FIBONACCI POLYNOMIALS OF ORDER K, MULTINOMIAL EXPANSIONS AND PROBABILITY

ANDREAS N. PHILIPPOU
Department of Mathematics Univeristy of Patras Patras, Greece

COSTAS GEORGHIOU

School of Engineering
Univeristy of Patras
Patras, Greece

GEORGE N. PHILIPPOU

Department of General Studies Higher Technical Institute Nicosia, Cyprus
(Received October 31, 1982)

Abstract

The Fibonacci polynomials of order k are introduced and two expansions of them are obtained, in terms of the multinomial and binomial coefficients, respectively. A relation between them and probability is also established. The present work generalizes results of [2] - [4] and [5]. KEY WORDS AND PHRASES. Fibonacci polynomials of order k, expansions, multinonial and binomial coefficients, probability.

1980 MATIEMATICS SUBJECT CLASSIFICATION CODE. $10 A 40$.

1. INTRODUCTION.

In the sequal, k is a fixed integer greater than or equal to 2 , x is a positive and finite real number, and n is a nonnegative integer unlegs otherwise specified. Motivated introduced the Fibonacci polynomials of order k, to be denoted by $f_{n}^{(k)}(x)$, and study some of their properties. First we observe that $f_{n}^{(k)}(x)$ are generalized polynomials, appropriate extensions for the Fibonacci and Pell numbers of order k [3], [4], and identical to the r-bonacci polynomials $R_{n}(x)(n \geq-(r-2)$) of [1] for $k=r$ and $n \geq 0$. Then we state and prove a theorem, which provides two expansions of $f_{n}^{(k)}(x)$ ($n \geq 1$) in terms of the multinom1al and binomial coefficienta, respectively. Hoggatt and Bicknell [1], amoung other results, give another expansion of $f_{n}^{(k)}(x)$, in terms of the
elements of the left - justified k-nomial triangle. The latt r , however, are less widely known and used than the multinomial and binomial coefficients, and on this account our expansions may be considered better. As a corollary to our theorem, we derive several results of [2]-[4] and [5]. We also obtain a relation between $f_{n}^{(k)}(x)$ ($n \geq 1$) and probability.

2. THE FIBONACCI POLYNOMIALS OF ORDER K AND MULTINOMIAL COEFFICIENTS.

In this section, we introduce the Fibonacci polynomials of order k and derive two expansions of them im terms of the multinomial and binomial coefficients, respectively. The proof is along the lines of [2] and [4].

DEFINITION. The sequence of polynomials $\left\{f_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ is said to be the sequel of Fibonacci polynomials of order k if $f_{0}^{(k)}(x)=0, f_{1}^{(k)}(x)=1$, and

$$
f_{n}^{(k)}(x)=\left\{\begin{array}{ll}
\sum_{i=1}^{n} x^{k-i} & f_{n-i}^{(k)}(x) \tag{2.1}\\
\text { if } 2 \leq n \leq k \\
\sum_{i=1}^{k} x^{k-i} & f_{n-i}^{(k)}(x)
\end{array} \quad \text { if } n \geq k+1 . ~\{~, ~\right.
$$

If $f_{n}^{(r)}(x)=0$ for $-(r-2) \leq n \leq-1$, Hoggatt and Bicknod1 [1] call $R_{n}(x)=f_{n}^{(r)}(x)(n \geq-(r-2))$ r-bonacci polypomials.

Denoting by $F_{n}(x), f_{n}^{(k)}$ and $P_{n}^{(k)}$, respectively, the Fibonacci polynomials [5], the Fibonacci numbers of order k [3], and the Pell numbers of order k [4], it follows from (2.1) that

$$
\begin{equation*}
f_{n}^{(2)}(x)=F_{n}(x), \quad f_{n}^{(k)}(1)=f_{n}^{(k)} \text { and } F_{n}^{(k)}(2)=p_{n}^{(k)} \tag{2.2}
\end{equation*}
$$

We now proceed to show the following lemma.
LEMMA. Let $\left\{f_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci polynomials of order k, and denote its generating function by $g_{k}(s ; x)$. Then, for $|s|<x /\left(1+x^{k}\right)$,

$$
g_{k}(s ; x)=\frac{s\left(1-\frac{s}{x}\right)}{1 \frac{s}{x}\left(1+x^{k}-8 k\right)}=\frac{s}{1-x^{k}\left[\frac{s}{x}+\left(\frac{s}{x}\right)^{2}+\ldots+\left(\frac{s}{x}\right)^{k}\right]}
$$

PROOF. We see from the definition that $f_{2}^{(k)}(x)=x^{k-1}, X_{n}^{(k)}(x)-f_{n-1}^{(k)}(x)=x_{f}^{k} f_{n-1}^{(k)}(x)$ for $3 \leq n \leq k+1$, and $x f_{n}^{(k)}(x)-f_{n-1}^{(k)}(x)=x^{k} f_{n-1}^{(k)}(x)-f_{n-1-k}^{(k)}$ ($\left.x\right)$ for $n \geq k+2$. Therefore,

$$
\begin{align*}
f_{n}^{(k)}(x) & =\left\{\begin{array}{ll}
\frac{1}{x}\left(1+x^{k}\right) f_{n-1}^{(k)}(x), & 3 \leq n \leq k+1 \\
\frac{1}{x}\left(1+x^{k}\right) f_{n-1}^{(k)}(x)-\frac{1}{x} f_{n-1-k}^{(k)}(x), & n \geq k+2
\end{array}\right\} \\
& =\left\{\begin{array}{ll}
{\left[\frac{1}{x}\left(1+x^{k}\right)\right]^{n-2} x^{k-1},} & 2 \leq n \leq k+1 \\
\frac{1}{x}\left(1+x^{k}\right) f_{n-1}^{(k)}(x)-\frac{1}{x} f_{n-1-k}^{(k)}(x), & n \geq k+2
\end{array}\right\} \tag{2.3}
\end{align*}
$$

It may be seen, by means of (2.3) and induction on n, that

$$
\begin{equation*}
f_{n}^{(k)}(x) \leq\left[\frac{1}{x}\left(1+x^{k}\right)\right]^{n-2} x^{k-1}, \quad n \geq 2, \tag{2.4}
\end{equation*}
$$

which implies the convergence of $g_{k}(s ; x)$ for $|s|<x /(1+x)$. Next, by means of (2.3), we pbserve that

$$
\begin{align*}
g_{k}(s ; x) & =\sum_{n=0}^{\infty} s^{n} f_{n}(k)(x) \\
& =s+\sum_{n=2}^{k=1} s^{n}\left[\frac{1}{x}\left(1+x^{k}\right)\right]^{n-2} x^{k-1}+\sum_{n=k+2}^{\infty} s^{n} f_{n}(k)(x), \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{n=k+2}^{\infty} s^{n} f_{n}(k)(x) & =\frac{1}{x}\left(1+x^{k}\right) \sum_{n=k+2}^{\infty} s^{n} f_{n-1}^{(k)}(x)-\frac{1}{x} \sum_{n=k+2}^{\infty} s^{n} f_{n-1-k}(k) \\
& =\frac{s}{x}\left(1=x^{k}\right)\left\{\begin{array}{l}
\sum_{n=0}^{\infty} s^{n} f_{n}(k) \\
\left.(x)-s-\sum_{n=2}^{\infty} s^{n}\left[\frac{1}{x}\left(1+x^{k}\right)\right]^{n-2} x^{k-1}\right\}-\frac{1}{x} s^{k+1} \sum_{n=1}^{\infty} s^{n} f_{n}^{(k)}(x) \\
\\
\end{array}\right)\left[\frac{s}{x}\left(1+x^{k}\right)-\frac{\sigma^{k+1}}{x}\right] g_{k}(s ; x)-\frac{s^{2}}{x}-\sum_{n=2}^{k=1} s^{n}\left[\frac{1}{x}\left(1+x^{k}\right)\right]^{n-2} x_{x}^{k-1}
\end{align*}
$$

The last two relations give

$$
g_{k}(s ; x)=s+\frac{s}{x}\left(1+x^{k}-s^{k}\right) g_{k}(s ; x)-\frac{s^{2}}{x}
$$

so that

$$
g_{k}(8 ; x)=\frac{s\left(1 \frac{s}{x}\right)}{1-\frac{s}{x}\left(1+x^{k}-s^{k}\right)}=\frac{s}{1-x^{k}\left[\frac{8}{x}+\left(\frac{s}{x}\right)^{2}+\ldots+\left(\frac{s}{x}\right)^{k}\right]}
$$

We will employ the above lema to establish the following expansions of $f_{n}^{(k)}(x)(\dot{n} \geq 1)$. THEOREM, Let $\left\{f_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the Fibonacci polynomials of order k. Then

$$
\text { (a) } f_{n+1}^{(k)}(x)=n_{1}, \ldots, n_{k}\binom{n_{1}+\ldots+n_{k}}{n_{1}, \ldots, n_{k}} x^{k\left(n_{1}+\ldots+n_{k}\right)-n}, n \geq 0,
$$

where the summation is over all non-negative integers n_{1}, \ldots, n_{k} such that $n_{1}+2 n_{2}+\ldots+k n_{k}=n$;

$$
\text { (b) } \begin{aligned}
f_{n+1}^{(k)}(x) & =\left(\frac{1+x^{k}}{x}\right)^{n} \underset{\sum_{i=0}^{[n /(k+1)]}}{ }(-1)^{i}\binom{n-k i}{1} x^{k i}\left(1+x^{k}\right)-(k+1) i \\
& -\frac{1}{x}\left(\frac{1+x^{k}}{x}\right)^{n-1} \underset{\sum_{i=0}^{[(n-1) / k+1)]}(-1)^{i}\binom{n-1-k i}{i} x^{k i}\left(1+x^{k}\right)-(k+1) i, n \geq 1,}{n \geq 1,}
\end{aligned}
$$

where, as usual, $[x]$ denotes the greatest interger in x.
PROOF. First we show (a). Let $|s|<x /\left(1+x^{k}\right)$, so that $\left|x^{k}\left[\frac{8}{x}+\left(\frac{8}{x}\right)^{2}+\ldots+\left(\frac{8}{x}\right)^{k}\right]\right|<1$. - Let n_{i} (lsisk) be non-negative integers as specified below. Then, using the lemma and the multinomial theorem, and replacing n by $n-\sum_{i=1}^{k}(i-1) n_{1}$, we get,

$$
\begin{align*}
& \sum_{n=0}^{\infty} s^{n} f_{n+1}^{(k)}(x)=\left\{1-x^{k}\left[\frac{s}{x}+\left(\frac{s}{x}\right)^{2}+\ldots+\left(\frac{g}{x}\right)^{k}\right]\right\}^{-1} \\
& =\sum_{n=0}^{\infty}\left\{x^{k}\left\{\frac{s}{x}+\left(\frac{s}{x}\right)^{2}+\ldots+\left(\frac{s}{x}\right)^{k}\right\}\right\}^{n} \\
& =\sum_{n=0}^{\infty} x^{k n} n_{n_{1}, \ldots, n_{k} \ni}^{n_{1}+\ldots+n_{k}=n}<\sum_{n_{1}, \ldots, n_{k}}^{n}\left(\frac{s}{x}\right)^{n_{1}+2 n_{2}+\ldots+k n_{k}} \\
& =\sum_{n=0}^{\infty} s^{n} n_{1}, \ldots, n_{k} \ni \quad\binom{n_{1}+\ldots+n_{k}}{n_{1}, \ldots, n_{k}} n^{k\left(n_{1}+\ldots+n_{k}\right)-n, ~} \tag{2.8}\\
& n_{1}+2 n_{2}+\ldots+k n_{k}=n
\end{align*}
$$

from which (a) follows.
We now proceed to establish (b). Let $0<s<x /\left(1+x^{k}\right)$, so that $\left|\frac{s}{x}\left(1+x^{k}-s^{k}\right)\right|<1$. Then, using the lemma and the binomial theorem, replacing n by $n-k i$, and setting

$$
\begin{equation*}
B_{n}^{(k)}(x)=\left(\frac{1+x^{k}}{x}\right) \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} x^{k i}\left(1+x^{k}\right)^{-(k+1) i}, n \geq 0, \tag{2.9}
\end{equation*}
$$

we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} s^{n} f_{n+1}^{(k)}(x) & =\left(1-\frac{s}{x}\right)\left[1-\frac{s}{x}\left(1+x^{k}-s^{k}\right)\right]^{-1} \\
& =\left(1-\frac{s}{x}\right) \sum_{n=0}^{\infty}\left[\frac{s}{x}\left(1+x^{k}-s^{k}\right)\right]^{n}
\end{aligned}
$$

$$
\begin{align*}
& =\left(1-\frac{s}{x}\right)^{n} \sum_{i=0}^{\infty}\left(\frac{s}{x}\right)^{n} \sum_{i: n 0}^{\infty}(-1)^{i}\binom{n}{i}\left(1+x^{k}\right)^{n-1} B_{B} k i \\
& =\left(1-\frac{s}{x}\right)_{n=0}^{\infty} \sum_{n} s^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\left(\begin{array}{c}
n-k i \\
i
\end{array}\left(1+x^{k}\right)^{n-(k+1) i_{x}-(n-k i)}\right. \\
& =\left(1-\frac{s}{x}\right) \sum_{n=0}^{\infty} s^{n} B_{n}^{(k)}(x), \text { by }(2.9) \\
& =1+\sum_{n=1}^{\infty} s^{n}\left[B_{n}^{(k)}(x)-\frac{1}{x} B_{n-1}^{(k)}(x)\right], \tag{2.10}
\end{align*}
$$

since $B_{i}^{(k)}(x)=1$ from (2.9). The last two relations show part (b) of the theorem.
We have the following obvious corollary to the theorem, by means of relation (2.2). COROLLARY 2.1. Let $F_{n}(x), f_{n}^{(k)}$ and $P_{n}^{(k)}$ denote the Fibonacci polynomials, the Fibonacil numbers of order k and the Pell numbers of order k, respectively. Then,
(a) $F_{n+1}(x)=\sum_{i=0}^{[n / 2]}\binom{n-i}{i} x^{n-2 i}, \quad n \geq 0 ;$
(b) (i) $f_{n+1}^{(k)}=\underset{n_{1}, \ldots, n_{k} \ni}{r_{L}}\binom{n_{1}+\ldots+n_{k}}{n_{1} ; \ldots, n_{k}} ; \quad n \geq 0$; $n_{1}+2 n_{2}+\ldots+k_{k}=n$
(b) (ii) $f_{n+1}^{(k)}=2^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} 2^{-(k+1) i}$

$$
-2^{n-1[(n-1) /(k+1)]}(-1)^{i}\binom{n-1-k i}{1} 2^{-(k+1) i}, n \geq 1
$$

(c) (i) $P_{n=1}^{(k)}=\underset{\substack{n_{1} \\ n_{1}+2 n_{2}+\ldots+k n_{k} \\ r_{k}}}{ }\binom{n_{1}+\ldots+n_{k}}{n_{1}, \ldots, n_{k}} 2^{k\left(n_{1}+\ldots+n_{k}\right)-n}, n \geq 0$;
(c) (ii) $P_{n+1}^{(k)}=\left(\frac{1+2^{k}}{2}\right) \sum_{i=0}^{n[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} 2^{k i}\left(1+2^{k}\right)^{-(k+1) i}$

$$
-\frac{1}{2}\left(\frac{1+2^{k}}{2}\right)^{n-1[(n-1) /(k+1)]} \sum_{i=0}(-1)^{i}\binom{n-1-k i}{i} 2^{k i}\left(1+2^{k}\right)^{-(k+1) i},
$$

REMARK. Part (a) of Corollary 2.1 was proposed by Swamy [5], who appears to be the first to introduce the Fibonacci polynomials. Part (b) (i) was first shown in [37, while (b) and (c), respectively, were later proved by a different method in [2] and [4].

The following corollary relates the Fibonacel polynomials of order k to probability.

COROLLARY 2.2. Let $\left\{f_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci polynomials of order k, and denote by N_{k} the number of trials until the occurrence of the k th consecutive success in independent trials with success probability $p(0<p<1)$. Then,

$$
P\left(N_{k}-n+k\right)=p^{n+k}\left(\frac{1-p}{p}\right)^{n / k} f_{n+1}^{(k)}\left(\left(\frac{1-p}{p}\right)^{1 / k}\right), \quad n \geq 0
$$

PROOF. It follows directly from Theorem 3.1 of [3] and part (a) of the present theorem.

In particular, Corollary 2.2. reduces to the following results of [2] and [4], respectively, by means of $(2,2)$.

Let N_{k} be as above, and set $p=\left(1+2^{k}\right)^{-1}$. Then,

$$
\begin{equation*}
P\left(N_{k}=n+k\right)=\frac{2^{n}}{\left(1+2^{k}\right)^{n+k}} P_{n+1}^{(k)}, \quad n \geq 0 \tag{2.11}
\end{equation*}
$$

Let N_{k} be as above, and set $p=1 / 2$. Then,

$$
\begin{equation*}
P\left(N_{k}=n+k\right)=\frac{1}{2^{n+k}} f_{n+1}^{(k)}, \quad n \geq 0 \tag{2.12}
\end{equation*}
$$

REFERENCES

1. HOGGATT, V. B. and BICKNELL, MARGORIE. Generalized Fibonacci Polynomials, The Fibonacci Quarterly 11 (1973), 457-465.
2. PHILIPPOU, A.N. A Note On the Fibonacci Sequence of Order K and Multinomial Coefficients, The Fibonacci Quarterly 21 (1983), in press.
3. PHILIPPOU, A.N. and MUWAFI, A.A. Waiting for the kth Consecutive Success and the Fibonacci Sequence of Order k, The Fibonacci Quarterly 20 (1982), 28-32.
4. PHILIPPOU, A.N. and PHILIPPOU, G.N. The Pell Sequence of Order k, Multinomial Coefficients, and Probability, Submitted for publication (1982).
5. SWAFY, M.N.S, Problem B - 74, The Fibonacci Quarterly 3 (1965), 236.

