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FIBONACCI NUMBERS, LUCAS NUMBERS

AND INTEGRALS OF CERTAIN GAUSSIAN PROCESSES

LUDWIG BARINGHAUS

(Communicated by Wei-Yin Loh)

Abstract. We study the distributions of integrals of Gaussian processes aris-

ing as limiting distributions of test statistics proposed for treating a goodness
of fit or symmetry problem. We show that the cumulants of the distributions
can be expressed in terms of Fibonacci numbers and Lucas numbers.

1. Introduction

Let X1, . . . , Xn, . . . be a sequence of independent and identically distributed
d-dimensional random (column) vectors with Fourier transform φ. Let φn(t) =
1
n

∑n
k=1 exp(it′Xk), t ∈ Rd, be the empirical Fourier transform of the first n ob-

servation vectors. It follows from the Glivenko-Cantelli theorem that as n → ∞,
the φn converge almost surely to φ uniformly on compact subsets of Rd. This
gives the motivation for various statistical procedures based on empirical Fourier
transforms. Let us concentrate on two applications. The first one is a goodness
of fit problem. Assuming that the distribution of the Xk is unknown, a suitable
test statistic for testing the hypothesis that the Xk have the d-variate unit normal
distribution Nd with density fd(x) = ( 1

2π )d/2 exp(−|x|2/2), x ∈ Rd, and Fourier

transform φ(t) = exp(−|t|2/2), t ∈ Rd, where | · | denotes the Euclidean norm on
Rd, is

T1n = n

∫
|φn(t)− exp(−|t|2/2)|2 dNd(t);(1)

see Keller [10], considering the case d = 1, or Baringhaus and Henze [3], treating
the composite hypothesis of multivariate normality. As a second application we
mention the problem of testing the hypothesis of symmetry, meaning that the ran-
dom vectors Xk and −Xk have the same distribution. Then one may suggest the
test statistic

T2n = n

∫
[Imφn(t)]2 dQ(t),(2)

where Q is taken to be a distribution symmetric about the origin; see Feuerverger
and Mureika [9], considering the case d = 1. Choosing Q = Nd we have the
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representations

Tin =

∫
Gin(t)2 dNd(t), i = 1, 2,

with

G1n(t) =
1√
n

n∑
k=1

(cos(t′Xk) + sin(t′Xk)− exp(−|t|2/2)), t ∈ Rd,

and

G2n(t) =
1√
n

n∑
k=1

sin(t′Xk), t ∈ Rd.

For unit normal Xk the covariance functions ρi(s, t) of the empirical processes
{Gin(t), t ∈ Rd}, i = 1, 2, are

ρ1(s, t) = exp(−|s− t|2/2)− exp(−|s|2/2) exp(−|t|2/2), s, t ∈ Rd,(3)

and

ρ2(s, t) =
1

2
[exp(−|s− t|2/2)− exp(−|s+ t|2/2)], s, t ∈ Rd.(4)

It will be demonstrated in the next section that in the case of d-variate unit nor-
mal Xk the process {Gin(t), t ∈ Rd} has limiting sample path continuous Gauss-
ian processes {Gi(t), t ∈ Rd} with zero mean and covariance function ρi, im-
plying weak convergence of the laws of Tin =

∫
Gin(t)2 dNd(t) to the laws of

Ti =
∫
Gi(t)

2 dNd(t). The present paper aims to study these limit laws. It will
be seen in Section 3 and Section 4 that the cumulants can be expressed in terms of
Fibonacci and Lucas numbers.

2. Preliminaries

In what follows {Gn(t)} and ρ stand for the sequence of processes {G1n(t)} with
covariance function ρ1 or for the sequence of processes {G2n(t)} with covariance
function ρ2. Let K be any compact subset of Rd. Denote by C(K) the separable
Banach space of real valued continuous functions on K with the supremum norm.
Gn restricted to K can be regarded as a random element in C(K). Applying
Theorem 3.1 of Csörgő [4] or a central limit theorem for Banach space valued
random variables (see, e.g. Araujo and Giné [2], Corollary 7.17) we obtain the weak
convergence of {Gn(t), t ∈ K} to some zero mean Gaussian process {G(t), t ∈ K}
with covariance function ρ|K×K . Adapting the results of Whitt [12] we get the weak
convergence of the process {Gn(t), t ∈ Rd} to some zero mean Gaussian process
{G(t), t ∈ Rd} with covariance function ρ. Here these processes are regarded
as random elements in the separable Fréchet space of all real valued continuous
functions on Rd endowed with the σ-algebra of Borel sets generated by the topology
of uniform convergence on compacta. Applying the Continuous Mapping Theorem
we see that given any compact subset K in Rd, the integrals

∫
K
Gn(t)2 dNd(t)

converge in distribution to
∫
K G(t)2 dNd(t). Given any η > 0, ε > 0 we can choose

some compact set K ⊂ Rd such that

P

(∫
Kc

Gn(t)2 dNd(t) > ε

)
≤ 1

ε

∫
Kc

ρ(t, t) dNd(t) ≤ η
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for all n. From this it follows that the integrals
∫
G2
n dNd(t) converge in distri-

bution to T =
∫
G(t)2 dNd(t). To study the distribution of T we introduce the

Hilbert-Schmidt operator Bd : L2(Rd, Nd) → L2(Rd, Nd), defined by (Bdf)(t) =∫
ρ(s, t)f(s) dNd(s), t ∈ Rd, f ∈ L2(Rd, Nd). Let {λk, ek, k ≥ 1} be a system of

eigenvalues and orthonormal eigenfunctions of Bd, that is,
∫
e2
k dNd = 1,

∫
ekel dNd

= 0, k 6= l,
∫
ρ(s, t)ek(s) dNd(s) = λkek(t). The operator Bd is of trace class with∑

k≥1 λk =
∫
ρ(s, s) dNd(s) <∞, and its Fredholm determinant δd is known to be

δd(z) =
∏
k≥1(1− zλk), z ∈ C; see Dunford and Schwartz [6]. There is a version of

the process {G(t), t ∈ Rd} which can be regarded as a Gaussian random element
in the Hilbert space L2(Rd, Nd). Its law is the same as that of

∑
k≥1

√
λkekWk,

where the Wk are independent standard normal variables; see Araujo and Giné [2],
page 157. It follows that T =

∫
G2 dNd has the same distribution as

∑
k≥1 λkW

2
k .

Its Laplace transform is δd(−2t)−1/2, t ≥ 0.

3. The integral

∫
G1(t)2 dNd(t)

Let ρ = ρ1. To derive the complete system of eigenvalues and orthonormal
eigenfunctions of the integral operator Bd, we introduce the integral operator B0d :
L2(Rd, Nd)→ L2(Rd, Nd) defined by

B0df(y) =

∫
exp

(
−1

2
|x− y|2

)
f(x) dNd(x), f ∈ L2(Rd, Nd), y ∈ Rd.

Let us treat the case d = 1 first. For abbreviation, we put N = N1 = N(0, 1) and

b = 1
2 (
√

5− 1). Note, that b+ 1 is the Golden Section number; see Vajda [11]. For
verifying some of the subsequent assertions, it is useful to remember the identities
b2 = 1−b, b = 1/(1+b), b2 = 1/(b+2). Denoting the Hermite polynomial of degree

n by Hen(x) = (−1)n exp(x2/2) dn

dxn exp(−x2/2), x ∈ R, we have

1√
2π

∫ +∞

−∞
exp

(
−1

2
(x− y)2

)
Hen(ax) dx = (1− a2)n/2Hen

(
ay

(1− a2)1/2

)
,(5)

for any real a, |a| < 1, and y ∈ R (see Erdélyi, Magnus, Oberhettinger and Tricomi
[8], page 290, formula (17)). Starting from (5) and the orthogonality relations for
the Hermite polynomials (see Erdélyi, Magnus, Oberhettinger and Tricomi [8], page
289, formulas (9) and (11)) it can be verified that

γm = b2m+1, gm(x) =
51/8

√
m!
Hem(51/4x) exp

(
− b

2
x2

)
, x ∈ R, m = 0, 1, . . . ,

(6)

is a complete system of eigenvalues and orthonormal eigenfunctions of B01. In the
case d > 1 then obviously

gd;m1,...,md(x1, . . . , xd) =
d∏
j=1

gmj (xj), xj ∈ R, mj ∈ {0, 1, . . .}, j = 1, . . . , d,

(7)

is a complete system of orthonormal eigenfunctions of B0d. The eigenvalue associ-

ated with the eigenfunction gd;m1,...,md is
∏d
j=1 γmj = b2(m1+···+md)+d. This means

that the eigenvalues of B0d are b2m+d with multiplicity
(
m+d−1
m

)
, m = 0, 1, . . . . Now
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we have that the operator Bd is of the form Bd = B0d − B1d, where the operator
B1d : L2(Rd, Nd)→ L2(Rd, Nd) is defined by

B1df(y) =

[∫
exp

(
−1

2
|x|2
)
f(x) dNd(x)

]
exp

(
−1

2
|y|2
)
,

f ∈ L2(Rd, Nd), y ∈ Rd.
(8)

Again, let us consider the case d = 1 first. For an odd function f ∈ L2(R, N), the
integral in (8) vanishes. Since the Hermite polynomials of degree m = 2l + 1, l =
0, 1, . . . , are odd functions, it follows that the functions gm in (6) with m = 2l+ 1,
l = 0, 1, . . . , are also eigenfunctions of B1. Therefore, b4l+3, l = 0, 1, . . . , are also
eigenvalues of B1. To find the remaining eigenvalues of B1 we argue as follows. A
solution g of

B1g = γg(9)

for some positive γ, with g being orthogonal to these g2l+1 for each l = 0, 1, . . . ,
can be represented in the form g =

∑∞
l=0 a2lg2l with real a2l. The series converges

in L2(R, N). Putting

b2l =

∫
exp

(
−1

2
x2

)
g2l(x) dN(x) = 51/8

√
2l!

2ll!
(−1)lb4l+1(10)

(see Abramowitz and Stegun [1], formula 22.13.17) and

c =

∫
exp

(
−1

2
x2

)
g(x) dN(x),

we conclude, having such a solution of (9), that
∞∑
l=0

a2lg2l(b
4l+1 − γ) =

∞∑
l=0

cb2lg2l.(11)

It is immediately seen that c 6= 0 and that γ 6= b4l+1, l = 0, 1, . . . . So, a2l =
cb2l/(b

4l+1 − γ). Multiplying the left and the right hand sides of

g(x) =
∞∑
l=0

cb2l
b4l+1 − γ g2l(x)

by exp(−x2/2) and then integrating with respect to the standard normal distribu-
tion we get

1 =
∞∑
l=0

b22l
b4l+1 − γ .

Thus introducing the meromorphic function

ω1(z) = 1 + 51/4z
∞∑
l=0

(2l)!
(l!)222l b

8l+2

1− zb4l+1
, z ∈ C,(12)

we find that ξ = 1/γ is a zero of ω1(z). On the other hand, having a zero ξ of
ω1(z), it is easily seen that its inverse 1/ξ is an eigenvalue of B1 associated with
the eigenfunction

∞∑
l=0

b2l
b4l+1 − γ g2l.
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Although somewhat more intricate, the case d > 1 can be treated in a similar
manner. In fact, we get that for every d-tuple (m1, . . . ,md) with entries mj ∈
{0, 1, . . .} at least one of which is odd, the function gd;m1,...,md(x1, . . . , xd) in (7)

is an eigenfunction of Bd with associated eigenvalue b2(m1+···+md)+d. On writing
a further solution g ∈ L2(Rd, Nd) of B0d = γg with associated eigenvalue γ and
being orthonormal to these gd;m1,...,md(x1, . . . , xd) in the form

g =
∞∑

m1=0

· · ·
∞∑

md=0

a2m1,...,2mdgd;2m1,...,2md ,

by analogy to (11) we get the identity

∞∑
m1=0

· · ·
∞∑

md=0

a2m1,...,2md(b4(m1+···+md)+d − γ)gd;2m1,...,2md

=
∞∑

m1=0

· · ·
∞∑

md=0

cb2m1 . . . b2mdgd;2m1,...,2md ,

where c =
∫

exp(−|x|2/2)g(x) dNd(x), and the b2mj are defined in (10). Then we
have to consider two cases.

Case 1: γ = b4m+d for some nonnegative integer m. Then c = 0, and g is of the
form

g =
∑

m1+···+md=m

a2m1,...,2mdgd;2m1,...,2md(13)

with coefficients a2m1,...,2md satisfying∑
m1+···+md=m

a2m1,...,2mdb2m1 . . . b2md = 0.

The linear space of functions of this form is of dimension
(
m+d−1
m

)
−1. So, γ = b4m+d

has multiplicity
(
m+d−1
m

)
− 1.

Case 2: γ 6= b4m+d for every nonnegative integer m. Then c 6= 0, and γ is
obtained as a solution of the equation

1 =
∞∑

m1=0

· · ·
∞∑

md=0

b22m1
. . . b22md

b4(m1+···+md)+d − γ =
∞∑
m=0

5d/4(−1)m
(
−d/2
m

)
b8m+2d

b4m+d − γ .

Alternatively, introducing the meromorphic function

ωd(z) = 1 + 5d/4z
∞∑
m=0

(−1)m
(
−d/2
m

)
b8m+2d

1− zb4m+d
,(14)

we find that 1/γ is a simple zero of ωd(z). The associated function g is

∞∑
m1=0

· · ·
∞∑

m1=0

b2m1 . . . b2md
b4(m1+···+md)+d − γ gd;2m1,...,2md .

It is immediately seen that the γ, g found are in fact solutions of Bdg = γg.
Let us summarize the results obtained. To this end, note that for a given non-

negative integer m, the number of d-tuples (m1, . . . ,md) of nonnegative integers, at

least one of which is odd and satisfies m1 + · · ·+md = m, is
(
m+d−1
m

)
−
(m/2+d−1

m/2

)
if m is even and

(
m+d−1
m

)
if m is odd.
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Theorem 1. Let ξm, m = 1, 2, . . . , be the zeros of the meromorphic function ωd(z).
Then the distribution of T1 =

∫
G1(t)2 dNd(t) is the same as that of

∞∑
k=0

b4k+d+2χ2

(2k+d
2k+1)

(k, 1) +
∞∑
l=1

b4l+dχ2

(2l+d−1
2l )−1

(l, 2) +
∞∑
m=1

1

ξm
χ2

1(m, 3),

where the χ2

(2k+d
2k+1)

(k, 1), χ2

(2l+d−1
2l )−1

(l, 2), χ2
1(m, 3) are independent χ2-variables, with

the respective degrees of freedom indicated in the subscripts. The variables with
subscript 0 occurring if d = 1 are suppressed.

We deduce from Theorem 1 that the rth cumulant of T1 is

κr = 2r−1(r − 1)!

{ ∞∑
m=1

(
1

ξm

)r
+

(
br

1− b2r

)d
− brd

1− b4r

}
, r ≥ 1.(15)

Arguing as in Darling [5] where a related problem is dealt with, it can be seen that
the Fredholm determinant of Bd is

δd(z) = ωd(z)
∞∏
m=0

(1− zb2m+d)(
m+d−1
m ), z ∈ C.

This gives the representation [1/δd(−2t)]1/2, t ≥ 0, for the Laplace transform of
T1. Expanding the rational expressions 1/(1− zb4m+d) in (14) in geometric power
series we get

ωd(z) =
∞∑
m=0

zm/(F (2(m+ 1)))d/2, |z| < b−d,

with F (m) the Fibonacci numbers determined by F (m + 1) = F (m) + F (m − 1),
m = 1, 2, . . . , F (0) = 0, F (1) = 1. Using this and expanding log[1/δd(−2t)]1/2 in
powers of t, we see that the coefficient of tr is

(−1)r
2r−1

r

{(
br

1− b2r

)d
+ δr

}
,(16)

where

δr = r
r∑
k=1

(−1)k
1

k

∑
m1+···+mk=r

mi=1,2,...,i=1,...,k

1

(F (2(m1 + 1)) . . . F (2(mk + 1)))d/2
.

Up to the multiplicative constant (−1)rr! this coefficient is equal to the rth cumu-
lant of T1. Since

br

1− b2r =

{
1/(
√

5F (r)) if r is even,

1/L(r) if r is odd,

where the L(r), r = 0, 1, . . . , are the Lucas numbers defined by L(0) = 2, L(1) =
1, L(r + 1) = L(r) + L(r − 1), r = 1, 2, . . . , the cumulants of T1 can be written
alternatively in the form

κr =

{
2r−1(r − 1)! [(

√
5F (r))−d + δr] if r is even,

2r−1(r − 1)! [L(r)−d + δr] if r is odd.
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Comparing (15) and (16) we are able to compute the infinite sums
∑∞
m=1 ξ

−r
m ,

r = 1, 2, . . . . In fact,

∞∑
m=1

(
1

ξm

)r
=

brd

1− b4r + δr.

The distribution of T1 is most easily approximated by the distribution of the sum
of finitely many of the weighted χ2-variables occurring in Theorem 1. It is plain
that such an approximation should be based on the sum consisting of the variables
with the largest weights. So we have calculated by numerical methods the values
of the 12 smallest zeros of ω1(z) and ω2(z). These values are shown in Table 1.

Table 1. The 12 smallest zeros ξi, i = 1, . . . , 12, of ωd(z), d = 1, 2

ξi d = 1 d = 2
1 7.849336555578469 9.980597866810863
2 61.50441057386329 84.24682401892317
3 448.1831773838836 638.7849329947641
4 3179.147341949039 4645.090437279074
5 22268.85055919773 33091.54159992883
6 154929.5194062535 233046.4067592094
7 1073517.332252734 1629672.896578112
8 7419105.877262517 11343464.55464175
9 51182811.59769955 78704778.23373327

10 352654830.8574741 544825391.8014784
11 2427578689.601553 3765058015.432077
12 16699075379.06429 25984849966.06623

The sum of all eigenvalues of Bd is
∫

(1 − exp(−|x|2)) dNd(x) = 1 − 3−d/2. For

d = 1, the sum of the eigenvalues b4m+3, m = 0, 1, . . . , is b/
√

5. Adding to it the

sum
∑12
i=1 1/ξi, where we use the calculated value stated in the ith row of the first

column of Table 1 for ξi, we get the value 0.422649730800 agreeing with the exact
value 1− 1/

√
3 up to 10 decimal places.

For d = 2, the eigenvalues b4m+2 and b4m both occur with multiplicity 2m,
m = 1, 2, . . . . The sum of these eigenvalues counted according to their multiplicities
is 2/5 + 2b2/5. Adding to it the sum

∑12
i=1 1/ξi, where we use the calculated value

stated in the ith row of the second column of Table 1 for ξi, we get the value
0.666666666660. The exact value is 2/3.

4. The integral

∫
G2(t)2 dNd(t)

Let ρ = ρ2. Let us treat the case d = 1 first. From Mehler’s expansion (see
Erdélyi, Magnus, Oberhettinger and Tricomi [7], formula 10.13(22))

∞∑
m=0

zm

m!
Hem(

√
2x)Hem(

√
2y) = (1− z2)−1/2 exp

(
2xyz − (x2 + y2)z2

1− z2

)
(17)
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converging uniformly for z in compact subsets of (−1,+1), and for x, y in compact

subsets of R, we get by putting z = b2, x = 51/4s/
√

2 and y = 51/4y/
√

2 that

∞∑
m=0

b2m+1gm(s)gm(t) = exp(−(s− t)2/2).(18)

Substituting z = −b2, x = 51/4x/
√

2 and y = 51/4t/
√

2 in (17) we obtain

∞∑
m=0

(−1)mb2m+1gm(s)gm(t) = exp(−(s+ t)2/2).(19)

Subtracting the expressions on the left (right) hand side of (19) from the expressions
on the left (right) hand side of (18) we get the representation

∞∑
m=0

b4m+3gm(s)gm(t) =
1

2
[exp(−(s− t)2/2)− exp(−(s+ t)2/2)].(20)

From this we deduce that
∞∑
m=0

b2m+3/2gm(t)Zm, t ∈ R,

is a version of G2 with sample path in L2(R, N). The square of its norm equals∑∞
m=0 b

4m+3Z2
m. Its distribution is the same as that of T2 =

∫
G2(t)2 dN(t).

Treating the case d > 1 we put for abbreviation e(u) = exp(−u2/2), u ∈ R.
Then the covariance function ρ2 can be written as

ρ2(s, t) =
d∑
k=1

1

2
[e(sk − tk)− e(sk + tk)]

k−1∏
j=1

e(sj + tj)
d∏

l=k+1

e(sl − tl),

for s = (s1, . . . , sd)
′ ∈ Rd, t = (t1, . . . , td)

′ ∈ Rd. In what follows we use the
identities ∫

e(u− v)gm(u) dN1(u) = b2m+1, m = 0, 1, 2, . . . ,∫
e(u+ v)gm(u) dN1(u) =

{
b2m+1 if m is even,

−b2m+1 if m is odd,

and ∫
1

2
[e(u− v)− e(u+ v)]gm(u) dN1(u) =

{
0 if m is even,

b2m+1 if m is odd.

Let m = (m1, . . . ,md) be a d-tuple of nonnegative integers, and denote by k(m)
the number of its odd components mi. It is easily verified that∫

ρ2(s, t)gd,m1,...,md(t) dNd(t) =

{
0 if k(m) is even,

b2(m1+···+md)+dgd;m1,...,md(s) if k(m) is odd.

IfMd is the set of all d-tuples of nonnegative integers with odd number k(m), we see
that gd;m1,...,md , (m1, . . . ,md) ∈ Md, is a collection of orthonormal eigenfunctions
with associated positive eigenvalues

b2(m1+···+md)+d, (m1, . . . ,md) ∈Md.(21)
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The sum of these eigenvalues is∑
(m1,...,md)∈Md

b2(m1+···+md)+d =

[(d+1)/2]∑
k=1

∞∑
m=0

b4m+d+4k−2

(
d

2k − 1

)(
m+ d− 1

m

)

=

[(d+1)/2]∑
k=1

(
d

2k − 1

)
b2d

(1− b4)d
b4k−2−d(22)

= 5−d/2b−d
1

2
[(1 + b2)d − (1− b2)d]

=
1

2
(1− 5−d/2).

The sum of all positive eigenvalues of the integral operator Bd is equal to∫
ρ2(t, t) dNd(t). An easy calculation yields

∫
ρ2(t, t) dNd(t) = 1

2 (1−5−d/2). There-
fore (21) gives the complete system of positive eigenvalues. Summarizing we can
state the following result.

Theorem 2. The distribution of T2 =
∫
G2(t)2 dNd(t) is the same as that of

[(d+1)/2]∑
k=1

∞∑
m=0

b4m+d+4k−2χ2

( d
2k−1)(

m+d−1
m )

,

where the χ2

( d
2k−1)(

m+d−1
m )

are independent χ2-variables, with the degrees of freedom

indicated in the subscripts.

By similar manipulations as those in (22) the rth cumulant of T2 is seen to be

2r−1(r − 1)!

[(d+1)/2]∑
k=1

∞∑
m=0

b(4m+d+4k−2)r

(
d

2k − 1

)(
m+ d− 1

m

)

=

{
2r−2(r−1)!
F (2r)d

[(L(r)/
√

5)d − F (r)d] if r is even,
2r−2(r−1)!
F (2r)d

[F (r)d − (L(r)/
√

5)d] if r is odd.

5. Concluding remark

The problem of testing the composite hypothesis of multivariate normality can
be treated in a similar manner. But now in the case where the hypothesis is true
the mean vector and covariance matrix of the true normal distribution are unknown
and must be estimated from the data. It can be shown that a test statistic similar
to (1) converges in distribution to the integral

∫
G(t)2 dNd(t) of a certain Gaussian

process {G(t), t ∈ Rd} so that the methods of Section 2 apply. However, the
covariance function of this process is more complicated. At present we are unable
to give a complete solution analogous to those in Section 3 and Section 4.
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