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ABSTRACT

The Fibonacci search technique for maximizing a unimodal
function of one real variable is generalized to the case of a
given first evaluation. This technique is then employed to
determine the optimal sequential search technique for the

maximization of a concave function.
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I, Introduction

A real function f: [a,b] ~ R, where a <b, 1is called
(1.1) wnimodal,

i1f there are x, x ¢ [a,b] such that f is increasing for x < x
and nonincreasing for x > x, decreasing for x > x and non-

decreasing for «x :; (Fig. 1).

(1.2) If £ is unimodal, then the interval [x,x] econsists of

all maxima of f£.

Proof: f 1s constant in [5_,;], since it is by definition non-
increasing for x > x as well as nondecreasing for x < x. If
X < x, then f(x) < £(x) as f increases in [a,x]. If x > X,

then f£(x) < f(x) as f decreases in [x,b].-

The definition of unimodality is chosen so as to guarantee

that

(1.3) whenever a wiimodal function f has been evaluated for

two arguments x, and X, with a < x, <x

1l 1 2
some maximun of £ must lie in [xl,b] i f(xl) < f(x2)

<b, then

and in [a,x2] ar f(xl):f(xz).

Proof: 1f f(x)) > f(x,), then X, and x, cannot be both in that

portion of the interval [a,b] in which the function decreases. In

other words, x cannot lie to the left of X; . Thus x ¢ [xl,b],
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Figure 1.

Example of a unimodal function.
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and x 1is a maximum of f by (1.2). Similarly, if f(xl) s f(xz).
then X € [a,le.

A sequential search based on (1.3) will successively narrow down
the interval in which a maximum of f 1s known to lie., Such an

interval is called the

R S Y
R——

(1.4) interval of wicertainty.

Kiefer [3] has asked the question of optimally zonducting this search,

and answered it by developing his well known Fibonacci search.

The Fibonacci search gives a choice of two arguments for which
to make the first evaluation. But what happens if by mistake or for
some other reason the first evaluation took place at some argument
other than the two optimal ones? How does one optimally proceed from

there?

In this paper, we shall therefore ask and answer the question
for an optimal sequential search plan with given arbitrary first
evaluation. The resulting technique is applied to improving on
Fibonacci search for functions known to be concave. The technique may
also be of interest in the context of stability of Fibonacci search in
the presence of round-off errors as studied by Overholt [6] and

Boothroydt [1] (see also Kovalik and Osborne [4]).

2. Length of Uncertainty

In what follows we assume that a = 0 and b = 1, Furthermnore,

we sinall permit zero distances between two arguments of evaluation,
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interpreting each such occurrence as evaluating the (not necessarily
unique or finite) derivative of the function f. A more careful
analysis would take into account the smallest justifiable distance

¢ between arguments (Kiefer [3], Oliver and Wilde [5)).

By
Lk(x), 0<x<1l,

we denote the length to which the interval of uncertainty (1.4) can
surely be reduced by k evaluations in addition to a first one at

Xx. Extending a recursive argument due to Johnson [2]), we obtain
(2.1) L (x) = min {M (x), M (1-x)},
where

Mk(x): - xgyi;l max{(l-x)Lk_l(i—:‘;z") A yLk-.l(z;-)} .
Prooj’s Llet y denote the first function argument over which we
have control. If x <y <1, then the two possible intervals of
uncertainty are [O,y] and [x,1]. The former contains the point
of evaluation x. The best upper bound for the length of the
interval of uncertainty after the remaining k - 1 evaluations 1s

given by

X
(2.2) YLk_l(;) .

Similarly, y is the evaluation point in [x,1], leading to the

best upper bound
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Whether [0,y) or [x,1] 4is the first interval of uncertainty
depends on the result of the evaluation at y: 1f £(y) > f(x),
then [0,y), 1if f£(y) & £f(x), then [x,1]. Hence the maximum
Mk(x) of the two expressions (2.2) and (2.3) is the best result
achievable if y 4is selected between x and 1. The expression

5 = Ly, (1- Lok
00 e ain maxfel, &, oy )

analogously describes the best result achievable if y 1is between
0 and x. Since we control the choice of y, we can choose the

smaller one of these two expressions; and this gives
Lk(x) = min{Mk(x), Nk(x)} .

Introducing for 0 < x <y <1,

1~

Sk(x.y) . = max{(l—x)Lk_l('lji). yLk_l(";f')} 5

we have
Mk(x) = min Sk(x,y). Nk(X) « min Sk(y,x) .
xsy<1 Osy<x
Now for U <x <y <1,
(2.4) Sk(x,y) = Sk(l-y,l-x) :

Therefore, Nk(x) = Mk(l-x), and (2.1) is proved.-

At the beginning, the interval of uncertainty is the entire

interval in which the function is to be examined. A single function

[
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evaluation at any point x does not change this situation. Hence
Lo(x) -1,
We then have ‘l
M (x) = min max{l-x.y} = max{l-x,x} = M, (1-x). ’
x<y<1
1
Hence
1-x for 0 < x<'s
(2.5) L (x) = max{l-x,x} =
x for i x<1l.,
For k > 2, we claim (Fig. 2):
1-x Fr-1
X k+l
F
Fx fOP Fk-l i X : lg
k-1 k+1
F
:,-x for % Exe ?l‘_
k-1 k+1
F 1
F—x' fOI’ F_k— <x<1l,
k k+l
where FO-]., Fl-l, F2-2, F3-3,. o8 Fk'Fk-2+Fk-1 are
the Fibonacei ni..mbers.
Proof: The case k = 2 requires special treatment. From (2.5),
y-x for (x,y) € Al L ‘0 e 15'
% U-y—=7
X for (x,y) ¢ A2 L] :15;3_ 1: , .




Lk(x) for k=0, ...,

Figure 2,
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y=x for (x,y) ¢ Bl = 0 <

[
|
%

= 1y, .
(1-x)L, (D)

=)=
1
Al
[

l-y for (x,y) € B, := k% <

X

We are now able to determine Sz(x,y) in each of the four regions

Aiﬁ B, separately:

h|
Al N Bl: Sz(x,y) a max’y-x, y-x} = y-X,

AL NBy: S,(x,y) = max{y=x, 1-y} = 1-y.

A2 ﬂBlz Sz(x,y) = x by (2.4) and (1l-y,l-x) ¢ A ﬁBz.
if y > l-x

X
Ay NBy: S, (x,y) = max{x,l-y} =
l-y if y < 1-x.

The sets Ai and B‘1 are represented in Fig, 3. They are triangles

formed by the line segments marked Ai and Bj’ respectively, and
the corresponding opposite corner of the triangles. The feathered
lines are the minimum lines with respect to constant values of x,
i.e. if proceeding vertically the intersection with the feathered

lines marks a minimum. The function Mk(x) is defined to be the

value of this minimum. Hence

=S T
2 =t =13
M-)(x) b 1
- X if FIx< 1.
By (2.1) we then have finally
1-x 3 r &
Lz(x) = 2 LERNG S K= 3
1 1
X if 3 < R s 3
1-x if %i X i%
X if § <x <1,




»Y) .

Sz(x

Figure 3.




in accordance with (2.6).

X
yhye_y (;)

e
(-0 _, (D) =

we determine Sk(x,y)

remaining

The case k > 3 is now proved by induction over k. We have
F
yF;x—— for (x,y) € A = 0 <2< 1;-2
k-1 y k
F .
-F—’i— for (x,y) € A, = 1;-2 5_51%
k=2 k ~ Y
F
)’F;X,_ for (x,y)e.A3 = -,];‘_-}-{-i-%
k-2 - Kk
X 1:k-l X
5 for (x,y) ¢ AA o ~p— <2 < 1
k-1 k — ¥
F
%:5— for (x,y) ¢ By = 0% %:% < —%:3
k-1 k
F
k=2 k
F
X for (x,y) € B, = L d¥ . kel
»Y) E . S Y
R s 3 2= 1x~F
F
%;:L for (x,y) ¢ B, := l;,-l _5%-511 1
k-1 k X
in all regions AiﬂBj with 1 < §.
regions, we use (2.4).
S (x,y) - max{)"x , y-=X }. y-X
k -1 Pt B
Sk(x,y) = max{{:x , ;—y }- %y since (x,y) ¢ B2
k-1 k-2 k-2

gives (l-x)Fk._2 4 (l-y)Fk, and therefore (y-x)Fk_2 =

(1-x)F_, = (-y)F _, s (1=y)F - (A=y)F _, = (I-)F _,.

L ek ek B pe e gy

For the
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y=X y=x y=x
A, NB,: S(xy)-max{ X }-
177730 Tk Fre1  Tre2 F-2

y=X l-y 1-y "
A, NB,: S (x,y) = max{ . } = since (x,y) ¢ B ;
1 4 k? Fk-l Fk—l Fk-l 4 i
gives 1-x < 2(l-y) or y-x < l-y . ;
x 1-y 1 ;
A, NB,: S (x,y) = max{ . } = max { x, l-y} c
27 72" %k B e e {

A, NBy: 5, (x,y) = max{Fx , X } = L% gsince (x,y) ¢ A,

k-2 k=2 Fe-2

gives 2x <y or x <y = x .

l-y l-y
A, NB,: S (x,y) = max{ =, } = since (x,y) € A
2 4 k Fk-2 Fk-l Fk-l 2

+ yF, < F

gives 2x-y < 0, and since (x,y) ¢ 84 gives -xF K K=2°

k-1
Ipdred, multiplying the former inequality by Fk-l and adding it

to the latter gives xF _, *+ yF _, = Frooe

y-x y=x y-x
A, NB,: S(x,y)-max{ > }- .
S T Fima  Fre2) T

AN B,: Sk(x,y) -max{?x . sy } - A since (x,y) ¢ B,

3 k-2 Tk-1 s

gives (l-x)Fk-l < (l-y)Fk, and therefore (y-x)Fk_l =

(1=x)F _, = (=y)F ) < (1-y)F, = A-y)F _; = A-yIF _,.

X 1-y 1
A NB,: S(xy)=max{ . }-—-—max X, l-y}.
4 4 kS= Fk-l Fk-l Fk-l {

The schematic representation of Sk(x,y) then is given by Fig. 4. There
are breaks along the line x = 1 - y in areas AZ.’WB2 and Aaﬂ BA’ The
feathered lines are again tiiose boundaries of linearity regions at which
Sk decreases for fixed x. The abscissae of intersection points of

feathered lines are therefore critical. The first one of these criti-

cal arguments we denote by v. It is the abscissa of the intersection
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Figure 4. Sk(x.y) and critical arguments.
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point of the line

F
(2.7) e =
1-x Fk
which separates Bl from Bz, and the line
F
k=2
(2.8) l = _f— 'Y
k
which separates Al from A2. Elimination of y yields
v e ko2
Fk+Fk-2

. The third one,

Wi~

The next critical argument clearly has the value

which we call w, 1is the intersection of the line

F
2.9) ly | k21 -
1-x Fk
which separates B3 from 34’ and the line
F
(2100 X - =,
k
which separates A3 and Aa. Elimination of y yields
- el
Flel

The last critical argument finally has the value -% .

For 0 < x - v the values of Sk(x,y) at the intersection of the
vertical through x with the two feathered lines (2.8) and (2.9) are

potential minima. The equations of these lines can be rewritten as

l-y 1-x
= and .
Fi-2 Fi Fier Ry

1y o 1l=x

~

¥
B

3

]
’

PR




-14=

i
|
,' As these terms also represent the value of Sk(x,y), we have

Mk(x)--:,_—x for 0 < x <wv.

' k
'L ' For v < x < -;'- locally minimal points are to be found on line
(2.9) and in the area where Sk(x,y) assumes the value Fx . Now
k-2
X 1-x 1l-x
x>v gives xF > (1-x)F _, or A :Fk— . Thus M (x) = ﬁ-

for v_<_xi-§-.

b i For %i x < w only the line (2.9) is interesting, and Mk(x)
) still takes the value %-—)-‘- .
' k
For w < x i‘;‘ and beyond the minimum 1s assumed within the entire
line segment which happens to meet the area in which Sk(x,y) = -F—:: F

Thus finally

F
(2.11) —;—’—’5 for 0 <x < Fk'l
k k+1
~ (x) =
i & x F-1
F for 7 <x<1l,
! k-l k+l
: and (2.6) follows immediately from (2.1).-
b Note also that (2.11) implies
(x) for O0 < x < L
(2.12) M ixs3
i L (x) =
' ’ E M (1-x) for %i %5 s

3. Search Strategy.

In the previous section, we have determined the optimal length of
uncertainty Lk(x) , which can be achieved in k evaluations in addition

to one evaluation at x ¢ [0,1]. We have yet to describe a search strategy
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which realizes Lk(x). This amounts to specifying the argument y of
the first evaluation in addition to x. In view of (2.12), this reduces
to determining y such that Mk(x) = Sk(x,y) for given x between

0 and a task which has been performed already while calculating

1
"2"9

4 (0. 3
If 0 < x <v, then there are two optimal solutions y, since 4
-7 [
Sk(x,y) = %:ﬁ along both feathered lines in Fig. 4. This non- i
k
uniqueness is not surprising. Indeed, if x = 0, then the evaluation
at this argument does not contribute at all towards narrowing the
interval of uncertainty, and the optimal continuation is just plain
Fibonacci with one evaluation wasted. And in this case there are two
optimal arguments, namely the first and second (k-1)-st order o
Fibonacci points
Feez  Fea
’ .
Fy Fe
)
(3.1) If 0« x < ===, tnen awy of tne two (k-1)-st order
A2
Fibonacei pointe in the interval [x,1} i8 an optimal evaluation
point
F xF + F
y, = % + -———‘;-2 (1-x) = ) B~ :, L
k k
F xF + F
y2-x+_l;:-l(1-x)-_._h-§——ﬁl =
k k
1 1
In both intervals v = x 23 and LRIV, the optimal
solution y 1is unique.
1
= = 1 —
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| ) Fy-1
(3.2) If == <x % then the cptimal evaluation point y
B P2 Fi-2

i@ the first (k-1)-st order Fibonaceti point of the interval ([x,l1]. ‘ ,

r boaally, 1f w < x _<_-§- , then the optimal solutions fill an

entire interval.

F

(3.3) Let LS QP L . If y. <8 such that x <8 the second
P 0

(k=1)-8t order Fibonacci point in [O,yo], then all pointe in

[1-x,y0] are optimal evaluation pointa.
The following rule will always yleld an optimal solution:

(3.4) Theorem: An optimal searcn strategy after an arbitrary fivst
evaluation at Xg € [a,b] i8 as followe. If c < x < d are such
that [c,d] oconatitutes the interval of uncertainty after L
additional evaluatiors, and 1f x 18 the argument for which the
funetion has been cvaluated already, then:

(1) If x lies betweer ¢ and the first (k-L)-th order
Fibonacc! pointe in [c,d), then choose y a8 the firet (k-2)-th
order Fibonacci point in [x,d].

K (11) If x lies between the two (k-L)-th order Fibonacci

points of [c,d], tiien choose y as the symmetric image of x 1in

[c,d], Z.e. y=c+d-x
(111) If x 1lies between d and the second of the two (k=) -th
! order Fibonacei roints in [c,d), then choose y as the second

(k=2)-th order Fibonace: point in [c,x].

We shall refer to any sequential search strategy in keeping with
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(3.1, 2, 3), in particular the rule described in Theorem (3.4), as

(3.5) modi fied Fibonacci search .

If the interior of the interval of uncertainty does not contain an
argument at which the function has been evaluated already, then the
select!in of the next evaluation by modified Fibonacci search will

be the same as in standard Fibonaccl search.

4. Spies

Intervals of uncertainty with nonoptimal evaluation points may
be the result of tihe following situation. Suppose in maximizing a
function we avail ourselves of the services of a "spy". This spy
operates as follows: every time an interval of uncertainty has
been based on the results of prior evaluations, he is consulted, and
as a result of this consultation, the interval of uncertainty may some-
times be further reduced (remaining an interval) without additional
evaluations. One cannot expect, however, that the remaining evaluation
point (if there is any) is in optimal position within the new interval

of uncertainty.

In this case, there is a question whether the additional infor-
mation should be accepted. It is indeed conceivable that reducing
the interval of uncertainty and subsequently continuing from a non-
optimal evaluation point would in the final analysis lead to a larger
interval of uncertainty than ignoring the additional information and
doing a straightforward Fibonacci search. That this is not so, is

essentially the content of the following
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(4.1) Theorem: The optimal policy in the presence of an un-
predictable spy is to heed hie advice au! to proceed from the
interval of uncertainty so achieved by modificd Fibonacei search

with respect to the remaining evaluation point if there is any.

Proof: Let [c,d] be the interval of uncertainty as determined by

<d<d,

ol

the previous step of the search, and let (c,d], Gy
be the interval of uncertainty after consulting the spy. As the spy

is unpredictable, there may be no further information forthcoming.
This is the worst case, since even if the spy is providing information,
it need not be heeded, Thus all we have to show is that we do not
worse by proceeding form {c,d] than from any other interval [c*,d*]

with [c,d] D [c*,d*] D [c,d].

Now let x be the evaluation point in [c,d]). Then we
distinguish two cases, depending on whether x ¢ [E;Z] or not.
Suppose x ¢ [c,d], then x € [c*,d*]. Working on the latter
interval, the best we can do in £ remaining steps is reducing

the uncertainty to

* X =-c F
dF 2 for 0 < — < Fl'l (= 11)
) " - c* i
*
* X =-c
* 5= =05 Fz-l E x ‘% (=2 1))
@ - ML) 2-1 i+l d* - ¢
: d* - c* d* - x 1 3 c* Fz
T for 2 < -_— 7 (=: 13)
L-1 a* - ¢* sl
*
s C* FE kK 42 B
for < <1 (=: 1,).
Fz F2+1 LI c* 4
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x - c¥ Xx=-c

For all x such that TR and -——— are both in one of the
d" -¢ d-c

four intervals 1, above,

i

* -
(d* - c*)L£<i—;—c—*> > (d - E)L2<j - i)
d* - ¢ d-c¢

(4.2)

is immediate.

six, as the others follow by symmetry. Let

Of the remaining twelve cases, we need consider only

RN AT 8 1Y

x - ¢ X =-c x - c* F d* - x Fl-l
€ I1 and € 12: B <l F implies > F
u® u u* 2+1 u* +1
d* - x X - c* X - E :
Thus > > .
o= R 7 Ry
X - ¢k X -c ‘
= & Il and : € 14: F,o2 Fl-l .
d* - x x - c¥ X-c X -c
Thus > > > L
Foo = Fia Frm1 Fy
X = C* X = -E il : — —
eIz and = c13:x-ciigives x=-c¢c>d-x.
u* u
X - c¥ X-c d-x
Thus » > .
Fﬂ—l Fﬂ'_1 Fz_l
X - c¥ X-c
15 > 0
g € 12 and - eI, Fo2 Fz-l
X - ck X -c X =-c
Thus > > 5
-1 Foo1 F
X - c¥® X -c X - ¢% F d* - x FQ1
1, and ——— ¢ L - L implies S =
o* u u* L+l u* L+1
d* - x X = ck X-c
Thus » > .
_ ¥ o
Foo1 " B
4
- - \ - e — 4]
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The case in which x € [2,5] remains to be considered. Suppose
x < c <d. Since we proceed by standard Fibonacci in any interval of
uncertainty not containing x in its interior, starting with (c,d] is
certainly better than starting with [x;zlg[c.d], and we have already

seen that [x,d] is better than any interval between [c.d] and [x,E].
A spy 1s called

(4.3) almost unpredictable ,

if for each subinterval [c*,d*] of the interval of uncertainty [c.d],
which results from the evaluation pattern, the spy has the option of
reducing it only to an interval [E}E] which contains [c*,d*]. Plainly,

we still have

(4.4) Tneorvem: Tie ovtimal policy in the presence of an almost
unpredictable spy ls to necd nis advice and to proceed from the
interval of uncertainty so aciteved by modificd Fibonacel search

with respect to tune remaining evaluation point Lf there is any.

5. Concave Functions

We shall see that a "spy" is available if the unimodal function

to be maximized is known to be concave.

A function f: [a,b] > R 1s

(5.1) eoneaque

in [a,b] if
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£(x + uy) » AE(x) + uf(y)

holds for all x,y ¢ [a,b), A, w20 and X+ uy =1, The function

is

(5.2) agtrictly concave

if

f£Qx + uy) > A(x) + uf(y)

holds for all x,y,‘\,u which are as above and satisfy in addition

1 : x#y and Xi,u » 0. We state without proof that

(5.3) every upper 3emicontinuous concave function on [a,b]

8 unimodal.

Without the additional hypothesis of upper semicontinuity, (5.7

does not hold as there are concave functions without maximum on [a,b].

Now consider two points Pi: = (xi,f(xi)) PJ: - (xj,f(xj)),

X, < X of the graph

i 3
G(f) := {(x,f£(x)) : x ¢ [a,b]} ,

and let L be the straight line through P P

ij ¥
that the graph of f 1lies not below LiJ in [xi,xj] and not above

T Concavity implies

Lij in the remainder of the interval [a,b]. Hence if five points of

the graph G(f),

Po L (xo,f(xo)), oo 3 P4 1= (xa,f(xA))

with

X, <X <x3<x4
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and

f(xy) » £(x), 1=1,2,

are known, then that part of the graph G(f) that lies above [xl,x3]
is contained in the union of the two triangles A1 and A2 formed by
L01’L12’ L23 and le, L23. L34, respectively. f(xz) is a

lower bound for the maximum value of f. Therefore

(5.4) a maximum of £ must lie in the intersection of 8,U8,

with the horigontal through P (Fig. 5)

2.
The information that the function f 1is concave can thus be used

in order to reduce the interval of uncertainty.

In order to complete the description of the proposed search
method for concave functions, a few more conventions are necessary.
At the ends of the interval ([a,b], we pretend that the function
has value -», and if it has been evaluated there, we pretend that
there are two values for the same abscissa, one of the values being
infinite. Three evaluations will therefore reduce the interval of

uncertainty as indicated in Fig. 6.

We proceed to show that
(5.5) concavity is an almost unpredictable spy (4.3)
Proof: Suppose we have five points

a5 Xy & X <Xy <XgSX & b,

where x, and x, may both coincide with the left end-point a, and

0
similarly

1

Xa and X, may coincide with the right end-point b. For
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Interval of
Uncertainty

4+ - -

Xy b=xg4 a x uy

Cose 2

Ly Interval of
— Uncertainty

Cose d

Figure 6, Three evaluations.
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X

f(xo) and f(xa) are possibly infinite, provided x, = a or x, = b,

respectively, We suppose furthermore that
£(xy) - f(xl) < £(xy) < £(x,y) < f(xa) .

Let [c,d] be the interval of uncertainty that results in view of

concavity. Observe that
xzc[c.d] .

Now select any x with c s x s Xos Xy < x, and assume that

f(x) satisfies
f(x) = f(xz) + §(x - x2)

for some § with

o f(xl) - f(xl)
05‘15 X. = X .
2 1

Then the new interval of uncertainty taking concavity into account
will be of the form [E,d], where
O(x-xl)(xz-x)

E = x + > X .
f(xz) - f(xl) - 5(x2-x)

The difference c - x measures the reduction of uncertainty due to

concavity. Now by definition of §,

) (x-xl) (xz-x) 8 (xz_xl) 2

st #01

with 1 ¢ 0, 4, we have finite function values f(xi), whereas

c

and the last term, independent of x, goes to zero as & goes to zero.

In other words, the contribution of concavity beyond unimodality becomes

arbitrarily small as £(x) approaches f(xz) from below, but not

- XS E(x,)) - £(x)) = 8(xy=x)) 5 £(xy) - E(x)) - 6(x,=%))
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assuming it.

What happens if f(x) approaches f(xz) from above? Assume

§ >0 and
f(x) = f(xz) - 6(x-x2) .

If m> 0 denotes the, - possibly infinite -, slope of line L01,

then
f(x) - f(xz)

c + for m= 4o
_ m
c ' =

[ for m= o
. £(x) - £(x,)
d : =

x, + »
2 f(x3) - f(xz)

determine the new interval [E}E] of uncertainty, taking into

account concavity. The reduction beyond unimodality is the sum of

c-c and X, = d. Now
_ ) (x-xz) s (xz-xl)
C=-C® ———— § —— ,
m m
_ 5(x-x2) 5(x2-x1)
X, = d

27 4T TRy - E(xy) * E(xy) - £(xy)

and again the gain beyond unimodality becomes arbitrarily small as

f(x) approaches f(x2) from above without assuming it.

The symmetric argument can be carried out for X) <X S d and

X < Xg. This then will establish concavity as an almost independent

Spyu-
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Combining (5.5) with Theorem (4.4) yields

(5.6) Theorem: Using concavity as a spy in a modified Fibonacei
search is the optimal strategy for reducing the interval of un-

certainty of comcave functions.

6. Final Remarks

From the proof of Theorem (5.6) it is apparent that the proposed
search strategy for concave function is "min sup" rather than "min max".
In other words, the problem is not well set. Indeed, it makes probably
more sense for concave functions to decrease the uncertainty in the value

of the minimum than in its location.

A similar argument as was used for proving (5.5) can be emploved
to show that fore each € > 0 and each positive integer k there is a
concave function for which the reduction of uncertainty by optimal
search is improved by less than ¢ over unimodal search. In general,
however, the improvement will be drastic, in part.cular if the function

is well rounded, so to speak, and has a maximum in the interior.

T
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