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Abstract

Exposure bracketing for high dynamic range (HDR)

imaging involves capturing several images of the scene at

different exposures. If either the camera or the scene moves

during capture, the captured images must be registered.

Large exposure differences between bracketed images lead

to inaccurate registration, resulting in artifacts such as

ghosting (multiple copies of scene objects) and blur. We

present two techniques, one for image capture (Fibonacci

exposure bracketing) and one for image registration (gen-

eralized registration), to prevent such motion-related arti-

facts. Fibonacci bracketing involves capturing a sequence

of images such that each exposure time is the sum of the

previous N(N > 1) exposures. Generalized registration

involves estimating motion between sums of contiguous sets

of frames, instead of between individual frames. Together,

the two techniques ensure that motion is always estimated

between frames of the same total exposure time. This results

in HDR images and videos which have both a large dynamic

range and minimal motion-related artifacts. We show, by re-

sults for several real-world indoor and outdoor scenes, that

the proposed approach significantly outperforms several ex-

isting bracketing schemes.

1. Introduction

High dynamic range (HDR) imaging is the process of

capturing scenes with a larger intensity range than what

conventional sensors can capture. Because HDR images

faithfully capture details in both dark and bright parts of the

scene, they are desirable in surveillance, astronomy, med-

ical imaging, and more recently, even consumer photogra-

phy. Exposure bracketing [9, 2] is the most popular tech-

nique for HDR digital imaging. The basic idea is to capture

multiple images of the same scene with different exposures.

While each captured image has a low dynamic range (LDR),

a single HDR image is generated by merging the exposure-

bracketed LDR frames. Because of its ease of implemen-

tation, bracketing for HDR is now available as a standard

feature in most digital cameras, including cell-phones.

Despite its simplicity, exposure bracketing is not used

in several real-world scenarios because it is prone to errors

when there is scene or camera motion. In order to compen-

sate for motion, the bracketed images are registered before

merging into the HDR image. Registration is performed

by computing motion information between adjacent frames.

Exponential bracketing and Fibonacci bracketing and

conventional registration generalized registration

Figure 1. (Left) HDR image computed using conventional regis-

tration has blur and ghosting due to camera motion. Each of the

three candle flames (inset) has multiple copies. (Right) HDR im-

age computed using the proposed approach. Zoom in for details.

However, since the frames have different exposure times 1,

they have different amounts of motion blur and noise. These

differences cannot be removed by normalizing the image

intensities by their exposure times 2. Because of this, even

after normalization, image features are not preserved across

frames, and motion information cannot be computed reli-

ably. This results in artifacts, such as ghosting (multiple

copies of scene objects), blur and distortions. An example

is shown in Figure 1. Such artifacts often negate the quality

enhancement that is brought about in the image by capturing

a wide dynamic range. This presents a fundamental trade-

off - while a large difference in image exposures is required

to capture a wide intensity dynamic range, it also results in

strong motion-related artifacts.

In this paper, we present new exposure bracketing and

image registration techniques for handling scene and cam-

era motion while also capturing a wide dynamic range

(DR). The key idea is to compute motion information be-

tween sums of contiguous sets of frames. We call this gen-

eralized registration. This is different from conventional

registration, where motion is computed between individual

frames. We propose an exposure bracketing scheme called

Fibonacci bracketing where the exposure times follow the

Fibonacci property, i.e., each exposure time is the sum of

the previous N(N > 1) exposure times. Together, Fi-

bonacci bracketing and generalized registration ensure that

1In this paper, image exposure is changed only by varying the camera

shutter-time. Variations in camera aperture and gain have also been used
for capturing HDR images [14, 5].

2In all the simulations and experiments in the paper, wherever neces-
sary, the captured images were normalized by their exposures before mo-

tion estimation in order to maintain brightness constancy between them.
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motion is always estimated between frames of the same to-

tal exposure. The exposure times in a Fibonacci sequence

grow exponentially, thus capturing a large DR as well. Fig-

ure 1 (Right) shows an image computed using the proposed

techniques. It captures the wide DR of the scene and has

negligible motion-related artifacts.

Hardware Prototype: For generalized registration, a

sensor that allows exposure bracketing with a negligible

inter-frame time-gap is required. Although most current

cameras support exposure bracketing, there is often a large

inter-frame gap (50 − 200ms). We implemented our tech-

niques on a machine vision camera which is triggered exter-

nally using a micro-controller based circuit. This hardware

setup achieves a small inter-frame gap of 0.1mswhile expo-

sure times are changed from one frame to the next. We show

results for several real-world scenes, both indoors and out-

doors, captured during different times of the day and hav-

ing a wide range of motion characteristics. For the same

time-budget, Fibonacci bracketing and generalized registra-

tion produce images of significantly higher quality as com-

pared to existing techniques. We also extend our techniques

to capture HDR video at up to 15 fps while adapting the

bracketing sequence to scene brightness and motion.

Scope and Contributions: Our contributions are tech-

niques for image capture and registration that mitigate ar-

tifacts due to inter-frame motion and different amount of

motion blur between frames. These techniques do not re-

duce motion blur caused by intra-frame motion. We use

existing deblurring methods to reduce blurring in the brack-

eted frames. Our techniques are robust to non-linear cam-

era intensity response and small bit-depths, making them

especially attractive for use in inexpensive cell-phone and

point-and-shoot cameras. The proposed approach does not

require any modifications to the optics. Because of its sim-

plicity, our method is especially suited for implementation

on compact cell-phone cameras, for which, low-light and

low-dynamic-range are known problems. This makes our

work particularly pertinent as cell-phone cameras are ex-

pected to dominate consumer imaging in the next five years.

2. Related Work

Exposure Bracketing: One of the most widely used

bracketing schemes for HDR imaging is the exponential

scheme [9, 2], where a sequence of images with exponen-

tially increasing shutter times are used. Kang et al. [6] pro-

posed a bracketing sequence of alternating short and long

exposures. In this approach, an HDR image is computed by

registering three LDR images. Later, Zhang et al. [21] pro-

posed capturing and registering a sequence of several very

short and same exposure images. We propose using expo-

sure times that have the Fibonacci property, i.e., each expo-

sure is the sum of previous N(N > 1) exposures.

Recently, there has been a lot of work in devising scene-

adaptive exposure bracketing techniques [5]. These tech-

niques attempt to maximize the signal-to-noise-ratio of the

final HDR image by adapting the bracketing sequence to the

scene’s brightness distribution. All these techniques assume

the scene and camera to be static. In contrast, our goal is to

handle dynamic camera and scenes.

Post-processing for Ghost Removal: In order to re-

move the ghosting artifacts in HDR images, several post-

processing techniques have been proposed [7, 3]. These

methods attenuate the contribution of pixels belonging to

moving objects in the final HDR image. While these ap-

proaches reduce ghosting, the moving objects may not have

HDR content if the inter-frame motion is large. Recently,

Sen et al. [15] proposed creating the HDR image by enforc-

ing its consistency with the bracketed images in a patch-

based optimization procedure. Our focus is different than

the above post-processing techniques - it is on acquiring im-

ages so that ghosting artifacts can be prevented. The above

techniques can be used in a complementary fashion to our

approach in order to remove any residual artifacts.

Hardware Modifications: Several approaches have been

proposed to increase the DR by making hardware (opti-

cal and electronic) modifications to the camera. These in-

clude using an array of neutral density filters [11] to spa-

tially modulate light before reaching the sensor, splitting the

light inside the camera using beam-splitters [19], and plac-

ing optical filters in front of the camera [13]. These systems

requiring hardware modifications are often expensive and

inaccessible to consumers. For most consumer cameras, es-

pecially the point-and-shoot and cell-phone ones, exposure

bracketing remains the cheapest and the most viable HDR

imaging option.

3. What are Good Exposure Bracketing
Schemes for HDR Imaging?

Given a time-budget T for acquiring a single HDR im-

age, an exposure bracketing sequence is defined as a set of

frame exposures E = {e1, e2, . . . , eK} such that:

K∑

i=1

ei = T − (K − 1)δ , (1)

where δ is the inter-frame time gap due to sensor read-

out delay. The captured exposure-bracketed LDR frames

{f1, f2, . . . , fK} constitute the exposure stack. The max-

imum number of frames K is constrained by the max-

imum frame rate of the camera. For example, for an

F = 300 frames-per-second camera and a time budget of

T = 120ms, a maximum of K = F∗T
1000 = 36 LDR frames

can be captured for a single HDR image.

Given a time-budget, there are infinite possible brack-

eting sequences. Which bracketing sequence achieves the

highest quality HDR image? The dynamic range achieved

by a bracketing scheme is given as [11]:

DR = log
Imax

Imin

emax

emin

, (2)

where emax and emin are the maximum and the minimum

exposures in the bracketing scheme, respectively. Imax (de-

termined by the sensor’s full well capacity) and Imin (de-

termined by the sensor read noise) are the maximum and

minimum signals detectable by the sensor. From Eq. 2, it is

clear that in order to maximize the dynamic range, a brack-

eting scheme should have a large range of exposures so that
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the ratio emax

emin

is maximized. The LDR frames in the ex-

posure stack captured using such bracketing sequences will

have large differences in exposures.

On the other hand, if there is camera or scene motion,

large differences in LDR frame exposures can lead to in-

correct registration. Why does this happen? This is be-

cause image registration techniques work best when both

the source and the target images have similar features. How-

ever, because of different exposure times, images have dif-

ferent amount of motion blur and noise, and hence, image

features are not preserved. Although normalizing the im-

ages with their exposure times maintains brightness con-

stancy between them, it does not remove the differences in

motion blur. This results in incorrect motion estimation.

This is illustrated in Figure 2. Images are simulated as-

suming the scene to be translating images patches of size

64 × 64 pixels. For each patch, two images with different

exposure times are generated, using an affine image noise

model. Image intensities are normalized by their exposures,

and then dense optical flow is computed between them. The

difference in the estimated flow and the ground truth flow

gives the registration error. As shown, images with the same

exposures have the minimum registration errors.

Qualitative comparison of existing bracketing schemes:

The exponential scheme [2] achieves good DR as the ex-

posures grow exponentially. The alternating scheme [6]

uses long and short exposures (ratio between the exposures

is 16). This scheme achieves a moderate DR. Both expo-

nential and alternating schemes are prone to registration

errors due to large differences between consecutive expo-

sures. The burst-of-short-exposures scheme [21] results in

the smallest increase in the DR as all the exposures are the

same. Since the burst scheme uses images of the same ex-

posure, it is robust to registration errors.

Thus, in the context of exposure bracketing for HDR

imaging, there is a fundamental tradeoff between the dy-

namic range and registration accuracy. To capture a large

dynamic range, it is important to use a large range of ex-

posures. However, large differences in exposures of images

can result in strong registration artifacts. How can we cre-

ate a bracketing scheme that achieves high dynamic range

while minimizing the likelihood of registration artifacts?

4. Generalized Registration for Exposure
Bracketed Image Sequences

Consider a sequence of exposure bracketed images that

are to be registered using optical flow. Our key idea is that

instead of directly estimating the flow between individual

frames, we estimate flow between sums of two contiguous

sets of frames. We call the flow between sums of frames

as generalized flow and the process of estimating general-

ized flow as generalized registration. Flow between indi-

vidual frames is then computed by scaling the generalized

flow. This is illustrated in Figure 3. In the next section,

we will show that with the correct choice of exposure se-

quence, generalized registration allows computing flow be-

tween sums of frames having the same total exposure, while

also achieving a high dynamic range.
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(a) (b)
Figure 2. Illustration of the iso-exposure advantage. 400 image

patches were extracted from HDR images. Images were simulated

assuming the scene to be a translating patch. For each patch, two

images with different exposure times were generated, normalized,

and optical flow was computed between them. The difference in

the computed flow and the ground truth flow gives the registration

error. (c) 2D plot of the mean errors. The exposures of the source

and the target images are plotted on the X and Y axes, respectively.

(d) Error plots for four different target exposures. Images with the

same exposures have the minimum registration errors.

Let the exposure bracketed frames be

{f1, . . . , fi, fi+1, . . . , fK}, with exposure times

{e1, . . . , ei, ei+1, . . . , eK}. In order to compute flow

oi+1
i between fi and fi+1, we first make two adjacent,

contiguous sets of frames around fi:

Ss
i = {fi−ns+1, fi−ns+2, . . . , fi} , (3)

St
i = {fi+1, fi+2, . . . , fi+nt

} , (4)

where the superscripts s and t stand for source and target.

Number of frames in Ss
i and St

i is ns and nt, respectively.

The generalized frames Fs
i and F t

i for both sets are defined

as the sum of the individual frames:

Fs
i = fi−ns+1 + fi−ns+2 + . . .+ fi , (5)

F t
i = fi+1 + fi+2 + . . .+ fi+nt

. (6)

Suppose the inter-frame time gap δ between consecutive

frames is negligible and the camera has a linear intensity re-

sponse. Then, the frame Fs
i is the same as the single frame

F̃s
i that the camera would have captured had it exposed for

the sum of exposure times ei−ns+1+ei−ns+2+. . .+ei
3. F t

i

is related to F̃ t
i in a similar manner. Let the flow between

Fs
i and F t

i be õ
[i+1,i+nt]
[i−ns+1,i] (generalized flow). The subscript

and the superscript denote the first and the last frames in the

sets Ss
i and St

i , respectively. Assuming that the flow vectors

are linear within the duration of capture of the generalized

frames Fs
i and F t

i , the flow oi+1
i is computed as 4:

oi+1
i =

ei + ei+1

i+nt∑
j=i−ns+1

ej

õ
[i+1,i+nt]
[i−ns+1,i] . (7)

Two examples with ns = 2, nt = 1
(
õ
[3]
[1,2]

)
and

ns = 1, nt = 2
(
õ
[3,4]
[5]

)
are illustrated in Figure 3. The

3The standard deviation of the effective read noise for Fs

i
is
√
ns times

that of F̃s

i
; the photon noise is the same for Fs

i
and F̃s

i
.

4In general, if a large number of frames are added to create the general-

ized frames, the flows within a generalized frame may not be linear, espe-

cially for very long exposures. As shown in the next section, our approach
requires adding only a few frames (1− 3). This allows approximating the

flows by linear vectors for a wide range of scenes and motions.
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Figure 3. Conventional versus generalized registration. fi are the bracketed LDR frames, ei are the exposure times and o are the flows

between frames. (Left) In conventional registration, flow is computed between individual frames. The flows are then used to register all

the frames to a reference frame. Differences in exposures of the frames result in registration artifacts. (Right) We propose generalized

registration where flow is computed between summations of frames. By choosing the exposure times appropriately, generalized registration

ensures that the flow is always computed between sums of frames with the same total exposure times. Flows between individual frames

are computed by scaling the generalized flows õ.

individual flows are computed as o32 = e2+e3
e1+e2+e3

õ
[3]
[1,2] and

o34 = e3+e4
e3+e4+e5

õ
[3,4]
[5] .

5. Fibonacci Exposure Bracketing

In this section, we propose an exposure bracketing

scheme that exploits generalized registration to ensure that

optical flow is always computed between frames of the

same exposure time. To formalize this, we define the iso-

exposure property for an exposure sequence:

Definition 1 An exposure sequence {e1, e2, . . . , eK} has

order (ns, nt) iso-exposure property if ∀i ∈ [2 . . .K − 1],

there exist ns and nt such that
i∑

j=i−ns+1

ej =
i+nt∑
j=i+1

ej .

If an exposure sequence has order (ns, nt) iso-exposure

property, it is possible to make generalized frames F s
i and

F t
i (using Eqs. 5 and 6) for every pair of adjacent frames fi

and fi+1 so that F s
i and F t

i have the same total exposure.

Since the flow between fi and fi+1 is computed by first

estimating the flow between F s
i and F t

i (Eq. 7), the iso-

exposure property ensures that the flow is always estimated

between frames of the same exposure.

How should the parameters ns and nt be chosen? Both

ns and nt should be as small as possible so that (a) flow

vectors within the generalized frames can be assumed to be

linear, and (b) the gaps created in F s
i and F t

i due to inter-

frame gap δ are minimized. Moreover, ns − nt should be

minimized to ensure that the effective noise of both F s
i and

F t
i is similar. Thus, the first natural choice is the (1, 1) iso-

exposure sequence. In such a sequence, all the images have

the same exposure. The burst-of-short-exposures [21] is an

example. While such a sequence can minimize registration

errors, it cannot capture a wide dynamic range.

The next higher order is (2, 1). Order (2, 1) iso-exposure

property is achieved if every exposure ei is equal to the

sum of two previous exposures, i.e., ei = ei−1 + ei−2.

This is the property of the Fibonacci sequence of numbers,

a series well studied in number theory [8]. The sequence

1, 2, 3, 5, 8, 13, . . . is the canonical Fibonacci sequence. We

call the bracketing scheme with exposures forming a Fi-

bonacci sequence as Fibonacci exposure bracketing.

What is the dynamic range achieved by Fibonacci

bracketing? The DR is determined by the ratio of consec-

utive exposures [11]. The ratios of consecutive numbers in

a Fibonacci sequence approaches (in the limit) φ = 1+
√
5

2 ,

the golden ratio. This is a well-known result in number the-

ory [8]. Thus, Fibonacci sequences behave like exponential

sequences with a growth factor G = φ. While it may appear

that the DR of Fibonacci bracketing (DRfib) is small due

to a relatively small growth factor, it turns out that DRfib

is always within a small additive constant of the maximum

achievable dynamic range.

Lemma 1 For any given time-budget T , the dynamic range

achieved by Fibonacci bracketing DRfib is within 1.39
stops of the maximum achievable dynamic range DRmax.

Proof 1 Consider an exposure sequence where the ratio of

successive exposures is φ = 1+
√
5

2 . This sequence follows

the Fibonacci property. Suppose the time-budget T is equal

to the sum of all exposures. Then, T is the sum of an expo-

nential series with emin as the first (minimum) exposure:

T = emin

(
φK − 1

)

φ− 1
< emin

φK

φ− 1
, (8)

where K is the number of frames. The DR of Fibonacci se-

quence is given by substituting emax=emin φ
K−1 in Eq. 2:

DRfib = log

(
Imax

Imin

φK−1

)
. (9)
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The maximum dynamic range Dmax for a time-budget T
is achieved with two exposures, emin and T − emin:

DRmax=log

(
Imax

Imin

T − emin

emin

)
<log

(
Imax

Imin

T

emin

)
(10)

Substituting Eq. 8 into above, we get:

DRmax < log

(
Imax

Imin

φK

φ− 1

)
. (11)

Subtracting Eq. 9 from Eq. 11, we get:

DRmax −DRfib < log

(
φ

φ− 1

)
< 1.39 . (12)

Thus, Fibonacci bracketing achieves both - a high dy-

namic range (close to maximum achievable) as well as ro-

bustness to registration errors. For example, a Fibonacci se-

quence constructed with a total time budget of 33ms and a

minimum exposure of 0.1ms has 11 frames. This sequence

results in a DR increase of 6.94 stops over a single LDR

image. With the same time-budget and minimum exposure,

the maximum achievable DR increase is 8.32 stops.

Robustness to non-linear camera response functions:

Several sensors have non-linear intensity response, espe-

cially most cell-phone cameras. If the two images have dif-

ferent exposures and the sensor has a non-linear response,

the intensities of a scene point (after scaling by the expo-

sures) are different. This can lead to strong registration er-

rors. The maroon colored bars in Figure 4 (b) show the av-

erage intensity difference Dconv(R) for conventional reg-

istration, corresponding to some typical camera responses

R shown in Figure 4 (a). The expression for Dconv(R) is

derived in the technical report available at [1].

On the other hand, in the proposed approach, flow is al-

ways computed between two frames of the same total ex-

posure, making it robust to non-linearities in the response

functions. The blue-colored bars in Figure 4 (b) represent

the intensity difference Dgen(R) for Fibonacci bracketing

and generalized registration. The differences are signif-

icantly smaller, thus making it possible to achieve good

results without calibrating the camera’s response curve.

Moreover, the proposed approach can be especially use-

ful in exposure-fusion based techniques, where the captured

images are directly merged without radiometric calibration

and computing an intermediate HDR image [10].

Higher order iso-exposure sequences: So far, we have

considered order (2, 1) iso-exposure sequences. Next, we

discuss higher order sequences. It is not always possible to

make (N,M) order sequences for M > 1 while ensuring

non-negative and non-decreasing exposures. In this paper,

we consider sequences with only (N, 1) order iso-exposure

property for different values of N .

A sequence of exposures has the (N, 1) order iso-

exposure property if the exposure times are from an order-

N Fibonacci sequence (or N -bonacci sequence). In an

N -bonacci sequence, each number is the sum of previ-

ous N numbers. Examples are the tribonacci (N = 3)

and tetranacci (N = 4) sequences. It turns out that all
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(a) Camera responses (b) Normalized intensity errors
Figure 4. Robustness of Fibonacci bracketing to non-linear

camera response functions. (a) 20 response functions (from [4]).

(b) Average intensity difference between pixels in source and tar-

get images for each response function. Differences for Fibonacci

bracketing based generalized registration is always less than that

of conventional registration.

N -bonacci sequences behave similar to the Fibonacci se-

quence; the ratio of consecutive numbers approaches a con-

stant in the limit [16]. The ratios, called the N -bonacci

constants φN , lie between 1 and 2, i.e., 1 ≤ φN < 2 for

all N . For example, φ3 = 1.84 (tribonacci) and φ4 = 1.93
(tetranacci). Thus, all N -bonacci sequences behave like ex-

ponential sequences with a growth factor G = φN , 1 ≤
G < 2. By following the same steps as in Proof 1, it can

be shown that the DR achieved by tribonacci and tetranacci

sequences is within 1.14 and 1.06 stops, respectively, of the

maximum achievable DR. In Section 6, we show results of

tribonacci exposure bracketing.

6. Hardware Prototype and Results

Several consumer cameras support exposure bracketing.

It is possible to capture a sequence of images while vary-

ing the exposure time. However, there is a time-lag of ap-

proximately 50 − 200ms between successive frames. On

the other hand, while there is negligible time gap between

successive images of a video stream captured by a video

camera, it is not possible to change exposure time during

capture. For generalized registration, ideally, a sensor that

allows varying exposures with a negligible inter-frame gap

is required. One way of achieving this is to develop a video

camera with a programmable timing control unit, so that

successive images can have different exposures.

While we have not developed such an image sensor,

we have emulated it by using a machine vision Miro

M310 camera. By triggering the camera externally with

pulses generated from an Arduino controller based circuit,

it is possible to achieve a negligible inter-frame time gap

(0.1ms) while varying exposure from one frame to the next.

Our setup is shown in Figure 5.

Results: Figure 6 shows the result of Fibonacci bracket-

ing and generalized registration for an outdoor night scene.

The time-budget for capturing a single HDR image was

set to 120ms. The minimum exposure time was 0.3ms.

The Fibonacci exposure sequence obeying these constraints

is {0.3,0.49,0.8,1.3,2.12,3.45,5.63,9.17,14.95,24.37,39.72}ms. Each

exposure is the sum of the previous two; the ratio between

successive exposures is 1.63. The sum of all the expo-

sures is 102.3ms. For comparisons, we use an exponen-

tial sequence with growth factor G = 4. The sequence
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is {0.3,1.2,4.8,19.2,76.8}ms. The total exposure time is again

102.3ms. In order to mitigate intra-frame motion blur, the

LDR images were deblurred using a recent method [18] that

can handle spatially-varying motion blur. The images for

exponential bracketing were normalized by their exposure

times before registration. Optical flow was computed using

the technique proposed in [17].

The best-exposed LDR image chosen from the Fibonacci

sequence (image with the maximum number of pixels in

the intensity range [0.07−0.93]) contains saturated regions.

The HDR image computed without registering the LDR im-

ages is blurred due to camera and scene motion. The HDR

image computed using exponential bracketing and conven-

tional registration has artifacts due to large differences in

the exposures. The HDR images were tone-mapped using

the photographic tone-reproduction operator [12].

Comparisons with existing bracketing schemes: Figure 7

shows comparisons of Fibonacci bracketing with the burst

(of short exposures) scheme [21] and the alternating (long

and short exposure) scheme [6]. The same time-budget

of 120ms was used for all three schemes. To ensure that

the scene was approximately the same for every scheme,

all the input images were captured within a short duration

(380ms). For the burst scheme, 36 frames were captured,

each with an exposure of 0.3ms for bright scenes (top row),

and 3ms for dark scenes (bottom row). Since the frame rate

of the camera is 300 fps, 36 LDR frames could be captured

within 120ms. For the alternating scheme, 22 frames with

alternating exposures of 0.3ms and 10ms were captured.

The frames were normalized before registration.

The alternating scheme suffers from strong registration

artifacts because of the large exposure differences and can-

not reconstruct mid-tones of the scenes (table and flowers).

Images captured using the burst scheme have a low dynamic

range. Although the bright regions are faithfully captured

(sky, candle flames), the images have low signal-to-noise-

ratio in the dark regions. With the same capture time, HDR

images created using Fibonacci bracketing have a signifi-

cantly better quality. For more results and comparisons,

please see the project web-page [1].

Results of tribonacci bracketing: Figure 8 shows HDR re-

sults computed using tribonacci exposure bracketing for the

same scenes as in Figure 7. In this case, flow is computed

between a frame and the sum of three previous frames. The

ratio of consecutive exposures in a tribonacci sequence is

φ3 = 1.84, with the minimum exposure of 0.3ms. A total

of 9 images were used, giving a dynamic range increase of

1.848 ≈ 131 times over a single LDR image.

Comparison between conventional and generalized reg-

istration: Figure 9 shows a comparison between conven-

tional and generalized registration. For both, the same LDR

frames were used (11 frames of a Fibonacci bracketing se-

quence). For conventional registration, image intensities

were normalized. Conventional registration does not exploit

the iso-exposure property of Fibonacci bracketing. This re-

sults in incorrect registration and ghosting artifacts. In con-

trast, generalized registration produces a ghost-free image.

Evaluating the effect of non-linear camera response
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Figure 5. Image acquisition setup. (Left) The Miro M310 cam-

era used to capture exposure bracketed images. Point-Grey Flea3

camera was used for scene-metering to capture HDR video (Sec-

tion 7). (Right) Bracketing was performed using an external trig-

ger generated by an Arduino microprocessor.

function: In order to emulate a non-linear response, we ap-

plied a γ-curve (γ = 2.2) on the input LDR images. Fig-

ure 10 shows the comparison for an outdoor scene. Because

of differences between exposures of consecutive images,

there are strong distortions for the exponential scheme. In

contrast, as discussed in Section 5, the proposed approach

is robust to non-linear camera response.

Comparisons with different registration and image

merging techniques: Several techniques have been pro-

posed to register and merge differently exposed images [20,

15]. We compared with the techniques of Ward [20] and

Sen et al. [15]. We compared four cases: (a) Exponential-

bracketing + conventional-registration, (b) Exponential-

bracketing + Ward-registration, (c) Exponential-bracketing

+ Sen-method, and (d) Our method.

The average SNR (on 40 simulated image-sequences) for

the four methods are (a) 37dB, (b) 35dB, (c) 35dB and (d)

40dB. We implemented the Ward method ourselves. For

Sen et al. method, we used the authors’ code available on

their website.

7. Capturing HDR Video

In this section, we extend the proposed techniques to

capture HDR videos. The bracketing sequence is changed

according to scene characteristics (intensity and motion) as

they vary during video capture. As discussed in Section 5,

all N -bonacci sequences lend themselves to generalized

registration. These sequences are defined by their growth

factor G, which varies between 1 and 2, i.e. 1 ≤ G < 2.

At one extreme is the sequence with G = 1, where all the

exposures are the same. Since it has only short exposures,

this sequence should be used only to capture bright scenes

with large motion and relatively small dynamic range. On

the other hand, sequences with larger G values (e.g., Fi-

bonacci and tribonacci) have a wide range of exposures, and

are more suitable for capturing scenes with a wide dynamic

range and small/moderate motion.

Thus, we capture HDR video by changing the growth

factor G as a function of the scenes intensities and the

amount of motion. As discussed in the previous paragraph,

G should be inversely proportional both to scene’s bright-

ness values and amount of motion. Moreover, since we aim

to capture HDR video, G should vary smoothly as the scene

changes. We use the following simple function that can be
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(a) LDR Image (b) HDR Image (c) HDR Image (Exponential (d) HDR Image (Fibonacci

(Best exposure) (No registration) bracketing + conv. registr.) bracketing + gen. registr.)
Figure 6. Comparison between exponential bracketing and Fibonacci bracketing. (a) The best exposed LDR image contains saturated

regions. (b) HDR image computed without registering LDR images is blurred due to camera and scene motion. (c) HDR image computed

using exponential bracketing and conventional registration has strong registration artifacts. (d) HDR image obtained using the proposed

Fibonacci bracketing and generalized registration techniques. See the project web-page [1] for more results and comparisons.

(a) LDR Image (b) HDR Image (alternating (c) HDR Image (burst of short (d) HDR Image (Fibonacci

(Best exposure) exposures) [6] exposures) [21] bracketing + gen. registration)
Figure 7. Comparison between Fibonacci and two existing bracketing schemes. (Top) Church on a cloudy day. (Bottom) Indoor

birthday party. Both scenes have large dynamic range (105 − 10
6). (a) The best exposed LDR image has saturated regions (sky, candles).

(b) The alternating (long and short exposure) scheme suffers from strong registration artifacts (church) and can not reconstruct mid-tones of

the scenes faithfully (flowers, table). (c) Images captured using the burst (of short exposures) scheme have a low dynamic range, resulting

in low quality in the dark regions. (d) HDR images created using Fibonacci bracketing and generalized registration.

computed sufficiently fast on commodity hardware:

Gk = 1 +
((

1− Îk−1

) (
1− M̂k−1

))
, (13)

where Îk−1 is the median intensity of the previous frame

and M̂k−1 is the mean motion between two previous

frames. Motion is computed by computing correlation be-

tween 1-D projections of the two frames along rows and

columns. Both Îk−1 and M̂k−1 are normalized to lie in the

range [0, 1]. We used a Miro M310 camera (see Figure 5)

for capturing exposure bracketed images. A Point-Grey

Flea3 camera was used for ‘scene-metering’ - intensity and

motion information was computed on images captured by

the Flea3 camera for determining the bracketing sequence.

Since image analysis and capture steps are parallelized and

the total capture time for each bracketing sequence is about

60ms, our system captures HDR video at 15 fps. See the

project web-page [1] for the videos and more results.

8. Discussion and Limitations

In order to be used widely in consumer cameras, HDR

techniques should handle motion. Ours is the first expo-

sure bracketing scheme that is designed to deal with dy-

namic camera and objects. The proposed approach is robust

to non-linearities in the camera response functions and low
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Figure 8. Results of tribonacci bracketing and generalized reg-

istration for the scenes shown in Figure 7.

Fibonacci bracketing + Fibonacci bracketing +

Conventional registration Generalized registration
Figure 9. Comparison between conventional and generalized

registration. The same LDR images (11 frames of a Fibonacci

bracketing sequence) were used for both cases. Conventional reg-

istration does not exploit the iso-exposure property of Fibonacci

bracketing. This results in incorrect registration and strong ghost-

ing artifacts. Generalized registration produces a ghost-free image.

sensor bit-depth, and require minimal modifications to use

with existing sensors. Thus, our techniques are particularly

suitable for implementation on inexpensive image sensors

such as ones used in cell-phone cameras.

The technique of Fibonacci bracketing+generalized reg-

istration should be seen as a general ‘pre-conditioning’ step

in HDR imaging, that enhances the accuracy of existing

image-alignment/optical flow methods. Note that it is not

a new alignment technique in itself.

Limitations: While the proposed approach significantly

mitigates registration artifacts, it may not completely re-

move them. Our method shares the limitations of dense

optical flow techniques (e.g., aperture problem), and hence

may not perform reliably for textureless regions, occlusions

and in the presence of highly non-rigid motion (such as fluid

motion). For extremely fast motions, or large inter-frame

time gaps, our technique may not produce a good result.

In order to remove the residual artifacts, one of the post-

processing techniques discussed in Section 2 may be used.
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