m = g2�n, g1, g2 ∈ G, ϕ ∈ M.
Then (g−1

1 ϕg1)�m = g−1
1 g2�n, which proves (c). �

The property of the Galois ring U to be a Galois order has the following im-
mediate implication on the representation theory of U . We will consider right
Galois orders. The case of left orders is analogous. In addition we are using the
identification stated in Remark 2.6.

Lemma 4.2. Let U be a Galois ring over Γ, Γ a noetherian algebra which is a
right Harish-Chandra subalgebra of U , m ∈ SpecmΓ such that Mm is finite, and
S = S(m,m). If U = Um, then for every k ≥ 1 there exist γk ∈ Γ \ m, vj ∈ U ,
νj ∈ mk, j = 1, . . . , N , such that

(25) γk =

N∑
j=1

vjνj

and supp vj ⊂ S, j = 1, . . . , n.

Proof. The condition U = Um is equivalent to the fact that 1 ∈ Um, i.e. we have

(26) 1 =
n∑

i=1

uiμi for some ui ∈ U, μi ∈ m.

We use induction on k to prove the statement of the lemma without the condition
supp vi ⊂ S, i = 1, . . . , n. The base k = 1 is formula (26). The induction step is
obtained by plugging the right hand side of (26) into (25): if

(27) 1 =
N∑
j=1

wjνj , where wj ∈ U, νj ∈ mk, j = 1, . . . , N,
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then

1 =

N∑
j=1

wjνj =

N∑
j=1

wj · 1 · νj =
N∑
j=1

wj

( n∑
i=1

uiμi

)
νj =

N∑
j=1

n∑
i=1

wjui(μiνj).

This proves the induction step, since all μiνj ∈ mk+1.

Denote T =
N⋃
i=1

suppwi \ S. Since T
⋂
S(m,m) = ∅, the ideals �tm and �m

belong to different G-orbits for every t ∈ T . Then there exists f ∈ Γ such that
f(�m) �= f(�tm) for every t ∈ T . Consider the element fT = fr

T as in Lemma 2.10.
Without loss of generality we can assume that (see Lemma 2.10, (c))∏

t∈T

(f(�m)− f t−1

(�m)) =
∏
t∈T

(f(�m)− f(�tm)) = 1.

In particular, this implies that fT ∈ 1+m⊗ Γ+Γ⊗m. Then by Lemma 2.10, (c),
γk = fT ·1 ∈ 1+m. In addition, by Lemma 2.10, (b), vj = fT ·wj belongs to U(S).
Moreover, fT · (wjνj) = (fT · wj)νj due to the fact that fT ∈ 1 + m ⊗ Γ + Γ ⊗ m
and the commutativity of Γ. Applying fT to equality (27) we obtain

γk =

N∑
j=1

vjνj , where γk ∈ Γ \m, vj ∈ U(S), νj ∈ mk,

which completes the proof. �

Corollary 4.3. Let Γ be a noetherian algebra, U a right Galois order over Γ, and
m ∈ SpecmΓ, such that |Mm| < ∞. Then Um �= U . In particular, there exists a
simple left Gelfand-Tsetlin U-module M generated by x ∈ M such that m · x = 0.

Proof. By Lemma 4.1, (a) the set S = S(m,m) is finite. Since U is a Galois order,
by Theorem 2.11, (b), the right Γ-module U(S) is finitely generated. Applying the
Artin-Rees Lemma (Theorem 8.5 of [Mat]) to the right Γ- module U(S) and its
submodule Γ, we conclude that there exists c ≥ 0 such that for every k ≥ c,

U(S)mk ∩ Γ = (U(S)mc ∩ Γ)mk−c.

But by Lemma 4.2, for every k > c there exists γk ∈ U(S)mk ∩Γ such that γk �∈ m.
Hence γk �∈ (U(S)mc∩Γ)mk−c, provided that k−c > 0. The obtained contradiction
shows that U �= Um.

If Um �= U , then U/Um has a nonzero simple quotient M which is a Gelfand-
Tsetlin module by Lemma 3.2, (f). Moreover, M is generated by the image v of 1
and the latter satisfies mv = 0. �

Lemma 4.4. Let M be a finitely generated right Γ-module. Then the set of m ∈
SpecmΓ such that TorΓ1 (M,Γ/m) = 0 contains an open dense subset X ⊂ SpecmΓ.

Proof. Let R• : . . .
d2

−−−−→Γn2
d1

−−−−→Γn1
d0

−−−−→Γn0 −→ 0 . . . be a free reso-
lution of M , where all di are understood as matrices over Γ. Since K is a flat
Γ-module, we construct the resolution R• ⊗Γ K of M ⊗Γ K consisting of K-vector
spaces. Set l = dimK M ⊗Γ K. Then the conditions TorΓ0 (M,K) = M ⊗Γ K and

TorΓ1 (M,K) = 0 imply that the matrices of d0⊗ idK and d1⊗ idK have the maximal
possible rank, n0 − l and n1 − n0 − l, respectively. Therefore there exist maximal
minors γ0, γ1 ∈ Γ in these matrices which are nonzero. Then for m ∈ SpecmΓ the
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matrices of differentials in R• ⊗Γ Γ/m are obtained from those in R• by specializa-
tion of the coefficients at m. Hence, for any m from the open set defined by the
conditions γ1(m) �= 0 and γ2(m) �= 0, we have TorΓ1 (M,Γ/m) = 0. �

We have the following version of the Harish-Chandra theorem.

Proposition 4.5. Let U be a Galois order. Then for a nonzero u ∈ U there exists
a massive set Ωu ⊂ SpecmΓ such that for every m ∈ Ωu the image ū of u in U/Um
is nonzero.

Proof. Let m ∈ SpecmΓ, N = uΓ. Then ū = 0 if and only if u · (1 + Um) = 0,

or, equivalently, if u =
n∑

i=1

uiμi for some ui ∈ U, μi ∈ m, i = 1, . . . , n. Denote by

S =
⋃n

i=1 supp ui and M = U(S) ((3)), in particular u1, . . . , un ∈ U(S). Consider
the exact sequence of right Γ-modules,

0 −→ uΓ −→ U(S) −→ U(S)/uΓ −→ 0.

It becomes nonexact after tensoring with Γ/m. Indeed, uΓ⊗Γ Γ/m is a one dimen-
sional space, but the image of u⊗ Γ/m in U(S)⊗ Γ/m is zero:

u⊗ 1̄ = (
n∑

i=1

uiμi)⊗ 1̄ =
n∑

i=1

ui ⊗ μi1̄ = 0,

so TorΓ1 (U(S)/uΓ,Γ/m) �= 0. Then for a fixed G-invariant finite S ⊂ SpecmΓ set

Z(u, S) = {m ∈ SpecmΓ | TorΓ1 (U(S)/uΓ,Γ/m) �= 0}.

Following Lemma 4.4 this set is closed and Z(u, S) �= SpecmΓ. Then we can set
Ωu to be equal to the complement of

⋃
S⊂M Z(u, S). �

4.2. Finiteness of extensions of characters for Galois orders. In this sub-
section we assume that U is a Galois order over Γ, where Γ is normal noetherian
over k. In particular, Γ = Γ̃ = Ue and Γ̄ is finite over Γ by Proposition 2.1. Also Γ
is a Harish-Chandra subalgebra by Proposition 2.9.

Lemma 4.6. Let m, n ∈ SpecmΓ, S = S(m, n), m,n ≥ 0. Then U = U(S) +
nnU +Umm. Moreover, for every u ∈ U and any k ≥ 0 there exists uk ∈ U(S) such
that u ∈ uk + n[k/2]uΓ + Γum[k/2].

Proof. Fix u ∈ U and denote T = supp u\S. If T = ∅, then u ∈ U(S). Let T �= ∅.
We show by induction on k that there exists uk ∈ U(S) such that

(28) u ∈ uk +

k∑
i=0

nk−iumi (that is, uk+1 − uk ∈
k∑

i=0

nk−iumi).

Since �tm and �n belong to different G-orbits if t �∈ S, there exists f ∈ Γ such
that f(�n) �= f(�tm) for every t ∈ T . Without loss of generality we can assume that∏
t∈T

(f(�n)− f t−1

(�m)) = 1, which implies fT ∈ 1 + n⊗ Γ + Γ⊗m. Set u1 = fT · u.

Then u1 belongs to u + nuΓ + Γum and, hence, u ∈ u1 + nuΓ + Γum. Moreover,
u1 ∈ U(S) by Lemma 2.10, (b). Now we prove the induction step k → k + 1.
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Applying (28) to itself recursively, we have

u ∈ uk +
k∑

i=0

nk−i(uk +
k∑

j=0

nk−jumj)mi

⊂ uk +

k∑
i=0

nk−iukm
i +

k+1∑
i=0

nk+1−iumi,

which proves the induction step, since uk +
k∑

i=0

nk−iukm
i ⊂ U(S). �

Theorem 4.7. For any m, n ∈ SpecmΓ such that S = S(m, n) is finite, the com-

pleted Γ̂n−Γ̂m-bimodule A(m, n) (see Subsection 3.5) is finitely generated. Moreover,
A(m, n) coincides with the image of U(S) in A (identifying the elements of U with
the corresponding morphisms in A). Furthermore, A(m, n) is finitely generated both

as a right Γ̂m-module and as a left Γ̂n-module.

Proof. In view of Lemma 4.6 and formula (3.5) we have an embedding,

A(m, n) ⊂ lim
←n,m

U(S)/
(
(nnU + Umm) ∩ U(S)

)
.(29)

Since U(S) is a noetherian Γ-bimodule by Theorem 2.11, the generators of U(S)
as a Γ-bimodule generate any U(S)/((nnU + Umm) ∩ U(S)) as a Γ-bimodule, and

hence generate A(m, n) as a complete Γ̂n− Γ̂m-bimodule ([Mat], Theorem 8.7). The
statement that A(m, n) is finitely generated both from the left and from the right
follows from Theorem 2.11, (b) and from Theorem 8.7 of [Mat]. This completes the
proof. �

Note that Theorem 4.7 and Definition 3.5 imply that the embedding (29) is an
isomorphism. From Lemma 3.17 we have.

Corollary 4.8. Under the assuptions of Theorem 4.7, Γ is big at m. In particular,
if m ∈ SpecmΓ, then there exist only finitely many nonisomorphic extensions of m
to simple U-modules.

4.3. Proof of the Main Theorem. Corollary 4.3 implies the first statement of the
Main Theorem. The condition |Mm| < ∞ implies the finiteness of S(m,m) (Lemma

4.1, (a)). Consider χ : Γ −→ k such that m = Kerχ. If Γ is not normal, then Γ̃ is a

finite Γ-module and χ admits finitely many extensions to Γ̃ by Corollary 2.2. Hence,
it is enough to prove the statement for normal Γ. But in this case the statement
follows from Corollary 4.8, which completes the proof of the Main Theorem.

4.4. Module theoretic characterization of Galois orders. Combining the
Main Theorem and Corollary 4.10 we obtain the following.

Corollary 4.9. Let U be a Galois ring over a noetherian algebra Γ. Assume that
M is a group and ϕ−1(Γ) ⊂ Γ̄ (ϕ(Γ) ⊂ Γ̄) for any ϕ ∈ M. Then every character
χ : Γ → k extends to a simple left (right) U-module if and only if U is a right (left)
Galois order.

We also have the following converse statement to the Main Theorem.
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Corollary 4.10. Let U ⊂ L ∗ M be a Galois ring over a noetherian Γ. If every
character χ : Γ −→ k extends to a representation of U , then Ue ⊂ Γ̄ ∩ K. If, in
addition, M is a group and Γ is a Harish-Chandra subalgebra, then U is a Galois
order.

Proof. If χ extends to a representation of U , then it extends, in particular, to a
representation of Ue ⊂ K. Proposition 2.3 implies that Ue is contained in the
integral closure of Γ in K. The second statement follows immediately from Theo-
rem 2.12. �

4.5. Bounds for dimensions and blocks of the category of Gelfand-Tsetlin
modules. Denote by r(m, n) the minimal number of generators of U(S(m, n)) as
a right Γ-module. Since Γ is a Harish-Chandra subalgebra, from |S(m,m)| < ∞
it follows that r(m, n) < ∞ and, by Theorem 4.7, A(m,m) is finitely generated as

a right Γ̂m-module (that is, Γ is big at m). In particular, there exist only finitely
many nonisomorphic simple A-modules M such that M(m) �= 0. Moreover, in any
such module M(m) is finite dimensional (Lemma 3.17).

Lemma 4.11. Let m, n ∈ SpecmΓ, S = S(m, n), M = U ⊗Γ Γ/m, and x =
1 ⊗ (1 + m) ∈ M(m). Let pn : M → M(n) be the canonical projection with respect
to decomposition (10). Then

A(m, n) · x = pn(Ux) = pn(U(S)x)

and
dimk M(n) ≤ dimk(U(S)x), dimk M(n) ≤ r(m, n).

Analogous statements hold for any U-module N generated by a nonzero y ∈ N(m)
such that my = 0.

Proof. The first equality follows from Lemma 3.2, (e). To prove the second equality
consider some u ∈ U . Then by the Chinese remainder theorem there exists γ ∈ Γ
such that γux = pn(ux) and we replace u by γu. Then in the notation of Lemma
4.6 set k = 2t, where ntux = 0. We have pn(ux) = pn(ukx), where uk ∈ U(S).
The second statement follows from the first one and the fact that any such N is a
quotient of M . �

Theorem 4.12. Let U be a Galois order over a normal noetherian Γ.

(a) If Mm is finite for some m ∈ D and M ∈ H(U,Γ, D) is simple, then M(m)
is finite dimensional. Both dimk M(m) and the number of isomorphism
classes of simple modules N satisfying N(m) �= 0 are bounded by r(m,m).

(b) If, in addition, M is a group, then for any n ∈ D,

dimk M(n) ≤ r(m, n) < ∞.

(c) Assume that U is free as a right Γ-module. If M is a U-module, generated
by some x ∈ M such that mx = 0 for some m ∈ SpecmΓ, then

dimk M(n) ≤ |S(m, n)/G|.

Proof. The statements (a) and (b) follow from Lemma 4.11 and Lemma 4.1, respec-
tively. Let S = S(m, n). To prove (c) let p : F −→ U(S) be a free right Γ−cover
of U(S) and q : F −→ U be the composition of p with the canonical embedding.
Consider the mapping of right K-vector spaces:

q ⊗Γ idK : F ⊗Γ K −→ U ⊗Γ K.
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Following (5) we have U ⊗Γ K 	 K, and the image of q⊗Γ idK in K coincides with
KU(S) = K(S). Recall that dimK K(S) = |S/G|. From the semicontinuity of the
dimension of the image of a mapping between free modules we obtain that for

q ⊗Γ idΓ/m : F ⊗Γ Γ/m −→ U ⊗Γ Γ/m 	 U/Um = Um

we have the inequality dimk Im(q ⊗Γ idΓ/m) ≤ dimK K(S) = |S/G|. However,
Im(q ⊗Γ idΓ/m) = Um(n), which completes the proof. �

Let D be an equivalence class of Δ, m, n ∈ D and ϕ ∈ S(m, n). We say that m
and n are connected by ϕ if there exist [a−ϕ

−1], [a+ϕ] ∈ U , such that

(a) a+ is defined in n and a− is defined in m (as rational functions).

(b) a−a
ϕ−1

+ �∈ g · �m for any g ∈ G and aϕ−a+ �∈ g · �n for any g ∈ G.
(c)

{ϕ−1ϕg | g ∈ G} ∩ S(m,m)} = {e},
{ϕ(ϕ−1)g | g ∈ G} ∩ S(n, n)} = {e}.

Endow D with the structure of a nonoriented graph as follows. The vertices are
elements of D. An edge between m and n exists if and only if there exists some
ϕ ∈ M that connects m and n. The following statement is a generalization of
Theorem 32 from [DFO1].

Proposition 4.13. If m, n ∈ D are connected by ϕ ∈ M, then m 	 n in AD.
Moreover, if m and n belong to the same connected component of the graph D, then
they are isomorphic in AD.

Proof. We show that the images f ∈ A(m, n) of [a+ϕ] and g ∈ A(n,m) of [a−ϕ
−1]

are isomorphisms. By condition (c) and the Chinese remainder theorem, for every
k ≥ 0 there exist γk, νk ∈ Γ, such that

γk ≡ 1mod �km, γk ≡ 0mod(ϕx · �m)k for x ∈ G : π(�m) �= π(ϕx · �m),
νk ≡ 1mod �kn , νk ≡ 0mod(ϕx · �n)k for x ∈ G : π(�n) �= π(ϕx · �n),

where π : Specm Γ̄ → SpecmΓ is the canonical projection. Consider the elements
fk = νk[a+ϕ]γk, gk = γk[a−ϕ

−1]νk. The images of fk in A(m, n) and gk in A(n,m)
converge to f and g, respectively, when k tends to infinity. We prove that gf
is an isomorphism, and the case of fg is analogous. We find the image of gf in
A(m,m) as the limit of the images of gkfk. The images of gkfk and (gkfk)e in
A(m,m) coincide since gkfk is a sum of elements of the form [ax1,x2

(ϕ−1)x1ϕx2 ] =

[a
x−1
1

x1,x2ϕϕ
x−1
1 x2 ], x1, x2 ∈ G. But following condition (c), if ϕϕx−1

1 x2 �= e, then the
class of corresponding elements in A(m,m) equals 0. Immediate calculation gives
us

(gkfk)e =
∑

x∈G/Hϕ

ax
−1

− a
(ϕ−1)x

+

(
γ
(ϕ−1)x

k

)2
ν2k .

Due to (a), all summands here are defined in some localization of Λ = Γ̄. The

canonical embedding Λ̂m −→
∏

�∈π−1(m)

Λ�m , condition (b) and the choice of γk show

that the class of gkfk converges to the class of a−a
ϕ−1

+ in Γ̂m, which is invertible.
Let gf = λ, fg = μ. Then f(gμ−1) = (fg)μ−1 = �n. Moreover, we also have

fgf = μf = fλ, and hence μ−1f = fλ−1. This implies (gμ−1)f = gμ−1f = gfλ−1

= �n. Hence f is invertible, completing the proof. �
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Immediately from Proposition 4.13 follows

Theorem 4.14. Let D be a class of Δ-equivalence. Suppose M is a group, D has
a finite number of connected components and for some m ∈ D the group Mm is
finite. Then the module U/Um is of finite length.

Proof. By Proposition 4.13 the skeleton BD of the category AD ([AHS]) contains a
finite number of objects, say ObBD = {n1, . . . , nk}. Consider U/Um as an element
in A−Modd. Denote by M the BD-module (U/Um)|BD

. Then, by Theorem 4.12,
(b), dimk M(ni) ≤ r(m, ni) for any i = 1, . . . , k. Since the categories A−Modd and
BD −Modd are equivalent, the claim follows. �

From the proof above we obtain

Corollary 4.15. Under the assumptions of Theorem 4.14 the length of U/Um

and the number of simple objects in the block H(U,Γ, D) do not exceed
k∑

i=1

r(m, ni),

where ni runs through a set of representatives of connected components of D.

4.6. Further properties of Gelfand-Tsetlin modules. In this subsection we
assume that U is a Galois order over a noetherian Γ. Under the assumptions of
Theorem 4.7 we are able to prove the following generalization of Corollary 4.3.

Theorem 4.16. Let U be a Galois order over a noetherian algebra. Assume that
m, n ∈ SpecmΓ such that S(m, n) and |Mm|, |Mn| are finite and S(m, n) �= ∅.
Then the image of U(S(m, n)) in A(m, n) (under the map u 
→ um,n for any u ∈ U)
is nonzero.

Proof. Note that for a nonempty G-invariant S ⊂ M the Γ-bimodule U(S) is
nonzero since KU(S) ⊂ K is nonzero. Following Remark 2.6 we consider U as a
Γ⊗ Γ-module and denote by I the ideal n⊗ Γ + Γ⊗ n in Γ⊗ Γ. Then the class of
u ∈ U in A(m, n) is 0 if u ∈ INU = nNU + UmN for any N ≥ 0 (see Definition
3.5).

We prove the following statement: If U(S) ⊂ INU for some N ≥ 0, then U(S) ⊂
INU(S). Assume U(S) ⊂ INU , that is, if v1, . . . , vk are generators of U(S) as a
Γ⊗ Γ-module, then

(30) vi =
l∑

j=1

νijuij , for some νij ∈ IN ⊂ Γ⊗ Γ, uij ∈ U, i = 1, . . . , k.

Set T =
⋃
i,j

supp uij \ S. As in the proof of Lemma 4.6 construct the element

fT = 1− F ∈ 1 + n⊗ Γ + Γ⊗m

such that for all vij = fT · uij we have supp vij ⊂ S. Applying fT to both sides of
equality (30) we obtain

(31) vi = F · vi +
k∑

j=1

νijvij , νij ∈ IN , vij ∈ U(S), i = 1, . . . , k.

Substituting recursively vi on the right hand side of (31), we obtain

vi = F 2 · vi + (F + 1)
k∑

j=1

νijvij .
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Iterating this procedure N − 1 times we obtain

vi = FN · vi + (FN−1 + · · ·+ F + 1)
l∑

j=1

νijvij , i = 1, . . . , k.

This shows that vi ∈ INU(S), since vi and all vij belong to U(S) and FN ∈ IN .

In particular, this means that U(S) =
∞⋂

n=1
INU(S). Then, by Krull’s Theorem

(Theorem 8.9 of [Mat]), there exists a ∈ 1 + I, such that a · U(S) = 0. Since Γ⊗ Γ
acts on K, the element a acts on V = U(S)K ⊂ K and a · V = 0 by the above.
Then a ∈ 1 + I ⊂ Γ⊗ Γ can be written in the form

a = 1 +

m∑
i=1

νi ⊗ αi +

n∑
j=1

βj ⊗ μj , αi, βj ∈ Γ, μi ∈ m, νj ∈ n,

using the noetherianity of Γ.
Following Lemma 2.7, all irreducible summands of V as a K-bimodule are of the

form V (ϕ) for some ϕ ∈ M. Since suppV = S(m, n), there exist �m and �n which
project onto m and n, respectively, such that �n = �ϕm. Note that the K-bimodule
V (ϕ) is isomorphic to LHϕ , endowed with the natural structure of a K-bimodule.

The action of a on 1 ∈ LHϕ is zero. But, on the other hand, we have

a · 1 = (1 +
m∑
i=1

νi ⊗ αi +
n∑

j=1

βj ⊗ μj) · 1 = 1 +
m∑
i=1

νiα
ϕ
i +

n∑
j=1

βjμ
ϕ
j ∈ 1 + �n,

because all the elements in the formulas above belong to Γ, νi ∈ n and μϕ
j ∈ n,

since �ϕm = �n lies over mϕ. But 0 �∈ 1 + �n, and this contradiction completes the
proof. �

Note that this theorem (in the case m = n), together with Theorem 3.14, gives
another proof of Corollary 4.3.

Let m ∈ SpecmΓ and �1, . . . , �k be all possible extensions of m in Specm Γ̄, that
is, π(�i) = m for all i and π−1(m) = {�1, . . . , �k}. The following lemma describes
the set Xu(m) for u ∈ U (see Lemma 3.2). The set Xu(m) is described analogously.

Lemma 4.17. Let ϕ ∈ M, a ∈ LHϕ and V = Γ[aϕ]Γ. Then the set of simple
quotients of the left Γ-module V ⊗Γ Γ/m coincides with the set of simples of the
form Γ/n, n ∈ π(ϕ(π−1(m))) = {π(�ϕ1 ), . . . , π(�

ϕ
k )}. In addition, for u ∈ U and

m ∈ SpecmΓ one has Xu(m) = π(suppu · π−1(m)).

Proof. Denote χ : Γ → Γ/m = k. Then mϕ is an ideal of Γϕ. Let χϕ : Γϕ →
Γϕ/mϕ = k be the homomorphism induced by χ and ϕ. By Lemma 2.4, (c), we
have V/Vm 	 ΓΓϕ/Γmϕ. Since Γϕ ⊂ ΓΓϕ is a finite integral extension, we have

(ΓΓϕ)mϕ = Γmϕ �= ΓΓϕ ⊂ Γ̄. The kernels of homomorphisms χ̂ϕ : Γ̄ → k extending
χϕ : Γϕ → Γϕ/mϕ form the Gϕ-orbit {π(�ϕ1 ), . . . , π(�

ϕ
k )}, whose restrictions to Γ

uniquely define all characters of ΓΓϕ extending χϕ. This proves the first statement.
Let W = ΓuΓ. Then Lemma 2.10, (e) reduces the second statement to the case

of a Γ-bimodule W generated by elements of the form [a1ϕ], . . . , [akϕ]. Hence the
second statement follows from the first one. �
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Theorem 4.18. Let D be an equivalence class of Δ (see Subsection 3.2).

(a) If S(m, n) = ∅ for some m, n ∈ SpecmΓ, then A(m, n) = 0.
(b) Let Δ′ be the minimal equivalence containing all (m, n) ∈ SpecmΓ×SpecmΓ

such that S(m, n) �= ∅. Then Δ = Δ′. If the assumptions of Theorem 4.16
are satisfied, then the category AD does not split into a nontrivial direct
sum and acts faithfully on H(U,Γ, D).

Proof. Statement (a) follows from Lemma 4.6. By Lemma 4.17, we have that
ϕ ∈ S(m, n) if and only if Γ/n is a right subquotient of Γ[aϕ]Γ/Γ[aϕ]m. This proves
the first statement from (b). To prove the second statement note that U(m, n) �= 0
if and only if S(m, n) �= ∅ and, following Theorem 4.16 and (a), if and only if
A(m, n) �= 0. On the other hand, if a ∈ A(m, n), a �= 0, then there exists N ≥ 1
such that a �∈ A(m, n)mN , hence a acts nontrivially on U/UmN . Statement (b)
follows. �

5. Gelfand-Tsetlin modules for gln

Consider the general linear Lie algebra gln with the standard basis of matrix
units eij , i, j = 1, . . . , n. Set U = U(gln), Um = U(glm), 1 ≤ m ≤ n. Let Zm be the
center of Um. Then Zm is a polynomial algebra in m variables {cmk | k = 1, . . . ,m},

(32) cmk =
∑

(i1,...,ik)∈{1,...,m}k

ei1i2ei2i3 . . . eiki1 .

We identify glm for m � n with the Lie subalgebra of gln spanned by {eij | i, j =
1, . . . ,m}, so that we have the following chain of inclusions:

gl1 ⊂ gl2 ⊂ . . . ⊂ gln .

It induces inclusions U1 ⊂ U2 ⊂ . . . ⊂ Un of the universal enveloping algebras. The
Gelfand-Tsetlin subalgebra Γ in U ([DFO1]) is generated by {Zm |m = 1, . . . , n}.
The algebra Γ is a polynomial algebra in

n(n+ 1)

2
variables {cij | 1 � j � i � n}

([Zh]). Denote by K the field of fractions of Γ.

Let L 	 k
n(n+1)

2 be a subspace of kn
2

generated by sequences (�ij), 1 � j � i � n.
Let M ⊂ L be the free abelian group generated by δij , 1 � j � i � n−1, (δij)kl = 1

if i = k, j = l and 0 otherwise, we have M 	 Z
n(n−1)

2 . For i = 1, . . . , n denote by
Si the i-th symmetric group and set G = S1 × . . .× Sn. The group G acts on L as
follows: (s · �)ij = �i si(j) for � = (�ij) ∈ L and s = (si) ∈ G. Also the group M
acts on L as follows: δij · � = �+ δij , δij ∈ M.

Let Λ be the polynomial algebra in variables {λij | 1 � j � i � n} and L be the
fraction field of Λ (note that SpecmΛ can be identified with L).

Let ı : Γ−→ Λ be the embedding given by

ı(cmk) =
m∑
i=1

(λmi +m)k
∏
j �=i

(1− 1

λmi − λmj
).

The image of ı coincides with the subalgebra of G−invariant polynomials in Λ
(see [Zh]) which we identify with Γ. The homomorphism ı can be extended to the
embedding K ⊂ L of fields, where K = LG. Then G = G(L/K). The action of the
group G by conjugation on M induces an action of G on L ∗M.
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Let e be the identity element of the group M. Consider the linear map t : U 
−→
K given by

(33) t(emm) = ı(emm)e, t(emm+1) =

m∑
i=1

A+
miδ

mi, t(em+1m) =

m∑
i=1

A−
mi(δ

mi)−1,

where

A±
mi = ∓

∏
j(λm±1,j − λmi)∏
j �=i(λmj − λmi)

.

Lemma 5.1. The map t is an algebra homomorphism.

Proof. A straightforward computation shows that the Serre relations are satisfied
by the images t(eij). On the other hand, one can argue that these relations are
given by some rational functions and that these rational functions agree on a dense
set formed by certain vectors in finite dimensional modules (due to Gelfand and
Tsetlin [GTs] and Zhelobenko [Zh]). Hence, all Serre relations are satisfied. �

Proposition 5.2 ([FO1], Proposition 7.2). We have:

• t is an embedding;
• UK = KU 	 (L ∗ Zm)G, m = n(n− 1)/2;
• U is a Galois order over Γ.

Note that the first statement of Proposition 5.2 also appears in [Maz3], [Ov1]
and in [Kh].

To estimate the number of isomorphism classes of simple Gelfand-Tsetlin mod-
ules for U(gln) we recall that U(gln) is free both as a left and as a right Γ-module
([Ov1], [FO2]).

Set

Qn =

n−1∏
i=1

i!.

The following is a refinement of the results from [Ov1].

Corollary 5.3. Let U = U(gln), Γ ⊂ U be the Gelfand-Tsetlin subalgebra, D a
Δ-class, and m ∈ D. Then we have

(a) For a U-module M , such that M(m) �= 0 and M is generated by some
x ∈ M(m) (in particular for a simple module), one has

dimk M(m) ≤ Qn.

(b) The number of isomorphism classes of simple U-modules N such that N(m)
�= 0 is always nonzero and does not exceed Qn.

Proof. Note that a simple M such that M(m) �= 0 is generated by any nonzero
vector from M(m). Since U is a free Γ-module, we can apply Theorem 4.12, (c) and
obtain dimk M(m) ≤ |S(m,m)/G|. On the other hand, by Lemma 4.1, (c) the right
hand side here is bounded by the cardinality of the set

B = {m ∈ Zn(n−1)/2) | π(m+ �m) = �m}.
Equivalently, m ∈ B if and only if the i-th rows of �m and �m + m differ by a
permutation from Si for every i = 1, . . . , n − 1. This gives us at most |S1| · |S2| ·
. . . · |Sn−1| possibilities for μ ∈ M and implies (a). By Lemma 3.16, the number of
isomorphism classes of simple U -modules N such that N(m) �= 0 equals the number
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of isomorphism classes of simple A(m,m)-modules, and the correspondence is given
by M ↔ M(m). Therefore, if X = U/Um, then the A(m,m)-module X(m) covers
any simple A(m,m)-module. Together with (a) this implies (b). �

Remark 5.4. We believe that the bound Qn in (a) cannot be improved. It is known
to be exact for n = 2 and n = 3 [DFO1].
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Vı̄snik Kïıv. Un̄ıv. Ser. Mat. Mekh. 25 (1983), 70–77. MR746766 (86j:17010)

[DK] Yurij A. Drozd and Vladimir V. Kirichenko, Finite-dimensional algebras, Springer-
Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by
Vlastimil Dlab. MR1284468 (95i:16001)

[DFO1] Yu. A. Drozd, S. A. Ovsienko, and V. M. Futorny, On Gel ′fand-Zetlin modules, Pro-
ceedings of the Winter School on Geometry and Physics (Srńı, 1990), 1991, pp. 143–147.
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