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FIBONACCI NUMBERS IN COIN TOSSING SEQUENCES 

MARK FINKELSTEIN and ROBERT WHITLEY 
University of California at Irvine, Irvine, CA 92717 

The Fibonacci numbers and their generating function appear in a natural 
way in the problem of computing the expected number [2] of tosses of a fair 
coin until two consecutive heads appear. The problem of finding the expected 
number of tosses of a p-coin until k consecutive heads appear leads to clas-
sical generalizations of the Fibonacci numbers. 

First consider tossing a fair coin and waiting for two consecutive heads. 
Let 0n be the set of all sequences of H and T of length n which terminate in 
BE and have no other occurrence of two consecutive heads. Let Sn be the num-
ber of sequences in 0n. Any sequence in 0n either begins with T, followed by 
a sequence in 0n-i, or begins with ET followed by a sequence in Cn_2. Thus, 

(1) Sn = Sn-1 + Sn-2, Si = 0, S2 = 1. 

Consequently, Sn-i = Fny the nth Fibonacci number. The probability of 
termination in n trials is Sn/2n. Letting 

^ ) = Z "n̂ n> 
2 

and using the generating function (1 - x - x2) ~l for the Fibonacci numbers, 
yields g{x) = x2/(1 - x - x2). Hence, the expected number of trials is 

J2nSn/2n = (1/2)̂ (1/2) = 6. 
n = l 

We generalize this result to the following 

Tk<lOKQjn'. Consider tossing a p-coin, Pr(E) = p, repeatedly until k consec-
utive heads appear. If Pn is the probability of terminating in exactly n 
trials (tosses), then the generating function 

(2) G(x) =Y,Fnxn is given by G(x) = (px) U-px) 
k 1 - x + -^ ^-(px)k + 1 

The expected number of trials, Gr(l) is 

(3) 1/p + 1/p2 + ... + l/pk = r 1 ' X 
k 

- 1 
P\ 

VtiOO^: Let 0n be the set of all sequences of H and T of length n which 
terminate in k heads and have no other occurrence of k consecutive heads. 
Let Sn be the number of sequences in 0n and Pn = Pr(On) be the probability 
of the event 0n. One possibility is that a sequence in 0n begins wi h a T, 
followed by a sequence in 0n_i\ the probability of this is 
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Pr(T)Pr(On^±) = qPn.l9 q = 1 - p. 

The next possibility to consider is that a sequence in On begins with HT> 
followed by a sequence in 0n-2\ this has probability 

Pr(HT)Pr(On_2) = qpPn.2. 

Continuing in this way, the last possibility to be considered is that a se-
quence in 0n begins with k - 1 #Ts followed by a T and then by a sequence in 
(9n_k, the probability of which is qpk~1Pn_^. Hence, the recursion: 

(4) Pn = qPn.± + qpPn.2+ -•- + ^ p ^ - 1 ? ^ , 

(Note that the probability of achieving k heads with k tosses is pk, while 
with less than k tosses it is impossible.) The technique to find the gener-
ating function for the Fibonacci numbers applies to finding 

00 

G(X) = J^ Pn*"' 

Consider 

then 

Hence, 

On the o 

H{x) = £) Pn + 1xn; 
n = k 

xH(x) = £ Pn + 1xn + 1 = ]T 
k k 

H(x) = [G(x) - (px)k]/x. 
ther hand, 

^Pnxn - Pkxk = G(x) - (px)h 

HM = £ p n + 1tfn = ] T (qPn + qpPn_^ + ••• + qpk~ xPn _k + Jx" 
k k 

and r e c a l l i n g t h a t Pj = 0 fo r j < k, 

= ^XX*" + <lPX12PnXn + ••• + ^(px)^ 1 ^]?^" 
fe k ' k 

= ^[1 + P* + ... + (p*)*-M = ^ p x r ^ r ] -
Solving for (9 yields (2). 

In the case p = 1/2, the combinatorial numbers Sn = 2 Pn satisfy the re-
cursion Sn = £„_ i + 5n_2 + ... + Sn_ic. For these numbers, the generating 
function (1 - x - x2 - ••• - xk)~l was found by V. Schlegel in 1894. See [1, 
Chap. XVII] for this and other classical references. 

An alternate solution to the problem can be obtained as follows. Consider 
a sequence of experiments: Toss a p-coin Xl times, until a sequence of k - 1 
heads occurs. Then toss the p-coin once more and if it comes up heads, set 
Y = 1. If not, toss the p-coin X2 times until a sequence of k - 1 heads oc-
curs again, and then toss the p-coin once more and if it comes up heads, set 
Y = 2. If not, continue on in this fashion until finally the value of Y is 
set. At this time, we have observed a sequence of k heads in a row for the 
first time, and we have tossed the coin Y + X± + X2 + • • • + XY times. The X^ 
are independent, identically distributed random variables and J is independent 
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of all of the Xi. Let Ek = the expected number of tosses to observe k heads 
in a row. Let Z = Zx + ••• + XY. Then, 

Ek = E(Y + Z) = E(Y) + E(Z) 

= E(Y) + tf(Z|y = l)Pr(Y = 1) + #(Z|j = 2)Pr(J = 2) + . . . 

= E(Y) + J2E(Z\Y = n)Pr(Y = n) = E(Y) + Y^rLE{Xx)Pr{Y = n) 
n=l n=l 

= E(Y) + E{XX)E{Y). 

But E(Y) = the expected number of tosses to observe a head = 1/p, and E(X{) = 
E7;,.!. Thus S7?, = 1/p + (l/p)Ek_±, which yields (3). 
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STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM 

CLARK KIMBERLING 
University of Evansville, Evansville, IN 47702 

In 1936, Marshall Hall [1] introduced the notion of a kth order linear 
divisibility sequence as a sequence of rational integers uQ, u19 ,.,,un9 ... 
satisfying a linear recurrence relation 

(1) un + k = alun+k_l + .- - + akun9 

where a19 a2, . . . , ak are rational integers and um\un whenever m\n. Some di-
visibility sequences satisfy a stronger divisibility property, expressible in 
terms of greatest common divisors as follows: 

(um, un) = U(m^ n) 

for all positive integers m and n. We call such a sequence a strong divisi-
bility sequence. An example is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8,... . 

It is well known that for any positive integer m9 a linear recurrence 
sequence {un} is periodic modulo m. That is, there exists a positive integer 
M depending on m and al9 a2, . . . 9 ak such that 

(2) un+M E un (mod m) 

for all n >. n0[m9 a19 a2, . . . , ak] ; in particular, nQ = 0 if (afe, w) = 1. 
Hall [1] proved that a linear divisibility sequence {un} with uQ ^ 0 is 

degenerate in the sense that the totality of primes dividing the terms of 
{un} is finite. One should expect a stronger conclusion for a linear strong 
divisibility sequence having u0 4- 0. The purpose of this note is to prove 
that such a sequence must be, in the strictest sense, periodic. That is, 
there must exist a positive integer M depending on al9 al9 ..., ak such that 

^ n + M ~ ^n> n — \J 9 I, ... 


