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F I B O N A C C I  M A N I F O L D S  AS T W O - F O L D  C O V E R I N G S  
OF T H E  T H R E E - D I M E N S I O N A L  S P H E R E  A N D  
T H E  M E Y E R H O F F - N E U M A N N  C O N J E C T U R E  t) 

A. Yu.  Vesn in  a n d  A. D. M e d n y k h  UDC 515.16 + 512.817.7 

The present article is devoted to studying geometric properties of three-dimensional compact orientable 
hyperbolic manifolds with fundamental group a Fibonacci group. 

The Fibonacci groups F(2,  m) were introduced by Conway [1] and have the following presentation: 

F(2, m) = ( x l , x 2 , . . . , x m  : xlzi+l = x i+2 , imodm) .  

Algebraic properties of the groups F(2, m) and their generalizations were studied in [2-4]. From 
a geometric point of view, the Fibonacci groups F(2, 2n), n > 2, with an even number of generators are 
most interesting. It was shown in [5] that for n _> 4 the group F(2, 2n) is isomorphic to the fundamental 
group of a three-dimensional compact orientable hyperbolic manifold. The group F(2,  6) is isomorphic 
to the fundamental  group of a three-dimensional compact orientable Euclidean manifold [6]. The group 
F(2, 4) is finite and isomorphic to the fundamental group of the lens space L(5, 2) which is a three- 
dimensional compact orientable spherical manifold. Thus, the group F(2 ,2n) ,  n > 2, is realizable 
as a co-compact discrete group of isometries acting without fixed points on the space Xn, where 
X2 = S 3 is the spherical 3-space, X3 = E 3 is the Euclidean 3-space, and for n > 4 Xr, = H 3 is the 
LobachevskiY 3-space. 

A three-dimensional manifold M,, = X,~/F(2,2n), n >_ 2, uniformized by a Fibonacci group is 
referred to as a Fibonacci manifold. 

We point out that  hyperbolic Fibonacci manifolds Mn, n > 4, were studied in [7-9]. 
In the present article we demonstrate that each manifold Mn, n > 2, can be represented as a two- 

fold branched covering of the three-dimensional sphere. As a consequence, the Meyerhoff-Neumann 
conjecture [10] is proven on arithmeticity and volume of the manifold N = W ( 3 , - 2 ;  6 , - 1 )  obtained 
in [10] by Dehn surgeries with parameters (3 , -2 )  and (6 , -1 )  on the components of the Whitehead 
link W. 

w 1. F i b o n a c e i  Man i fo lds  as Two-Fo ld  Cove r ings  

To describe geometric properties of the Fibonacci manifolds, we introduce the following family of 
knots and links. Denote by Th,,, n >_ 2, the closure of the 3-string braid ( a l a ~ l )  n given in canonical 
generators [11]. Observe that  Thn is a three-component link if n is divisible by three, while it is a knot 
otherwise. In particular, Th2 is the figure-eight knot, Th3 is the Borromean rings, and Th4 is the 
Turk's head knot. It was shown in [12] that the manifolds S 3 \ Th,~, n >_ 2, are hyperbolic. In [9] we 
established that the hyperbolic volumes of the manifolds S 3 \ Thn, n _> 2, coincide with the volumes 
of the Fibonacci manifolds M2n. The properties of compact manifolds obtained by Dehn surgery on 
the knots Thn were studied in [13]. The symmetry groups of the knots and links Thn are described 
in [141. 

Further we use the terminology of the theory of orbifolds as in [12, Chapter 13]. 
The main result of this section is the following 
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T h e o r e m  1. Each Fibonacci manifold Mn, n _~ 2, can be represented as a two-fold covering of 
the three-dimensional sphere branched over the link Thn.  

PROOF. In virtue of [8], the manifold Mn, n _> 2, can be represented as a cyclic n-fold covering 
of the orbifold ~'(n) whose underlying space is the three-dimensional sphere and whose singular set 
is the figure-eight knot with index n (Fig. 1). 

It is easy to see that the orbifold ~'(n) has a rotation symmetry of order two which acts on the 
singular set of the orbifold @(n) without fixed points. Factoring the orbifold @(n) by this symmetry, 
we obtain an orbifold whose underlying space is the three-dimensional sphere and whose singular set 
is a two-component link, pictured in Fig. 2, with indices 2 and n on its components. 

It was shown in [12, Chapter 13] that the singular set of this orbifold is equivalent to the two- 
component link 6 2, with the notation of [15] (Fig. 3). Therefore, henceforth this orbifold will be 
symbolized by 62(2, n). 

Observe that the above-introduced space Xn, n >_ 2, is the universal covering of the manifold Mn 
and the orbifolds ~'(n) and 622(2, n), Denote the respective fundamental groups of the manifold Mn 
and the orbifolds @(n) and 62(2, n) by F,  = F(2,2n),  12,,, and I-I,,. Thus, the groups ['n, 12,,, 
and Hn act on Xn as discrete subgroups of the isometry group. Moreover, the following canonical 
isomorphisms hold: M,~ = X , / F , ,  ~'(n) = X,,/f~,,, and 62(2, n) = X , /Hn .  Therefore, the sequence 
of the above-described coverings 

Mn ~ O'(n) -~ 6~(2, n) (1) 

induces the sequence of group embeddings 

F, ,~ 9/, ,~ H,~, (2) 

where [H. :  ~-I  = 2 and [~n:  r . I  = n. 
We now use the following presentation of the fundamental group ~rl(S ~ \ 6 2) of the link 6~ which 

was computed in [9]: 

(6, I -1) = a). (3) 

Here the generative loops & and ~ are canonically, determined from the diagram of the link 6;,.(2, ') ' n) in 
Fig. 2; they correspond to the arcs of the diagram which are denoted by & and ~ [16]. 

In view of the results of [17] and presentation (3), the fundamental group 1-In of the orbifold 
62(2, n) has the following presentation: 

(Or, 7" [(TOt--IT~T--IotT -1) (T2Ot -1TOtT- - Io tT  -2) (TO~--ITO~T--I~T--1) -1 _-- ~ ,  n ~_- T2 _-- ].), (4) 

where the generators a and r correspond to the loops & and § in the group 7r1(S 3 \ 6~). 
Consider the group Zn ~ Z2 = (a [ a n = 1) @ (t [ t 2 = 1) and, given an n, define an epimorphism 

0 : Hn + Z .  ~ 7/,2 by the rule 
O(a) = a, O(T) = t. (5) 
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Observe that under the two-fold covering @(n) ---* 62(2, n) the loop r in the fundamental  group of the 
orbifold 622(2, n) lifts to a trivial loop in the fundamental group f t ,  of the orbifold @(n), while the 
loop a lifts to some loop that generates a cyclic subgroup of order n in the group fin. Therefore, 

l ' l .  = 0 - 1 ( Z . )  = O-i(<a [ a  n = l>).  (6)  

Since under the 2n-fold covering M.  ---+ 62(2, n) the loops a and r lift to trivial loops in the group F,~, 
we have 

r .  = 0 - ' (1 )  = Ker0. (7) 

For the subgroup 'r., in l-In defined by 

v .  = 0 - ' ( z 2 )  = 0 - ' (< t  I ? = 1>), (8) 

we obtain the sequence of group embeddings 

r .  r T .  ~ 1-In, (9) 

where [Ha:  T.[ = n and IT.,: F.] = 2. 
The group 'It., as a subgroup of the group II . ,  acts by isometries on the universal covering X .  

and determines the orbifold X . / T . .  Relations (9) induce the following sequence of orbifold coverings: 

M. = X . / F .  ~ X./TYn -~ 62(2, n ) =  Xn/1-I.. (10) 

We will demonstrate that the underlying space of the orbifold X . / T .  is the three-dimensional 
sphere and that  the singular set of the orbifold is the above-defined link Th. .  First, we prove that 
the covering 

p: X . / T .  ~ 622(2, n) = X . / H .  (11) 

is cyclic. To this end, we use the following trivial lemma: 

L e m m a .  Given groups G, K, and L and an epimorphism 0 : G ~ K ~ L, suppose that 
H = O-X(L). Then H ,~ G and G/H "~ K. 

We apply this lemma to the epimorphism 0 : 1-I. ~ Z .  @ Z2 defined by conditions (5). Since 
T .  -- 0 - ' (Z2) ,  we have T .  ,~ I I .  and I I . / T .  -~ Z. .  These conditions amount to the fact that the 
covering p is a regular n-fold cyclic covering. In view of (8), the covering p is branched over the 
component of the singular set of the orbifold 62(2, n) which is labelled by the index n. 

We note [18] that  in the symmetry group of the link 6 2 there is an involution (easily seen in Fig. 3) 
which interchanges the components of the link. Therefore, the singular set of the orbifold 622(2, n) can 
also be represented in the form pictured in Fig. 4. 

As we see from Fig. 4, the component of the link with the index n is unknotted. Thus, p is 
a standard cyclic covering of the three-dimensional sphere, the underlying space of the orbifold 622(2, n), 
branched over an unknotted circle. Therefore, the underlying space of the orbifold X . / T .  is the three- . �9 ' )  . �9 

dimensional sphere. Observe that the component of the singular set of the orblfold 6fi(2, n) which is 
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labelled in Fig. 4 by the index 2 is the closure of the 3-string braid O"10"2 I. Therefore, its lift to the 
n-fold cyclic covering Xn/Tn is the closure of the braid (ala~-1) n, i.e. coincident with the link Thn 
considered above. So, the underlying space of the orbifold Xn/'rn is the three-dimensional sphere and 
the singular set of the orbifold is the link Thn labelled with index 2. Further we use the notation 
Th,,(2) = X,,/Tn for this orbifold. 

Comparing sequences (1) and (10), we come to the following diagram: 

M. 
2 / "--. .~. 1- 

Thn(2) @(n) 

622(2, n) 

As we see from the diagram, the Fibonacci manifold Mn is a two-fold covering of the orbifold Th,~(2), 
which completes the proof of Theorem 1. 

We recall [19] that  a ~r-orbifold is an orbifold whose underlying space is the three-dimensional 
sphere and whose singular set is a knot or a link whose every component has index 2. Theorem 1 
enables us to prove the following assertion whose particular instance in the case of n = 4 was noted 
in [201. 

C o r o l l a r y .  For n >_ 4 the 7r-orbifold Thn(2) is hyperbolic. 

Indeed, in virtue of the results of [5], for n >_ 4 the universal covering X,, is the LobachevskiY 
space N 3. Thus, T,, is a discrete group of isometries of the space H 3 and hence Th,,(2) = Ha/ ' rn ,  
n > 4, is a hyperbolic orbifold. 

{} 2. T h e  H y p e r b o l i c  M e y e r h o f f - N e u m a n n  M a n i f o l d  

In [10] some closed orientable three-dimensional hyperbolic manifold, denoted by N = W ( 3 , - 2 ;  
6 , - 1 ) ,  was constructed by Dehn surgeries with parameters ( 3 , - 2 )  and ( 6 , - 1 )  on the components of 
the Whitehead link W. The volume of the manifold N has been shown to coincide to within 10 -s~ 
with the volume of the regular ideal tetrahedron in LobachevskiY space. The authors of [10] raised the 
question of exact equality between these volumes. In the same article the conjecture was formulated 
of arithmeticity of the manifold N over the field Q(~- -3)  [21]. Below the validity of both hypotheses 
will be established. 

First, we reveal some relationship between the Meyerhoff-Neumann manifold N and the hyperbolic 
Fibonacci manifold M4. 

T h e o r e m  2. The Fibonacci manifold M4 is a two-fold unbranched covering of the Meyerhoff- 
Neumann manifold N. 

PROOF. Consider the hyperbolic ~r-orbifold Th4(2) -- Ha/T4 defined at the end of Section 1. Its 
underlying space is the three-dimensional sphere and its singular set is the Turk's head knot Th4 
pictured in Fig. 5. The orbifold has a rotation symmetry ~ of order 4 which keeps the singular set 
invariant. After factorizing the orbifold Th4(2) by the involution 0 2 we obtain a ~'-orbifold D(2,2) 
whose singular set is the two-component link pictured in Fig. 6. 

Using the Wirtinger presentation and the results of [17], we write down the presentation for the 
fundamental group A of the orbifold D(2, 2): 

A = I = = = = = 1), (12) 

where the generators a , /3 ,  and r are canonically determined from the diagram of the link pictured in 
Fig. 6. 

By the Mostow rigidity theorem, the involution 0 "~ is isotopic to some isometry of the hyperbolic 
orbifold Th4(2). Thus the group A can be realized as a discrete subgroup of the isometry group of 
the LobachevskiY space H a. In this case r is the lifting of the involution 0 2 to the universal covering. 
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Fig. 5 Fig. 6 

It follows from Theorem 1 that the Fibonacci manifold M4 = H 3/1'4 is a two-fold covering of the 
orbifold Th4(2) = H3/T4. By the construction of the orbifold D(2,2) = H3/A we thus have the 
following sequence of orbifold coverings 

M4 A T h 4 ( 2 ) 2  D(2,2), (13) 

which induces the sequence of group embeddings 

F4 r T4 r A, (14) 

where [A :T4I = 2 and IT4 : F4I = 2. 
Consider the epimorphism 

9 : A ~ Z 2 G Z 2 = < a l a  2 =  1 > O < t [ t  ~ = 1 > 

defined by the following rule 
O(a)  = 0 ( 3 )  = a, O(r)  = t.  (15) 

Observe that  under the orbifold covering Th4(2) --0 D(2, 2) the loop ~- in the fundamental  group A of 
the orbifold D(2, 2) lifts to a trivial loop in the fundamental group T4 of the orbifold Th4(2), while 
the loops a and 3 lift to loops generating cyclic subgroups of order two in the group "['4. Thus, 

"I~ 4 ---- 0 - 1 ( Z 2 )  ~- 0 - 1 ( ( a  l a 2 = 1)).  (10) 

Since the loops a,  3, and 7- lift to trivial loops in the group 1-'4 under the 4-fold covering M4 --~ D(2, 2), 
we h a v e  

I-'4 = 0 - 1 ( 1 ) =  Ker0. (17) 

It is obvious that  the group 

Z 2 G Z 2 =  ( a l a  2 = 1) G ( t l t  2 = 1) 

includes the cyclic subgroup of order 2 generated by the element d = a + t. Define a natural  epimor- 
phism A : Z2 G Z2 ---* Z2 by setting 

A(a) = A(t) = d. (18) 

For the composition ~o = A o 0 of the epimorphisms we infer that the epimorphism 

qo : A- - ,  Z2 = ( d l  d2 = 1) (19) 

satisfies the relations 
= = = d .  (20) 
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Fig. 7 

Put �9 = Ker~o and consider the orbifold U = H3/~.  By the construction of the epimorphism ~o 
the orbifold covering 

U = H3/ r  2+ D ( 2 , 2 ) =  H a / A  (21) 

is branched over the two components of the singular set of the orbifold D(2, 2). Under this covering 
the loops a, /3, and r lift to trivial loops in the group q). Thus, U is a hyperbolic orbifold with the 
empty singular set; i.e., a hyperbolic manifold. 

Demonstrate that  U = N. To this end, we use the Montesinos algorithm [22], which makes 
it possible to represent each manifold obtained by a Dehn surgery on a strongly-invertible link as 
a branched two-fold covering of the three-dimensional sphere. Applying this algorithm to the White- 
head link we in particular infer that the Meyerhoff-Neumann manifold N = W ( 3 , - 2 ;  6 , - t )  is the 
two-fold covering branched over the two-component link pictured in Fig. 7. 

Using Reidemeister moves [16] we directly check that the links pictured in Fig. 6 and 7 are 
equivalent. Thus, the hyperbolic manifolds U and N are represented as two-fold coverings of the 
three-dimensional sphere branched over the same link. Therefore, they are homeomorphic and, by the 
Mostow rigidity theorem, they are isometric. We thus can assume that N = H3/~ .  In view of the 
relation ~o = A o 0 the following group embedding holds 

~ 5 = K e r ~ o > F 4 = K e r 0  (22) 

which induces the covering of the manifolds 

2 
M4 = Hz/F4 --+ N = H 3 / r  (23) 

Comparing the sequences of coverings (13), (21), and (23) we come to the following diagram 

M4 
I "  

N Th4(2) .  

D(2,2) 

The groups F4 and �9 are the fundamental groups of the hyperbolic manifolds M4 and N and so 
they do not contain elements of finite order. This implies that covering (23) induced by the group 
embedding (22) is unbranched. The proof of Theorem 2 is complete. 

From the above connection between manifolds M4 and N we derive the following theorem. 

T h e o r e m  3. The hyperbolic Meyerhoff-Neumann manifold N = W ( 3 , - 2 ;  6 , - 1 )  is arithmetic 
over the field Q(v/-L'-3) and its volume equals the volume of the regular ideal tetrahedron in Lobachev- 
skif space. 
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PROOF. Indeed, as shown in [9], the hyperbolic volume of the Fibonacci manifold M4 equals the 
doubled volume of the regular ideal tetrahedron in Lobachevski~ space. It follows from Theorem 2 
that the volume of the manifold N is half of the volume of the manifold M4 and therefore coincides 
with the volume of the regular ideal tetrahedron. Moreover, in view of (23), the manifolds M4 and N 
are commensurable. According to [5], the manifold M4 is arithmetic over the field Q(x/-z-3). Hence, 
the same is true for the manifold N. 

In conclusion the authors are glad to express their gratitude to Prof. J. Mennicke, Prof. H. Helling, 
Prof. J. Montesinos, and Prof. B. Zimmermann for fru!tful discussions of the results of the present 
article. 
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