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ABSTRACT 

( ' 

The Fibonacci search technique for maximizing a unlmodal 

function of one real variable Is generalized to the case of a 

given first evaluation.    This technique Is  then employed to 

determine the optimal sequential search technique for the 

maximization of a concave function. 
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I.    Introduction 

A real function    f:    [a,b] ■* R,   where    a < b,    Is called 

(1.1) mimodnl, 

if there are    x,    x e  [a,b]    such that    f    is Increasing for    x <_ x 

and nonincreasing for    x ^ x,    decreasing for    x >^ x    and    non- 

decreasing for    x^x    (Fig.  1). 

(1.2) If   I    ia unimodal,  then the interval    Ix,x]    aonaiats of 

all maxima of   f. 

Proof:    f    is constant in    [x,x],    since it is by definition non- 

increasing for   x 2i x    as well as nondecreasing for    x ^ x.    If 

x < x,     then    f(x)  < f(x)    as    f    increases in  [a,x].  If    x > x, 

then    f(x)  <  f(x)    as    f    decreases in [x,b].- 

that 

(1.3) 

The definition of unimodality is chosen so as to guarantee 

whenever a unimodal funation   f   has been evaluated for 

two arguments    x.    and    x«    with    a <_ x1  < x„  <_ b,    then 

some maximum of   f   must lie in    [x.jb]    if   f(x1) ^ f(x9) 

and in    [a,x2]    if   f(x1)^f(x2). 

Proof:    If    fix^) ±_ f(x2),    then    x.    and    x.    cannot be both in that 

portion of the interval    [a,b]    in which the function decreases.    In 

other words,    x    cannot lie to the left of    x..    Thus    x c  [x^b]. 

■MM 
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Flgure 1.  Example of a unlmodal function. 
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tmd   x   ii a maximum of    f    by  (1.2).    Similarly»   if   fCx.)  i ftx»), 

then   x c  (a,xJ. 

A sequential search based on (1.3) will successively narrow down 

the interval in which a maximum of    f    is known to lie.    Such an 
1 

interval is called the 

(1.4) into Wat of wioertainty, 

Kiefer  [3] has asked the question of optimally conducting this search, 

and answered it by developing his well known Fibonacci search. 

The Fibonacci search gives a choice of two arguments for which 

to make the first evaluation.    But what happens if by mistake or for 

some other reason the first evaluation took place at some argument 

other than the two optimal ones?    How does one optimally proceed from 

there? 

In this paper, we shall therefore ask and answer the question 

for an optimal sequential search plan with given arbitrary first 

evaluation.    The resulting technique Is applied to improving on 

Fibonacci search for functions known to be concave.    The technique may 

also be of interest in the context of stability of Fibonacci search in 

the presence of round-off errors as studied by Overholt  [6] and 

Boothroydt [1]   (see also Kovalik and Osbome  [4]). 

2.    Length of Uncertainty 

In what  follows we assume that    a ■" 0    and    b ■  1.    Furtherraore, 

we shall permit zero distances between two arguments of evaluation, 

^^MMMBMHMi^BMHMMMHMHaMaHMflB 
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inttrpretlng «ach such occurrence as evaluating the (not neceeearlly 

unique or finite) derivative of the function   f.    A more careful 

analysis would take Into account the smallest Justifiable distance 

c   between arguments (Kiefer [3], Oliver and Wilde [5]). 

By 

Lk(x),    0 < x < 1  , 

we denote the length to which the interval of uncertainty (l.A) can 

surely be reduced by k evaluations in addition to a first one at 

x. Extending a recursive argument due to Johnson [2], we obtain 

(2.1) ^(x) - minjMk(x), M^l-x^, 

where 

Vx): - min maxld-x)^.^), yL^) } . 
x<y<l   

v .   *   ' 

Prooy.    Let y denote the first function argument over which we 

have control. If x _< y ^ 1, then the two possible intervals of 

uncertainty are [0,y] and [x,l]. The former contains the point 

of evaluation x.  The best upper bound for the length of the 

Interval of uncertainty after the remaining k - 1 evaluations Is 

given by 

(2.2) yLfc-l^   ' 

Similarly,    y    is  the evaluation point In    [x,l],    leading to the 

best upper bound 

-£. 
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(2.3) d-x)^.!^)  • 

Wh«thtr    [O.y]    or    [xtl]    Is tht first Intervsl of uncsrtsinty 

depend! on the result of the evaluation at   y:    if    f(y) > f(x), 

then    [0,y]t    if    f(y) t- fix),    then    [x.l].    Hence the maximum 

M. (x)    of the two expressions (2.2) and (2.3) is the best result 

achievable if    y    is selected between   x    and    1.    The expression 

Vx) '• - 0^x H^-i^« <1-y)Lk-i(i^)} 

analogously describes the best result achievable if y is between 

0 and x. Since we control the choice of y, we can choose the 

smaller one of these two expressions; and this gives 

Lk(x) • minJMk(x), Nk(x)| . 

Introducing for 0 ^ x <_ y £ 1, 

Sk(x.y) r-maxla-x^.^.yL^)} . 

we have 

M^x) - min Sk(x,y), Nk(x) - min S (y,x) . 
x<y <1 0<y<x 

Now for U <^ x ^ y ^ 1, 

(2.4) Sk(x,y) - Sk(l-y,l-x) . 

Therefore,    Nk(x)  ■ Rd-x),    and (2.1)  Is proved.- 

At the beginning,  the interval of uncertainty is the entire 

interval in which the function is to be examined.    A single function 
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•valuation at any point x does not change this situation. Hence 

L0(x) 1 . 

We then have 

M1(x) min   max|l-x,y| - max|l-x,x[- M.d-x) 
x^^l 

Hence 

(2.5) Lj^x) - max |1 -x.x( - | 
-x    for   0 ^ x ^ 'i 

x     fov   ^ _^ x ^ I . 

For   k >_ 2,    we claim (Fig. 2): 

(2.6) Lk(x) "        F 1         X 
for 

Mc+l 

\   x 

)Fk-l 
for 

k+1 

)  1-x 

/ Vi 
for ,   -         Fk 

»St  <   X  «-   _ 

~ 'k+1 

I     x 
for 

F
k 

k+1 

where    FQ - 1,    F1 - 1,    F2 - 2,    F3 " 3     Fk " F
k_2 + F

k.i   ave 

the Fihonaoai ni.rrbera. 

Proof:    The case   k ■ 2   requires special treatment.    From (2.5), 

; 

I      .; 

vhty 

y-x      for    (x,y)   e A,   :-    0^-<^4 

x       for    (x,y)  c A9  :-   
!i 1 -1 1    , 

1 

l2 

tl '  ■'■  '     ■-       Ilhl    II I 
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Figure 2.    \M    for    k - 0 4. 
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y-x      for      (x,y) c Ü-   :-    0 1T^- < h 

1-y      for      (x,y)  c B2  :-   h 1 ^ < 1    • 

We are now able to determine S2(x,y)    in each of the  four regions 

A. O B.    separately: 

Aj^ Pi B^    S2(x,y)  - max|y-x, y-x| - y-x. 

A1 nB2:    S2(x,y) - max|y-x, l-y( - 1-y. 

A2 nBl:    S2(x,y)  " x    by  (2,4)   and    d-y»1"54)   e Aj^OB,. 

A2nB2:    S2(x,y) max |x.i-y| 
«       if   y ^ 1-x 

[1-y      if    y ^ 1-x. 

The sets    A,    and    B      are represented in Fig.  3.    They are triangles 

formed by  the line segments marked    A,    and    B  , respectively, and 

the corresponding opposite corner of the triangles.    The feathered 

lines are the minimum lines with  respect to constant values of    x, 

i.e.   if proceeding vertically the intersection with  the feathered 

lines marks  a minimum.    The  function    M. (x)     is defined to be the 

value of  this minimum.    Hence 

M,(x) 

1-x 
2 

if    0 <_ x l-j 

if    -j 1 x _< 1 . 

3y   (2.1) we  then have  finally 

L2(x) 
1-x 

2 

1-x 

if      0 ^ x ^-j 

if      3-X-2 

if       2 - X - 3 

if      3 ^x 1, 
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Flgure 3.    S2(x,y) 
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ln accordance with  (2.6). 

The case    k ^ 3 Is now proved by Induction over    k.    We have 

F. 

^k-l^  ' /  F, k-1 
for    (x,y)  e A    :-    0 < J < -^ 

k-2 

for    (x,y) E A2  :-   -^ < ^ < i 

rk-2 
for    (x,y)  . A.   :-   ± < - < -~i 

*3   •       2 - y -    Fr. 

k-1 
for    (x,y)  e A,   :-   -^ < - <  1 4 F.     - y - 

k-1 
for ill    .   Jtl (x,y)  e Bi  :- 0 ^ tl^   ä 

Fk-2 
for      (x.y)  eB2  :-   -^ 1 ^ 1 f 

k 

Fk-2 

Fk-1 

for 

for 

(x y)   E B    •-    i < III < Jiri u,y;  E B3  .      2 - 1-x -   F. 
k 

(x.y) cB4!.   -^iiSH 

we determine    S  (x,y)     in all regions    A OB      with    i ^ J.    For the 
K 1 J 

remaining regions, we use  (2.4). 

Ain Bl:    Sk(x,y)  " max 

»Fk-1  '    Fk-l'    Fk-1 

AinB2!    Sk(x'y)  ' ^{p1*-  '    FT^)"" F^"    Since    (x,y)   E B2 Fk-2r    Fk-2 

gives    (l-x)Fk_2 S (l-y)Fk, and therefore    (y-x)F,   . ■ 

(i-x)Fk_2 - (i-y)Fk_2 s (i-y)Fk - (i-y)Fk_2 - (i-y)Fk_1. 

L-J- 
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A, OB,:    S, (x,y) - maxip5- ,    T^->  • F^"   since     (x,y)   e B 
1        ^        ^ ^'k-l        fk-1 ;       rk-l 

gives    1-x <_ 2(l-y)    or    y-x <^ 1-y  . 

A. OB-:    S, (x,y) - maxiTT— ,    TP
1
->   «-= maxjx,  l-y|. 

^        z        ^ '*k-2 k-2'       \-2 

A, nB_:    S. (x,y)  - max {^^r— ,    ^pL->   = ^L-   since     (x,y)   e A» 
^        ^        K irk-2 k-2' k-2 

gives    2x<^y   or    x^y-x. 

A. OB,:  S (x,y) - max <-=^— , Tr2- > * -f*-   since  (x,y) e A. 
Z
   

H
   

k lt
k-2    k-1 ^   Vl * 

gives  2x-y < 0, and since  (x,y) c  B,  gives -xF   + yF. < F. -. 

Irdoed, multiplying the former inequality by F, 1  and adding it 

to the latter gives xFk_1 + yFk_2 i Fk_2. 

A3nB3: Sk(x,y) " 
max

 {^ ' ^} 

AH B   :    S   (x,y) - max {f2-  ,    -f*-}   - F^   since     (x.y)   e B 
■J        ^        K {tk_2        n^}        tk_1 H 

gives     (l-x)F, _. ^ (l-y)Fk,    and therefore    (y"x)Fi,_i  " 

(l-x)Fk_1 - (l-y)Fk.1 <  (l-y)Fk -  (l-y)Fk.1 -  d-y^. 

A, O B   :    S   (x,y)  - max i=— ,    V"^-f   " F maxjx,   1-y}. 
^        ^        K ^k-1        "k-l '       Vl 

The schematic representation of    Sk(x,y)     then is  given by Fig.  A.    There 

are breaks  along the line    x ■ 1 - y    in areas    A.DB-    and    A.OB..    The 

feathered  lines are again those boundaries of linearity  regions at which 

S.     decreases  for fixed    x.    The abscissae of intersection points of 

feathered  lines are therefore critical.    The first one of  these criti- 

cal arguments we denote by    v.     It is  the abscissa of  the intersection 

;-x 

kk-2        *k-2 '       Fk-2 
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Figure 4.    S. (x,y)    and critical arguments. 

lUMftritfflilMH«*!! 



wm 

MBWM'OHW«'.! W 

i in» ...I , n iHiupimngiw^p» 

• 1 
■ ■ ■■-■'. rvaW^1'»* )"'■"■■ ''Wfi'fl^W^' 

-13- 

polnt of the lino 

(2.7) 

which 

(2.8) 

1-x 
**   • 

separates B  from B., and the line 

x 

y 

k-2 

which separates A.  from A.. Elimination of y yields 

F, 
v - 

•k-2 
F + F 

The next critical argument clearly has the value    -r- .    The third one, 

which we call   w,    is  the intersection of the line 

F, 
(7..9) 

l-x 
k-1 

which separates EL from B, , and the line 

F. 
(2.10) 

k-1 

which separates A. and A,.  Elimination of y yields 

w 
k-1 

Fk+1 

Th e last critical argument finally has the value    -r . 

For    0 ^ x _ v    the values of    S. (x,y)    at the Intersection of the 

vertical through    x   with  the two feathered lines  (2.8)  and (2.9)  are 

potential minima.    The equations of these lines can be rewritten as 

1=1. 
Fk.2 

l-x 
and 

pk-l 

mm 
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As these terms also represent the value of S. (x,y), we have 

M. (x) - 1^ for 0 _< x _< v. 

For v < x < — locally minimal points are to be found on line 

(2.9) and in the area where S. (x,y)  assumes the value ■=  . Now 

x    1-x k'2  1-x 
x^v gives xFk ^ (l-x)Fk_2 or -^—1 Y^    •    Thu8 \^  " F"^ 

for v j^ x <_ -r . 

For T £ x <^ w only the line (2.9) is interesting, and M. (x) 

1-x 
still takes the value 

For w <^ x <^ -r- and beyond the minimum is assumed within the entire 

line segment which happens to meet the area in which S, (x,y) - ■= 
k-1 

Thus finally 

(2.11) 

Mk(x)  ' 

1-x 
F, 

rk-l 

for     0 Ji x <^ 
k-1 

fk+l 

for.       kli < x < 1 , 
Fk+1 

and (2.6)  follows immediately from (2.1).- 

Note also that  (2.11) implies 

(2.12) 
Lk(x)  - 

Mk(x) for      0 ^ x <_ -r 

Mj^l-x)  for      2 - x - 1 ' 

3.    Search Strategy. 

In the previous section, we have determined the optimal length of 

uncertainty    L. (x),    which can be achieved in    k    evaluations in addition 

to one evaluation at    x e  [0,1].    We have yet to describe a search strategy 
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which realizes    L.Cx).    This amounts to specifying the argument    y    of 

the first evaluation In addition to    x.    In view of  (2.12), this reduces 

to determining    y    such that    M^U)  - Sk(}:,y)     for given    x   between 

0    and   -r,    a task which has been performed already while calculating 

MROO 

If 0 < x < v,  then there are two optimal solutions y, since q _     ~ f 
1-x t 

S   (x,y)  - —■   along both  feathered lines in Fig.   A.    This non- i 
k Fk 

uniqueness is not surprising.    Indeed, if    x ■ 0,     then the evaluation 

at this argument does not contribute at all towards narrowing the 

interval of uncertainty,  and the optimal continuation is Just plain 

Fibonacci with one evaluation wasted.     And in this case there are two 

optimal arguments,  namely  the first and second    (k-l)-st    order , 

Fibonacci points 

lull ^ 
Fk     ' Fk        * 

Fk-2 
(3.1)    If   0 ^ x < -^r-Tp  i    tuen any of the two    (k-l)-st    order 

k    k-2 
Fibmaoai points in the interval    [x,l]    is an optimal evaluation 

point 

F xF         + F fk-2   ,.    v 
xVl      fk-2 

y    - x + -j- (1-x) p  
1                "k k 

F xF        + F 
k-1   ,,     , xrk-2      fk-l 

y2 - x + — (1-x)    . 

In both intervals    v j^ x ^ -r   and    "ö ^. x <^ w,     the optimal 

solution    y    is unique. 

t^amm 
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F
k-2      

F
k-1 

(3.2) If   _ -jZ       '■  x <_ =  then the cptimal evaluation point   y 
Fk+Fk-2 Fk-2 

ie the first    (k-l)-8t ordev Fibonaooi point of the interval    [x,!], 

^   >olly, If   w ^ x <_-r ,    then the optimal solutions fill an 

entire interval. 

F , 
(3.3) Let    pT-^-1 x * ? •    If   ^n    ^s 8Uan that    x    i8 the 8eoond 

Fk-2 
(k-l)-8t ordev Fihonaaai point in    [0,y0],    then all points in 

[l-x,yn]    are optimal evaluation points. 

The following rule will always yield an optimal solution: 

(3.4) Theorem:    An optimal aearan strategy after an arbitrary first 

evaluation at    xn e  [a,b]    is as follous.    If   c ^ x ^ d    are suah 

that    [c,d]    oonstitutea the interval of unacrtainty after    i 

additional evaluations, and if   x    is the argument for which the 

function has been evaluated already, then: 

(i)    If   x   lies betuee.i    c   and the first    (k-il)-th order 

Hbonaaal points in    [c.djj    then ohoose   y   as the first (k-O-th 

order Fibonaooi point in    [x,d]. 

(ii)    If   x   lies between the tuo    (k-O-th order Fibonaooi 

points of    [c.d],    tiun ahoose    y    as the syrmetria Image of   x   in 

[c,d],    i.e.    y ■ c + d - x. 

(ill)    If   x   lies between    d    and the second of the two    (k-O-th 

order Fibonacci points in    [c,d],    then choose    y   as the second 

(k-fc)-th order Fibonacci point in    [c,x]. 

We shall refer to any sequential search strategy in keeping with 

±: 
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(3.1, 2, 3), In particular the rule described In Theorem (3.A), as 

(3.5) modified Fibonaooi aearah . 

It the Interior of the Interval of uncertainty does not contain an 

argument at which the function has been evaluated already, then the 

selectUn ot the next evaluation by modified Fibonacci search will 

be the same as  In standard Fibonacci search. 

4.    Spies 

Intervals of uncertainty with nonoptimal evaluation points may 

be the result of  the following situation.     Suppose In maximizing a 

function we avail ourselves of the services of a "spy".    This spy 

operates as follows:    every time an Interval of uncertainty has 

been based on the results of prior evaluations, he Is consulted,  and 

as a result of this consultation, the Interval of uncertainty may some- 

times be further reduced (remaining an Interval) without additional 

evaluations.    One cannot expect, however, that the remaining evaluation 

point (if there is any)  is in optimal position within the new Interval 

of uncertainty. 

In this  case,  there is a question whether the additional Infor- 

mation should be accepted.    It is Indeed conceivable that reducing 

the interval of uncertainty and subsequently continuing from a non- 

optimal evaluation point would in the final analysis lead to a larger 

Interval of uncertainty than Ignoring the additional information and 

doing a straightforward Fibonacci search.    That this is not so, is 

essentially the content of the following 
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(A.l)    Theorem:    The optimal poliay in the pmeenoe oj' an m- 

prediatdple epy ie to heed hie advice and to pvoaeod from the 

interval of unoertainty so achieved by modified Fibonaaoi searoh 

with reepeat to the remaining evaluation point if there is any. 

Proof:    Let    [c,d]    be the interval of uncertainty as determined by 

the previous step of the search, and let    [c,d],    c ^ c _< d ^ d  , 

be the interval of uncertainty after consulting the spy.    As the spy 

is unpredictable, there may be no further information forthcoming. 

This is the worst case, since even if the spy is providing information, 

it need not be heeded.    Thus all we have to show is  that we do not 

worse by proceeding form    [c,d]    than from any other interval    [c*,d*] 

with    [c,d] D [c*,d*] D [c,d]. 

Now let    x   be the evaluation point in    [c,d].    Then we 

distinguish two cases, depending on whether   x e  [c,dj    or not. 

Suppose    x c  [c,d],    then    x e   [c*,d*].    Working on the latter 

interval, the best we can do in    I    remaining steps is reducing 

the uncertainty to 

V^ for   0<-^ -<±l-     (-:    I,) 
FÄ d    - c*     F*+l i 

* F.   .       x    - c* 

{i* - cV 
«•-I ra+i    d* - c 

(d -C"N7*-w     \     . . ..* 
d^    -    X c 1    .    X        "    C        .        F1 / T     N 
-=  for   -T < < ■=  (-:    I-) 
Fil-1 2     d* - c*     F^l 3 

* Fi)        x    ~ c 

V^" for   —<-* ^ 1 (-!    IA)- rÄ H+l      d* - c 
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For all    x    such that 
x    - C 

d*- c* 

x - c 
an<j   „—_   are |j0th in one 0f the 

d - c 
four Intervals    I.    above, 

(4.2) (d* - c*)L (777)i(3-^&H) 
Is immediate.    Of the remaining twelve cases, we need consider only 

six,  as the others follow by symmetry.     Let 

u    :■ d    - c      and    u :■ d - c . 

x - c x - c 

E I      and el2: 
x - c 

u* 

h-i d* " x    Vi 
<^   implies    i^r-1 

Thus 
d*-x        x-c*        x-c 
     j      >   

-    F 
i-1 !a-i 

x-c* 

u* 

x-c 

c I.     and E IA:   h - Ti-i • 

d* - x x-c -   r* X-C x-c 

Thus 
l-l 

F —      F 
Vl ri 

x - c* x-c 

e  I„    and 

Thus 
x-c* 

^1 

u 

x-c 

E  I»:    x 

d - x 

—      u       . —     — 
c >^ —   gives    x - c >^ d - x . 

Ä-l ü-1 

X -  c* x-c 

t   I       and e I4:    F^FiUl • 

x-c* x-c x-c 

Thus 
F —      F —     F 

X - c* x-c X-C* d* - x      F 

u* 

Thus 

c I„    and 

d* - x 

^-1 

u 

x-c* 

c  I,: 
4 

u» l+l 
implies i-l 

u* Ti+1 

x-c 

-      F„ 
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The case In which    x e   [c,d]     remains to be considered.    Suppose 

x <  c < d.    Since we proceed by standard Fibonacci in any interval of 

uncertainty not containing    x    in its interior, starting with    [c,d]    is 

certainly better than starting with    [x,d]C [cd],    and we have already 

seen that     [x,d]    is better than any interval between    [c.d]    and    [x,d]. 

A spy is called 

(4.3) almost unprediatable  , 

if for each subinterval    [c*,dA]    of the inttrval of uncertainty    [c.d], 

which results  from the evaluation pattern, the spy has  the option of 

reducing it only to an interval    [c,d]    which contains     [c*,d*].    Plainly, 

we still have 

(4.A)    Tneoi'cm:    The optimal policy in the preaenar. of an almost 

unpvcdiataple spy  Is to heed his advice and to proceed from the 

interval of uncertainty so achieved by modified Fibonacci search 

with respect to tue remaining evaluation point if there is any. 

5.    Concave Functions 

We shall see  that a "spy" is  available if the unimodal  function 

to be maximized is known to be concave. 

A function    f:   [a,b] -»■ R    is 

(5.1) concave 

in    [a,b]    if 

MaMMaMMMMMi 
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f(Xx + yy)  > Af(x) + nf(y) 

holds for all    x,y e [a,b], X, u > 0    and    X + u - 1.    The function 

is 

(5.2) strictly aonoave 

if 

f(,\x + uy) > Xf(x) + vif(y) 

holds for all    x,y,X,y    which are as above and satisfy in addition 

x ^ y    and    X,u > 0.    We state without proof that 

(5.3) evcvu upper* semaontinuous aonaave function on    [a,b] 

is unirnodal. 

Without the additional hypothesis of upper semicontinuity,   (5."^ 

does not hold as  there are concave functions without maximum on    (a,b). 

■WH'- 

Now consider two points    P.: -  (x.,f(x )) P  • (x  ,f(x.)), 

x    < x.,    of the graph 

G(f)   :- j(x,f(x))   : x E  [a,b]|  , 

and let    L..    be the straight line through    P  ,    P .    Concavity implies 

that the graph of    f    lies not below    L        in [x.,x.]  and not above 

L.      in the rema; 

the graph    G(f), 

L.      in the remainder of the interval [a,b]. Hence if five points of 

with 

P0  :-  (x0,f(x0)),  ....    PA   :-  (x4,f(x4)) 

x1 < x2 < x3 < x4 
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and 

f(x2) >  fCx^, 1 - 1,2, 

are known, th*»n that part of the graph G(f) that lies above [x^^.] 

Is contained in the union of the two triangles A  and A2 formed by 

L
01»

L
1<»» 

L
23 

and
 

L
12

,
 
L
23

,
 

L3U*    resPectlvely' f
(
x
2^ 

i8
 
a 

lower bound for the maximum value of f. Therefore 

(5.A)    a maximum of   f must lie in the intereeation of   AJJA. 

with the horizontal through   P.. (Fig. 5) 

The Information that the function f Is concave can thus be used 

In order to reduce the Interval of uncertainty. 

In order to complete the description of the proposed search 

method for concave functions, a few more conventions are necessary. 

At the ends of the Interval [a,b], we pretend that the function 

has value -<*',    and if It has been evaluated there, we pretend that 

there are two values for the same abscissa, one of the values being 

Infinite. Three evaluations will therefore reduce the Interval of 

uncertainty as Indicated In Fig. 6. 

We proceed to show that 

(5.5)    aonaavity is an almost unpredictable spy  (4.3) 

Proof:    Suppose we have five points 

a i x0 *. x1 < x2 < x3 i x4 i b, 

where    x.    and    x.     may both coincide with the left end-point    a,    and 

similarly    x»    and    x,    may coincide with the right end-point    b.    For 
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Interval of 
Uncertainty 

Figure 5. Bounding a concave function by chords. 
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Inttrvol of 
Uncertainty 

b = K4 

b = xy 

Figure 6.    Three evaluations. 
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x. wich 1 i« 0, 4, we have finite function values f (x^),  whereas 

f(x0) and f(x.) are possibly Infinite, provided x0 • a or x^ ■ b, 

respectively. We suppose furthermore that 

f(x0) - fCx^ < f(x2) < f(x3) < f(x4) . 

Let    [c,dl    be the Interval of uncertainty that results in view of 

concavity.    Observe that 

x2e(c,d]   . 

Now select any    x   with    c i x i x»,    x    < x,    and assume that 

f(x)    satisfies 

f(x) - f(x2) + 5(x - x2) 

for some    6    with 

f(x1)  - f(x1) 
0 i  li i ä 

x2 ' Xl 

Then the new interval of uncertainty taking concavity into account 

will be of the form    [c.d],    where 

_ (S(x-x.)(x2-x) 
c ■ x +       > x  . 

f(x2) - f(x1)  - 6(x2-x) 

The difference c - x measures the reduction of uncertainty due to 

concavity. Now by definition of 5, 

gU-XjHx^x) &(*2'xl)2 

C
 ' 

X
 * f(x2) " tixj  - 5UP^) ^ f(x2) - fCx^ - &U~=tf 

and the last term, independent of x, goes to zero as 6 goes to zero. 

In other words, the contribution of concavity beyond unlmodallty becomes 

arbitrarily small as f(x) approaches f(x-) from below, but not 

mm 
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assumlng lt. 

What happens  if    f(x)    approaches    f(x-)    from above?    Assume 

6 > 0    and 

f(x)  - f(x2) - 6(x-x2)   . 

If    m > 0    denotes  the, - possibly infinite -, slope of line    L^^, 

then 
f(x) - f(x2) 

c +       for    m • -H0 

m 
c  : 

I c for    m ■    * 

d   : - x„ + 
f(x) - f(x2) 

2 T f(x3) - f(x2)     ' 

determine the new interval    [c,d]    of uncertainty,  taking into 

account concavity.    The reduction beyond unimodality is the sum of 

c - c    and    x- - d.    Now 

_                 -6(x-x2) (Kx^-x^) 
c - c ■        i 

m m 

6(x-x2) öCx^Xj^) 
x„ - d - T-,—r c,     x     < 2      u      f(x3)  - f(x2)    "    f(x2)  -  f(x3)     ' 

and again the gain beyond unimodality becomes arbitrarily small as 

f(x)    approaches    f(x2)    from above without assuming It. 

The symmetric argument can be carried out for    x2 < x ^ d    and 

x < x».    This then will establish concavity as an almost Independent 

spy.- 

- - ■ ■■   " ■ 
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Coinblning (5.5) with Theorem (4.4) yields 

(5.6)    Theorem:    Using oonaavity as a spy in a modified Fibonaoai 

search is the optimal strategy for reducing the interval of un- 

certainty of aj'iijave functions. 

I 
6.    Final Remarks 

From the proof of Theorem (5.6)  it is apparent  that the proposed 

search strategy  for concave  function is "riin sup" rather than "min max". 

In other words,  the problem is not well set.     Indeed,  it makes probably 

more sense for concave functions  to decrease  the uncertainty in the value 

of  the minimum than in its   location. 

r 
A similar argument as was used for proving (5.5) can be emploved 

to show that fore each  E > 0 and each positive integer k there is a 

concave function for which the reduction of uncertainty by optimal 

search is improved by less than e over unimodal search.  In general, 

however, the improvement will be drastic, in particular if the function 

is well rounded, so to speak, and has a maximum in the interior. 

mm 
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