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Abstract. Fibring has been shown to be useful for combining logics endowed with truth-
functional semantics. However, the techniques used so far are unable to cope with fibring
of logics endowed with non-truth-functional semantics as, for example, paraconsistent logics.
The first main contribution of the paper is the development of a suitable abstract notion
of logic, that may also encompass systems with non-truth-functional connectives, and where
fibring can still be dealt with. Furthermore, it is shown that this extended notion of fibring
preserves completeness under certain reasonable conditions. This completeness transfer result,
the second main contribution of the paper, generalizes the one established in (Zanardo et al.,
2001) but is obtained using new techniques that explore the properties of a suitable meta-
logic (conditional equational logic) where the (possibly) non-truth-functional valuations are
specified. The modal paraconsistent logic of (da Costa and Carnielli, 1988) is studied in the
context of this novel notion of fibring and its completeness is so established.
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1. Introduction

In recent years, the problem of combining logics has gained the attention of
many researchers in mathematical logic. Besides leading to very interesting
applications whenever it is necessary to work with different logics at the same
time, combinations of logics are also of great interest on purely theoretical
grounds (Blackburn and de Rijke, 1997).

The practical impact of the problem is clear, at least from the point of view
of those working in knowledge representation (within artificial intelligence) and
in formal specification and verification (within software engineering). Namely,
in a knowledge representation problem it may be necessary to work with both
temporal and deontic aspects. And in a software specification problem it may
be necessary to work with both equational and temporal specifications. Indeed,
in these fields, the need for working with several formalisms at the same time
is the rule rather than the exception. We refer the reader, for instance, to
(Finger and Gabbay, 1992; Goguen and Burstall, 1992; Sannella and Tarlecki,
1993; Astesiano and Cerioli, 1994) for a discussion of this and related problems,
including some early attempts at their solution.

Obviously, an approach to the combination of logics will be of significance
only if general preservation results are available. For example, if it had been
established that completeness is preserved by the combination mechanism o
and it is known that logic £ is given by £ o L”, then the completeness of the
combination £ would follow from the completeness of £ and £”. No wonder
that so much theoretical effort has been dedicated to establishing preservation
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results and/or finding preservation counterexamples within the community of
logicians working in the problem of combining logics.

Among the different techniques for combining logics, fibring (Gabbay, 1996;
Gabbay, 1998; Sernadas et al., 1999; Sernadas et al., 2000; Zanardo et al.,
2001) deserves close attention. But what is fibring? The answer can be given
in a few paragraphs for the special case of logics with a propositional base,
that is, with propositional variables and connectives of arbitrary arity. Fibring
is a mechanism that produces a new logic by mixing up two given logics. As
mentioned above, ideally, the fibred logic would inherit the properties, namely
completeness (soundness and adequacy), of its two component logics. Unfor-
tunately, it is well known that it is not always the case. Still, it is sometimes
possible to recover some lost property by further manipulation of the fibred
logic. Let us first explain the mechanism of fibring by itself and delay the issue
of preservation of properties for a few paragraphs.

The language of the fibring is obtained by the free use of the language
constructors (atomic symbols and connectives) from the given logics. For ex-
ample, when fibring a temporal logic and a deontic logic, mixed formulae like
((Ga) D (O(Ff))) appear in the resulting logic. Naturally, in many cases, one
wants to share some of the symbols. The previous example would involve the
constrained form of fibring imposed by sharing a common propositional part.

At the deductive system level, provided that the two given logics are endowed
with deductive systems of the same type, the deductive system of the fibring
will be obtained by the free use of the inference rules from both. This approach
will be of interest only if the two given deductive systems are schematic in
the sense that their inference rules are open for application to formulae with
foreign symbols. For instance, when one represents Modus Ponens by the rule
MP, {(& D &),&1} F &, in some Hilbert system, one may implicitly assume
that the instantiation of the schema variables &1, & by any formulae, possibly
with symbols from both logics, is allowed when applying MP in the fibring.

Although the most basic form of fibring is quite simple at the syntactic level
as described above, the semantics of fibring is much more complex and it is
advisable to consider only the special case where both logics have semantics
with similar models. Following (Sernadas et al., 1999; Zanardo et al., 2001), a
convenient, but quite general, model for a wide class of logics with propositional
base is provided by a triple (U, B, v) where U is a set (of points, worlds, states,
whatever), B C pU, and v(c) : B" — B for each language constructor ¢ of arity
n > 0. We look at the pair (B,v) as an algebra of truth-values. It is precisely
in this sense that such models are said to be truth-functional. Given two logics
L', L"” with models of this type, what is the semantics of their fibring? As first
shown in (Sernadas et al., 1999), it is a class of models of the same type, such
that at each point u € U it is possible to extract a model from £’ and one from
L". Clearly, if symbols are shared, the two extracted models should agree on
them. In order to visualize the semantics of fibring, consider the fibring of a
propositional linear temporal logic with a propositional linear space logic. Each
model of the fibring will be a cloud U of points such that at each point one
knows the time line and the space line crossing there. For instance, at the point
(Berlin, 10h15m 25 March 2000) one knows the time line (of past, present and
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future) of Berlin and the space line (the universe taken as a line for the sake of
the example) at that time.

It is well known that, contrarily to soundness, adequacy is in general not
preserved by fibring. Still, adequacy can sometimes be recovered by adding
further interaction axioms and/or inference rules to the fibred logic (see for
instance the modal fibring rule in (Gabbay, 1998), Chapter 3). Another approach
to adequacy preservation consists in imposing reasonable extra conditions to the
given logics that may be sufficient to guarantee that the fibred logic turns out
to be adequate (Zanardo et al., 2001).

In this paper we aim at broadening fibred semantics in order to cope with
non-truth-functional logics like paraconsistent logics. Paraconsistent logics were
introduced in (da Costa, 1963) and since then have been the object of continued
attention, because of their theoretical and practical significance. In particular,
the paraconsistent systems C,, of (da Costa, 1963) are subsystems of proposi-
tional classical logic in which the principle of Pseudo Scotus v, —~ F § does not
hold. It is well known that, in all the C,, systems, negation cannot be given a
truth-functional semantics (Mortensen, 1980).

The first main contribution of this paper is the definition of a general notion
of logic that also encompasses non-truth-functional logics. In previous work
on the semantics of fibring this kind of logics has never been considered. In
fact, non-truth-functional logics could not even be represented using those ap-
proaches. In order to overcome this limitation we consider a broader notion of
logic system that accommodates this novelty. The main ingredient is the use
of a suitable auxiliary logic, that we call the meta-logic, where the (possibly)
non-truth-functional valuations are defined. Since it is enough for the present
purposes, we choose conditional equational logic (CEQ, (Goguen and Meseguer,
1985; Meseguer, 1998)) as the meta-logic. Furthermore, we manage to recover
fibring in this wider context and also to prove that this extended notion of
fibring preserves completeness under reasonable conditions. This completeness
transfer result, the second main contribution of this paper, generalizes the one
established in (Zanardo et al., 2001) and is obtained using a new adequacy
preservation technique exploiting the properties of the meta-logic, in this case
CEQ. We should stress that the present approach is not just an adaptation
of previous work but it involves the conceptual breakthrough of dropping the
widely accepted principle of truth-functionality.

As an example of application we analyze the system C{ of paraconsistent
modal logic of (da Costa and Carnielli, 1988). One might wonder if we could
recover such a mixed logic by fibring the underlying modal and paraconsistent
logics. In fact, it turns out that by simply fibring the two, using the method we
propose, the fibred logic obtained is a little weaker than the original paracon-
sistent modal logic C{. This problem has to do with the simple fact that C{
contains an essential interaction axiom that cannot even be expressed in either
of the logics being fibred. As a consequence, the target paraconsistent modal
logic can be easily recovered by adding that axiom to the obtained fibred logic
(similarly to the above mentioned technique for completeness preservation),
together with a corresponding semantic restriction. This process is part of the
essential idea of fibring as proposed in (Gabbay, 1998), Chapter 1.
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Following the same methodology used in previous work, namely (Sernadas
et al., 1999), we advocate that the basic form of fibring must be characterized, in
precise terms, by means of a categorial construction with a universal property.
Still, in this paper, we shall keep the categorial apparatus to the minimum
in order to keep the focus of attention on the issue of non-truth-functionality,
rather than on the category theoretic details. Therefore, we believe that the pa-
per can still be fully assessed by the reader not conversant with the elementary
language of categories (MacLane, 1971; Barr and Wells, 1990).

The paper is organized as follows. In Section 2, the notion of interpretation
system presentation as a specification of the intended valuations within the
meta-logic is introduced. The interpretation structures appear as models of the
specification. Section 3 defines the notions of unconstrained and constrained
fibring of interpretation system presentations. The main example, fibring the
paraconsistent system C; and the modal system KD, is also discussed in Sec-
tion 3 at the semantic level. Section 4 contains a brief account of the appropriate
proof-theoretic notions and returns to the main example at the deductive level.
Section 5 establishes the completeness preservation theorem and applies it for
proving the completeness of the modal paraconsistent logic Cf of (da Costa
and Carnielli, 1988). Section 6 discusses applications of self-fibring, namely in
the context of the C, hierarchy of paraconsistent systems. Section 7 concludes
with an assessment of what was achieved and what lays ahead.

2. Specifying valuation semantics

Observe that, when setting-up an algebraic semantics for a truth-functional
logic, we endow it with models that are algebras (of truth-values) over the
signature of the logic and evaluate formulae homomorphically. This approach
does not work when the logic is not truth-functional. But still within the
spirit of “algebraic semantics”, there is a solution: work instead with two-
sorted algebras of formulae and truth-values and include the valuation map
as an operation between the two sorts! This new approach, first sketched in
(Coniglio et al., 2000), captures, as a special case, truth-functional logics by
imposing the homomorphism conditions on the valuation map which can be
done with equations. Looking at examples of non-truth-functional logics we find
that the envisaged requirements on the valuation map could also be imposed by,
albeit conditional, equations. Therefore, we are led to the following algebraic
notion of possibly non-truth-functional semantics: each model is a two-sorted
algebra (of formulae and truth-values) including a valuation operation that
satisfies some requirements written in a suitable conditional equational meta-
logic. As mentioned in the introduction, we adopt CEQ (Goguen and Meseguer,
1985; Meseguer, 1998) as the meta-logic.

Let us start by setting up the syntax that we need to use. Since the ob-
ject logics under investigation are propositional-based, the following notion of
signature suffices for our purposes:

DEFINITION 1. An object signature is a family C' = {C} }ren where each Cj,
is a set (of connectives of arity k).
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In particular, the set of propositional symbols is included in Cjy.

We assume given once and for all the set = = {&1,&2,...} of propositional
schema variables, to be used in inference rules, such that =N Cy = 0.

We denote by L(C,Z) the set of schema formulae inductively built from C
and Z. For example, & D (pV &) is a schema formula, if p € Cy, - € C; and
D,V e (.

Our next step will be to define an equational signature induced by a given
object signature C' as a meta-linguistic device which permits to talk about the
semantics of logics based on C'. For this purpose it is convenient to consider two
sorts, sort ¢ (for formulae) and sort 7 (for truth-values). As usual, given a set
of sorts S, we write the Kleene closure S* to denote the set of all strings over
S and € to denote the empty string. In the following definition, if w € S* and
s € S then O, s denotes the set of operations with domain w and codomain s.

DEFINITION 2. Given an object signature C, the induced meta-signature is
the 2-sorted equational signature %(C,E) = (S, O) where S = {¢, 7} and:

— Oed):CoUE;
— Oy = C for k > 0;

= Opr = {v};
— O ={T,L}
- O’TT = {_};

= Orrr = {|_|’|—|>:>}5
— O, s = 0 in the other cases.

We shall use ¥(C') to denote the subsignature ¥(C, (), that is, where O, 4 = Cp.

The symbols T, 1, —, M, U and = are used as generators of truth-values.
The symbol v will be interpreted as a valuation map.

We consider the following sets of variables for ¥(C) and X(C,E): X, =
{y1,y2,...} and X, = {x1,x9,...}. For ease of notation we simply use X to
denote the two-sorted family { X, X }. Recall that a term ¢ is called a ground
term if it does not contain variables, and that a substitution # is said to be
ground if it replaces every variable by a ground term.

We want to write valuation specifications (within the adopted meta-logic
CEQ) over X(C) and X. Recall that a CEQ-specification is composed of con-
ditional equations of the general form:

(equation; & ... & equation,, — equation)

with n > 0. Each equation is of the form ¢t = t' where ¢,t' are terms of the
same sort built over ¥(C) and X. The sort of each equation is defined to
be the sort of its terms. A conditional equation that only involves equations
of a given sort is said to be a conditional equation of that sort. Conditional
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equations are universally quantified, although, for the sake of simplicity, we
omit the quantifier, contrarily to the notation used in (Meseguer, 1998). For
example, ( — v(y1 A y2) = M(v(y1),v(y2))) is a conditional equation of sort
7, supposing that A € Cs. It is clear, from this and also the forthcoming
examples, that we only need to consider specifications containing exclusively
conditional equations (or meta-axioms) of sort 7. Such specifications are called
T-specifications in the sequel. The deductive system of CEQ (Meseguer, 1998)
is a system for deriving equations from a given specification of conditional
equations. It consists of the usual rules for reflexivity, symmetry, transitivity
and congruence of equality, plus a form of Modus Ponens that allows us to
obtain an equation eqf from already obtained equations eq;6,...,eq,#, given

a conditional equation (eq; & ... & eq, — eq) in the specification and
CEQ

a substitution 6. In the sequel, we use '_2(05

) to denote the corresponding
consequence relation.

An important remark is that, in the context of the meta-signature ¥(C, =),
it might seem that we have two different ways to represent arbitrary formulae:
by means of propositional schema variables (i.e., &1, &2, etc.) and by means of
variables of sort ¢ (i.e., y1, y2, etc.). The former shall indeed represent arbitrary
formulae but only in the context of Hilbert calculi (to be defined in Section 4).
The latter represent arbitrary formulae in the meta-language of CEQ. In this

meta-language, propositional schema variables appear as constants.

DEFINITION 3. An interpretation system presentation (isp) is a pair & =
(C,S) where C is an object signature and S is a 7-specification over X(C).

DEFINITION 4. Given an isp S, the class Int(S) of interpretation structures
presented by S is the class of all Heyting algebras over ¥(C, E) satisfying the
specification S.

We denote by S® the specification composed of the meta-axioms in S plus
T-equations over X(C) specifying the class of all Heyting algebras. Note that
Int(S), that is, the class of all algebras over X(C, =) satisfying S°, is always
non-empty. Indeed, the trivial algebra with singleton carrier sets for all sorts
satisfies any set of conditional equations.

In the sequel, we need to refer to the denotation [t]" of a meta-term ¢ given
an assignment p over an algebra A. As expected, an assignment maps each
variable to an element in the carrier set of the sort of the variable. In the case
of a ground term ¢, as usual, we just write [t] 4 for its denotation in A.

For the sake of economy of presentation, we introduce the following abbrevi-
ations: z1 < xy for M(x1,x2) = x1, and < (x1, z2) for N(=(x1, z2), = (22, x1)).
The relation symbol < denotes a partial order on truth-values. Furthermore, the
partial order is a bounded lattice with meet M, join U, top T and bottom L (cf.
(Birkhoff, 1967)). As expected, given an algebra A, a; <4 ag and < 4(a1, az) are
abbreviations of M (a1, a2) = a1 and Ma(=4(a1,a2), = 4(ag, a1)), respectively.
It is also well known that the Heyting algebra axioms further entail the following
result:
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PROPOSITION 1. Let S be an isp, ¢; and t2 terms of sort 7 and A € Int(S).
Then, for every assignment p over A:

] <altelfy  iff =4 ([t [t2d) = Ta

and
[0 = [00 i e ([l [t]) = Ta

As explained, our framework is intended to study properties of fibring of
non-truth-functional logics in general. We now illustrate the notion of isp with
two examples that will be used throughout the rest of the paper.

EXAMPLE 1. Paraconsistent system C1 (da Costa, 1963):
— Object signature - C"
o Co={pn:neN}tU{t,f};
o Ci={}
o (Cy={NV,D}.
— Meta-axioms - S:

e Truth-values axioms — further axioms in order to obtain a specification
of the class of all Boolean algebras, e.g., adding the equation:

* (= = (=(21)) = m1).

e Valuation axioms:

7

Y1 A y2)°))
y1Vy2)°))
Y1 D y2)°))-

7

* K X XK X X K X X K X

<
~ Y~
<
=0 Mo —
— — —
<
—~ ~
<
NOo NOo No
— — —
~— — —
IA NN
S S <
—~
~~ ~

As usual in the C,, systems, 7° is an abbreviation of =(y A =7).

The reader should be warned that we are using Boolean algebras here as a
metamathematical environment sufficient to carry out the computations of
truth-values for the formulae in C;. Specifically we are not introducing any
unary operator in the Boolean algebras corresponding to paraconsistent
negation, but we are computing the values of formulae of the form —~ by
means of conditional equations in the algebras. In other words, — does not



8 C. Caleiro et al.

correspond to the Boolean algebra complement —. Therefore we are not
attempting to algebraize C; in any usual way.!

It is straightforward to verify that every paraconsistent bivaluation introduced
in (da Costa and Alves, 1977) has a counterpart in Int(S). Furthermore, the
additional interpretation structures do not change the semantic entailment (as
defined below). Note that it is easy to extend this example in order to set up the
isp’s for the whole hierarchy C,, by specifying the paraconsistent n-valuations
introduced in (Lopari¢ and Alves, 1980). A

After this example, we can now clarify the meaning of non-truth-functional
semantics. To be as general as possible we shall not only consider primitive
connectives (as given by the object signature) but also derived ones. As usual,
a derived connective of arity k is a A-term Ayj...yg.d, where the variables
occurring in the schema formula § are taken from 1, ..., y;. Of course, if ¢ € C},
is a primitive connective it can also be considered as the derived connective

YL Yk (Y1, - Yk)-

DEFINITION 5. A derived connective Ay ...y . d is said to be truth-functional
in a given isp § if -
S® I—E(C(%E) v(8) = t6°W

for some 7-term t written only on the variables z1, ..., g, where G”E,,y) is the
substitution such that §°%) (xn) = v(yn) for every n > 1.

If it is not possible to fulfill the above requirement, the connective is said to
be non-truth-functional in S.

For obvious reasons, showing that a certain connective is non-truth-functional
can be a very hard task. In Cj, classical negation ~ := Ay; . 7y; Ay (take ¢ as
—(z1)) and equivalence = := Ay1y2 . (y1 D y2) A (y2 D y1) (take t as < (21, 22))
are both truth-functional. And, of course, so are the primitive conjunction
Ay1y2 - y1 A yo, disjunction Ayiye.y1 V yo, and implication Ayiye.y1 DO ye.
On the other hand, paraconsistent negation Ay;. —y; is known to be non-
truth-functional. We refer the reader to (Mortensen, 1980) for a proof of this
fact.

EXAMPLE 2. Modal system KD (Hughes and Cresswell, 1996; Lemmon and
Scott, 1977):

— Object signature - C"
o Co={pn:neN}tU{t,f};
o Cl - {_'7-[/},
o (Cy={NV,D}.

— Meta-axioms - S:

! The question of algebraizing paraconsistent logic is a separate issue and we refer the
interested reader to (Mortensen, 1980; Lewin et al., 1991).
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e Truth-values axioms:

* Further axioms in order to obtain a specification of the class of
all Boolean algebras as in the previous example.

e Valuation axioms:

*
—~
<
—~
-+
~—
I
_|
~— —

* (=) =1)

(= v(y) = —(v)));

* (= vy Aya) =N(v(y1), v(ye)));

* (= oy V) =U(v(y1),v(y2)));

* (= vy Dy2) ==(v(y1),v(y2)));

x ((—ou(Lt)=T);

* (= v(Lyr Ay2)) = N(w(Ly),v(Ly2)));
* (= N(Ly),v(=Loyr)) =v(Lyr);

* (v(y1) = v(y2) = v(Ly1) = v(Ly2)).

It is straightforward to verify that every Kripke model has a counterpart in
Int(S): consider the algebra of truth-values given by the power set of the set of
worlds. Furthermore, every general model in (Zanardo et al., 2001) also has a
counterpart in Int(S): take (B,v) as the algebra of the truth-values. Again, the
extra interpretation structures do not change the semantic entailment. A

In the isp above, all derived connectives are truth-functional, but the modal-
ity A\y1 . Ly would require in X(C) the extra generator [J in O, ; satisfying:

- (~DMm=T)
(= B(e1,22)) = M), Olan)));
~ (= N0, ~(O(~(@1)) = D))
(= o(Lyr) = D(e(n).

Note that these axioms on [J are very closely related to the last four valuation
axioms used in Example 2, which allowed us to specify the intended modal
algebras and still avoid the use of [J. Although such an operation [J can be
easily defined over the set of truth-values according to the axioms above, our
definition does not comply with its inclusion in the signature ¥(C).

We are now ready to define the (global and local) semantic entailments.

DEFINITION 6. Given an isp S, a set I' of schema formulae and a schema
formula &, we say that:

- T |=‘; d (T globally entails §) if, for every A € Int(S), va([y]a) = T4 for
each v € T implies vA([6]4) = T 4;

— T EY 6 (T locally entails 6) if, for every A € Int(S) and every b € Ay,
vA(b) <ava([v]a) for each v € I' implies v.4(b) <a va([0].a).
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Observe that T' ¥ § implies T' l=f d provided that for every A € Int(S) there
exists b € Ay such that v4(b) = T 4. On the other hand, if I' = () then T IZ‘; )
implies T’ |:29 J.

Before turning our attention to the problem of fibring isp’s, we first define the
categories Sig and Isp. The objects of the category Sig are object signatures.
A morphism h : C'— C" in Sig is of the form h = {hy, : Cy; — C} }ken, each hy
being a map. The objects of the category Isp are isp’s. The appropriate notion
of morphism in the category Isp is as follows: each h : (C,S) — (C’,5) is a
morphism h : C — C’ in Sig such that for each s € S, h(s) is in $'°. Here, h
is the free extension of h to a map from the meta-language over X(C') to the
meta-language over ¥(C’). Note that such a morphism imposes the condition
that for every A’ € Int(S’) its reduct to X(C) via h is in Int(S). As usual,
A/VEL(C) denotes the corresponding reduct algebra, that is characterized up to
isomorphism by the following property:

[t] 4 = [h(t)]ar, for every term ¢ over %(C).

In what follows, we shall also use the forgetful functor N from Isp to the
category Sig of object signatures. This functor maps each S to the underlying
object signature C' and each morphism h to the underlying object signature
morphism.

‘g(m

3. Fibring non-truth-functional logics

Fibring, as originally proposed by (Gabbay, 1996; Gabbay, 1998), may be a
rather complex form of combining given logics. Here, we consider only the
most basic forms of fibring seen as “operations” between logics as in (Sernadas
et al., 1999; Zanardo et al., 2001): unconstrained fibring where two logics are
combined by putting together their signatures and rules, and by picking up as
models all structures over the new signature whose reducts are models in the
two given logics; constrained fibring where two logics are combined as for the
unconstrained fibring but requiring that some symbols are to be shared. These
basic forms of fibring lead to new logics that sometimes need fine tuning for the
application at hand, namely by adding further interaction rules (axioms). This
idea of agreement on the reducts when fibring logics endowed with homomorphic
algebraic semantics is already present in (Gabbay, 1998), Chapter 20.

Here we face the novel problem of defining these two basic forms of fibring
as operations on logics endowed with non-truth-functional semantics as defined
in the previous section. Recall that models are now two-sorted algebras (of
formulae and truth-values).

In the fibring, like in the truth-functional case, we still expect to find two-
sorted algebras over the new signature whose reducts are models of the logics
being fibred. Therefore, when fibring two isp’s, we expect to put together the
signatures and the requirements on the valuation map.
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Assume that we are given two isp’s &’ and §”. We start by considering the
notion of wunconstrained fibring that corresponds to combining the two isp’s
without sharing any of the symbols of the object signatures C’ and C”. That
is, if we so combine C; and KD we shall obtain in the result of the fibring two
different symbols for conjunction, disjunction, etc. This construction appears
as the coproduct of & and 8” in the category Isp. Therefore,

oS8 =(C,S)
where:
— O =C"®(C"is a coproduct within Sig with the injections i and 7";
— S=7(S")ui"(S").
The following result confirms the intuitions that guided the definition:

PROPOSITION 2. Given &’ and §” as above, a X(C’' @ C”,=)-algebra A
belongs to Int(S’ & §”) if and only if:

- A|g(c/7E) S Int(S’)7
_ A‘gl(0//75) € Int(s”),

where -A’izl(C' =) and A|§/(C,, =) are the reducts of A to the signatures X(C", £)

and X(C”, Z), respectively, via the indicated inclusions.

It is now easy to introduce the notion of constrained fibring by sharing
connectives and/or propositional symbols that corresponds to combining the
two isp’s while sharing some of the symbols of the object signatures C’ and C”.
The construction appears as a co-Cartesian lifting by the functor N : Isp — Sig
along the signature coequalizer for the envisaged pushout of the signatures. We
refrain from dwelling further on the details of this construction since it does
not bring any insight to the main issue of this paper (that is, the fibring of
logics possibly with non-truth-functional semantics). For illustration, consider
the following example of constrained fibring.

EXAMPLE 3. Modal paraconsistent logic:

In (da Costa and Carnielli, 1988), a paraconsistent deontic logic called CP is
introduced including the paraconsistent system C; and the modal system KD
(interpreting the modal operator L as “obligatory”). Let us see if we can recover
CP as a fibring.

The idea is to combine C; and KD by fibring them while sharing the propo-
sitional symbols, conjunction, disjunction, implication, true and false. Let &’ =
(C',S") be the isp for C; as described in Example 1 and §” = (C”,S”) the isp
for KD as described in Example 2.

We work first in the category Sig in order to set up the desired sharing
of symbols. Consider the following propositional-based signature B of shared
symbols:
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~ By={pa:neN}U{LF);
— By ={A,V,D};
— By, = ) for the other values of k.

The matching signature inclusions [’ : B — C’ and f” : B — C” both map
the symbols in B to the corresponding symbols in C’ and C”.

"

The propositional-based signature '~ @& C” of the envisaged constrained

fibring is now obtained by the pushout of C’ Lplor o compute it, we
first have to obtain the coproduct C’ & C”, corresponding to the signature of
the unconstrained fibring of C; and KD, as follows:

— (e C"o=A{p, :neNyU{p!l:ne N}U{t t" "},
—(C'®C")y = {~, " L")
_ (C/ @ CY//)2 — {/\/7/\//, \//7 \///7 3/7 D//}-

The corresponding injections i’ : ¢’ — C'® C” and " : C"" — C' & C” are such
that ¢ maps each constructor f of C’ to 4 and i maps each constructor f of
C" to 4.

/Bf//

Finally, the envisaged signature C’ = @ (C” is obtained by identifying in

C'" @ C" all the constructors obtained via f’ and f” from the same constructor
of the shared signature B:

/f/Bf// "
— (" @ C")o={pn:neNFU{t f};
f/Bf//
_ (C/ EB C//)l — {_|/7 _|N’L};

/'lef” "
—(C" @ C")2={AV,D}.

The unique compatible morphism z from C’ & C” to C’ %f C" is defined
by z(p),) = z(pll) = pn for each n € N, z(t') = 2(t") = t, 2(f') = 2(f") =1,
2(2)y = 2(7") =" 2(L") = L, z(N) = z(A") = A, 2(V) = 2(V") =V and
2(D') = 2(2") = D. To be precise, we should have written zo(p),), z1(—') and
so on, but we have omitted the arity subscripts to improve the readability.

/B 1!
This signature morphism z : C'®C” — C'~ @ (C” is finally used to obtain
the envisaged fibred isp

1"

f'Bf" f'Bf" ) A.
S o =" a "z S)ui"(S")
corresponding to the respective co-Cartesian lifting briefly described at the
end of the previous section. Expectedly, since z is a morphism, we have that
Al crgonz) € Int(@(8") Ui"(S")) for every A € Int(z(i'(5") U i"(S")), and
therefore the interpretation structures presented by this isp are precisely those
algebras in the unconstrained fibring that agree on the shared symbols.



Fibring Non-Truth-Functional Logics: Completeness Preservation 13

Note that we end up having two negations: =" coming from C” and =" coming
from C”. The former is a paraconsistent negation and the latter is the classical
negation inherited from KD. Clearly, the derived (classical) strong negation
Ayr. —"y1 A y§ inherited from C; collapses into —”. Note that now ~° is an
abbreviation of —'(y A =" ~).

In order to recover C¥, we have to add one additional meta-axiom on valu-
ations to the previously obtained fibred isp:

— (= o(?) <o((Ly)°)).

Using the terminology introduced in (Carnielli and Coniglio, 1999), this
procedure can be seen as a splitting of C in the components KD and C;.
This idea is also in the spirit of Gabbay’s proposal on the broad meaning of
fibring, as described in (Gabbay, 1998), Chapter 1. A

There are other interesting examples of combination of modal and paracon-
sistent reasoning that would deserve to be analyzed from this point of view,
namely those in (Deutsch, 1979; Deutsch, 1984; Puga et al., 1988) that, using
paraconsistent techniques, deal with problems of deontic logic having to do with
deontic paradoxes and moral dilemmas.

4. Logic systems

This section is devoted to extending fibring to the proof-theoretical counterpart
of isp’s. For their simplicity and ubiquity we use a suitable notion of Hilbert cal-
culus. As we have hinted before, we shall use the propositional schema variables
in E = {&,&,...} to write inference rules.

DEFINITION 7. A Hilbert calculus over = is a triple (C, P, D) in which (1) C
is an object signature, (2) P is a subset of pﬁnL(C, =) x L(C,2), (3) D is a
subset of (¢, L(C,E) \ ) x L(C,E), and (4) D C P.

Given any r = (I',y) in P, the (finite) set I is the set of premises of r and ~
is the conclusion; we will often write r = (Prem(r), Conc(r)). If Prem(r) = 0,
then r is said to be an aziom schema; otherwise, it is said to be a proof rule
schema. Each r in D is said to be a derivation rule schema.

EXAMPLE 4. Paraconsistent system Cy revisited:

Adapting the well known axiomatics presented in (da Costa, 1963; da Costa
and Alves, 1977), a Hilbert calculus for C; is easily defined:

— P={(0,6& D (& D &)),
(0,(61 2 (&2 2&)) D ((&1 2 &) D (&1 2 8))),
0, (&1 AN &) D &),
(0, (&1 AN &) D &),
0,610 (&2 (L1 NE))),
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7‘51 2 (51 V€2)>,
752 2 (51 V€2)>,

7£T ) (51 D (_‘51 D) 52 )>7
J(ETNES) D (§1 A &)%),
J(ETNES) D (61 V&),
J(ETNES) D (61D &),
7t = (61 D) 51)>7

(0, f=(E A EAE))),

({&1,6 D &)1 8) )

(

— D ={{{&,& D &), E)) .

EXAMPLE 5. Modal system KD revisited:

Adapting from (Hughes and Cresswell, 1996; Lemmon and Scott, 1977), in the
modal Hilbert calculus for KD we have:

— P={(0,& D (& D &)),

0,612 (&2 2&3)) D ((&128&) D (&1 2 8))),
(& D 762) D (62D 61)),
, L(§1 D &2) D (L& D L)),

0
0
0
0, (& V&)= (-6 D &)),

0, (61N &) =(m& V&),
®7t’ = (61 D €1)>7

0

{

{

£1,61 D £21},8),
&1}, L&Y

~ D= {({&.6 0 &}, &), o

DEFINITION 8. A schema formula 6 € L(C,Z) is provable from the set of
schema formulae I' C L(C,Z) in the Hilbert calculus (C, P, D), denoted by
r I—f;D §, if there is a sequence v1,...,vm € L(C,Z)" such that v,, = ¢ and,
for i = 1 to m, either

(1) v €T, or

(2) there exist a rule r € P and a schema variable substitution o : 2 — L(C, Z)
such that Conc(r)o = ; and Prem(r)o C {y1,...,%i-1}

DEFINITION 9. A schema formula § € L(C,E) is derivable from the set of
schema formulae I' C L(C,Z) in the Hilbert calculus (C, P, D), denoted by
r |_5D d, if there is a sequence 71, ...,vm € L(C,Z)T such that ~,, = § and,
for ¢ = 1 to m, either

(1) v €T, or

(2) 7, is provable from the empty set of formulae, or
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(3) there exist a rule r € D and a schema variable substitution o such that
Conc(r)o = ~; and Prem(r)o C {vy1,...,%vi-1}-

Clearly, if I 5P § then also T I—II;D . Furthermore, if ) I—II;D § then O FI'P 6.
As usual, we say that 0 is a theorem schema whenever () I—II;D § (iff 0 H5P 6),
and simply write I—II; D § and I—f; D 5. The following structurality properties
are also immediate: for every schema variable substitution o, if I’ ,_11: D'§ then
I'o l—II;D do, and if I’ l—(I;D 6 then I'o l—f;D do.

DEFINITION 10. The unconstrained fibring of the Hilbert calculi (C’, P', D")
and (C”, P" D") is the Hilbert calculus

<C/,P/,D/> ® <C”,P”,D”> _ <Cl D C”,/’L'\,(P,) U’Z?//(P//)”ZT/(D/) U/Z'\N(D”».

DEFINITION 11. The constrained fibring of the Hilbert calculi (C’, P', D")
and (C”, P",D") sharing C according to the injective morphisms f': C — C’

f/cf//
and f”: C — C" is the Hilbert calculus (C', P, D"y " @ (C”,P",D") defined

as follows:
! rer” 1" (7 D! (31 pl! =>(7 (71!
(c'" e C"zZE'(P))uz@E'(P"),z@E"(D")Uuz@E"(D"))).
As a matter of fact, by adopting the notion of Hilbert calculus morphism pro-
posed in (Sernadas et al., 1999), both forms of fibring appear again as universal
categorial constructions (coproduct and co-Cartesian lifting, respectively). It

follows that there is a morphism from each given Hilbert calculus to the fibring,
e.g., b from (C', P', D) to (C, P, D) and therefore:

— A T HP'P"§ then B/(T) FDP 1/(6);
— if D FE'P'§ then B/(T) FEP 1/ (6).

EXAMPLE 6. Modal paraconsistent logic revisited:

The fibring of Hilbert calculi for C; and KD, sharing the propositional symbols,
conjunction, disjunction, implication, true and false, is the Hilbert calculus
where we have all the proof and derivation rules for both C; and KD. In order
to get the deontic paraconsistent system CP of (da Costa and Carnielli, 1988),
at the proof-theoretic level, we need to introduce the following proof rule:

— (0,67 2 (L &)%)

This interaction axiom is already present in C¥ and could never be obtained
using the basic fibring operation since it makes full use of the mixed language.
Note that the semantic counterpart of this axiom was also added to the corre-
sponding fibred isp in Example 3. A

DEFINITION 12. A logic system is a tuple £ = (C, S, P, D) where the pair
(C, S) constitutes an isp and the triple (C, P, D) constitutes a Hilbert calculus.
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As expected, the (unconstrained and constrained) fibring of logic systems
is obtained by the corresponding fibring of the underlying isp’s and Hilbert
calculi.

EXAMPLE 7. The logic systems for C; and KD will be denoted by L¢, and
Lxp, respectively, and their fibring while sharing B will be denoted by L¢, ¢kp-

DEFINITION 13. Given a logic system £ = (C,S, P, D), we say that the
deductive system (C, P, D) is sound w.r.t. the isp (C,S), or simply that £ is
sound, if for every set I' of schema formulae and every schema formula §:

- T l—II;D 0 implies T’ |=§ 03
- T I—gD 6 implies T° ;:f d.

We say that (C, P, D) is adequate w.r.t. (C,S), or simply that £ is adequate, if
for every set I' of schema formulae and every schema formula §:

- T lzg 0 implies T’ F]];D 03
— TEY § implies T H{P 4.

Furthermore, we say that (C, P, D) is complete w.r.t. (C,S), or simply that £
is complete, if it is both sound and adequate.

EXAMPLE 8. The logic systems L¢, and Lkp are complete.

5. Preservation results

The main goal of this section is to establish sufficient conditions for the preser-
vation of completeness by fibring. To this end, it is convenient to take advantage
of the completeness of the meta-logic CEQ, as proved for instance in (Goguen
and Meseguer, 1985; Meseguer, 1998), by encoding the relevant part of the
deductive system of CEQ in the object Hilbert calculus.

In order to deal with local reasoning at the meta-level, we shall take advan-
tage of the following two schema variable substitutions:

— o1! such that o71(&) = &1 for every i > 1;
— o~ ! such that o71(&1) = & and 07 1(&;) = &1 for every i > 2.

Note that if 7 is a schema formula then o is a variant of v where &; does
not occur. Furthermore, easily, yo+tlo™! = 7.

5.1. ENCODING

First we analyze what can be obtained proof-theoretically within CEQ. Given an
isp S = (C, S), we adopt the following abbreviations, where ' U {0} C L(C, E):
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_ Fi—‘gé for S'U{(—)U(’Y):T):f}/er}l_g}(zc(%g v(8) = T;

)
— TH§ for §*U{(—v(&) <v(y0™) 1y e THHGES, v(&) < v(do™h).
THEOREM 1. Given an isp S = (C,S) and ' U {6} C L(C, =), we have:
S ; S 5.
—TES§ iff THS 5
—~TE§ iff TR 6.

Proof: This is an immediate consequence of the completeness of CEQ. In the
local case it is essential to note that, since schema variables cannot occur in S*,
we can freely change the denotation of schema variables given by an algebra
A € Int(S) (namely according to o' or o=1) and still obtain an algebra in
Int(S). The fact that & cannot occur in schema formulae instantiated by o1
does the rest. QED

For the envisaged encoding, it is necessary to assume that the logic system
at hand is sufficiently expressive:

DEFINITION 14. A logic system £ = (C, S, P, D) is said to be rich if:
1. t,f € Cyand A, V,De Csy;
2. S e v(t) = T;

3. 8 Foigm v(f) = L;

4. 8% RS vl Age) = N(v(), v(y:2));

ot

L S* gty vy V) = U(u(yn), v(2));

(=)

. 5° Fg?ga) v(y1 D y2) = =(v(y1),v(y2));
({6 D &) &) eD.

EXAMPLE 9. Both logic systems L¢, and Lkp, as well as many other common
logics, are rich.

EN{

Within a rich logic system it is possible to translate from the meta-logic level
to the object logic level. A ground term of sort 7 over X(C, =) is mapped to a
formula in L(C, Z) according to the following rules:

v(y)" is 3
T* is t;
1*is f;

—(t)* ist* D f;
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M(t1,t2)* is t7 A t5;
U(ty, t2)* is ¢V t3;
=(t1,t2)" is t] D .

Moreover, a ground T-equation (t; = t3) is translated to (t; = t2)* given by
1 = t5. Finally, if E is a set of ground 7-equations, then E* will denote the set
{eq® : eq € E}.

LEMMA 1. Let £ be a rich logic system and ¢ a ground 7-term over X(C, Z).
Then:
e CE *
5% Py v(t*) =t.

Proof: Immediate by definition, taking into account the requirements of rich-
ness and the completeness of CEQ. QED

LEMMA 2. Let £ be arich logic system, t; and t ground 7-terms over X(C, 2)
and A € Int(S). Then:

[t1]a <alte]a it va([t1 Dt3]a) =Ta

and
[ti]a=[te]a iff vA([t; =t5]a) = T a.

Proof: Direct corollary of Proposition 1 using the previous lemma and taking
into account the completeness of CEQ. QED

In a rich logic system, under certain conditions (cf. Definition 15 below), one
can encode the relevant part of the meta-reasoning into the object calculus.

DEFINITION 15. A rich logic system L is said to be equationally appropriate
if for every conditional equation (eq; & ... & eq,, — eq) in S*® and every
ground substitution 6:

{(ear§)",..., (ea,8)"} ;7 (eq )",

Finally, we obtain the main results of this section relating adequacy to equa-
tional appropriateness. Such results are important because it is much easier
to analyze the preservation by fibring of equational appropriateness than of
adequacy directly.

THEOREM 2. Every rich and adequate logic system is equationally appropri-
ate.

Proof: Assume that £ is a rich and adequate logic system and A € Int(S), and
let (t1 =51& ... &t, =s, — t=s) be a conditional equation in S® and 6
a ground substitution.
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If it is the case that va([(t:0)* = (si0)*]a) = Ta for ¢ = 1,...,n, then,
according to the previous lemma, this means precisely that [t;0] 4 = [si0] 4 for
i =1,...,n. Consider the assignment p = [_] 4060. It is straightforward to verify
that [r0]4 = [r]%, for every 7-term r over X(C,E). So, since by definition of
Int(S) we know that A is a model of the conditional equation, it immediately
follows that also [t0] 4 = [s6].4, or equivalently, vA([(t0)* = (s0)*]4) = T 4.

Therefore, we have {(t10)* = (s10)*,..., (t,0)* = (s,0)*} |:§ (t0)* = (s6)*.
Now, equational appropriateness follows easily since, from adequacy, we must
have {(t10)* = (s10)*, ..., (tn0)" = (s,0)*} I—II;D (t0)* = (s0)*. QED

Before proving the converse of this theorem, we need to establish some
technical lemmas.

LEMMA 3. Let £ be an equationally appropriate logic system and I'U{d} be a
set of schema formulae where &; does not occur. If {{; Dy : vy €T} I—fD ISEnXY

then I' I—gD 0.

Proof: First of all we note that, since S® must contain a specification of the
class of all Heyting algebras, equational appropriateness implies that every
intuitionistic theorem written with t,f, A, V, D must be provable in the Hilbert
calculus. In the sequel, we shall use this fact without further notice.

Let us assume that {{; Dy :v €T} I—f;D &1 D 4. Immediately, by the finite
character of derivations, {{1 D y1,...,£1 D Y} I—fD &1 D 6, where each v; € T.
Let now « be the schema formula 4 A ... A 7, and take the schema variable
substitution ¢ such that (&) = v and o(&;) = & for every ¢ > 2. Since &
does not occur in I' or 4, the structurality of proofs easily implies that we must
also have {y D y1,...,7 D v} H:D ~ D 4. But it is clear by easy intuitionistic
reasoning that I—ZI;D v D fori=1,...,n. So, it follows that I—lf)D v D9, and
since by further intuitionistic reasoning we have I—}f) Pyo(..o(m>d7)...),
the derivation rule of Modus Ponens immediately implies that I" I—g D, QED

LEMMA 4. Let £ be an equationally appropriate logic system, E a set of
ground T-equations over %(C, Z) and 0 a ground substitution. If

S*U{(—eq):eq€ E} l_g?cc?z) ty =t
then either t1,to are the same term of sort ¢, or t1,ts are of sort 7 and
E* FIJ:D (t19)* = (tQG)*.

Proof: Recall that the deduction rules of CEQ are Reflexivity, Symmetry,
Transitivity, Congruence and Modus Ponens.

Given a ground substitution 6, we Eroceed by induction on the length n of
a proof of S*U{(—eq):eq€ E} }—g(c(?z) t1 = to.
Base: n = 1. 7
(i) t1 is s10', to is s96 and t; = t9 is obtained by CEQ Modus Ponens from
(—s1=s52) €85".
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Obviously t; and to are 7-terms. Immediately, by equational appropriateness,
we have HI'P (510'0)* = (s20'0)* and therefore E* FI'P (10)* = (t26)* by the
monotonicity of provability.

(ii) t1 is 16, to is s96’ and t; = t9 is obtained by CEQ Modus Ponens from
(— 81 = s2) with s = s9 € E.

Obviously ¢; and o are closed 7-terms, s160” is s1 and s96’ is so. Thus, (t10)* =
(t20)* € E*, ie., t} = t5 € E* and E* FI'P tf = t5 by the extensiveness of
provability.

(iii) ¢; and ty are the same term, of either sort ¢ or 7, and ¢; = t2 is obtained
by Reflexivity.

If the sort is ¢ we are done. Otherwise, obviously, (¢10)* and (t260)* are the
same formula and trivial intuitionistic reasoning allows us to conclude that
I—ZI)DD &1 = &1. Therefore, E* I—II:D (t10)* = (t20)* by the structurality and
monotonicity of provability.

Step: n > 1.

(i) t1 = to is obtained from S®* U {( — eq) : eq € E} l_g](EC('Q,E) to = t1 by
Symmetry.

If the terms have sort ¢, by induction hypothesis, they coincide. Otherwise, also
by induction hypothesis, we know that E* I—ZI;D (t20)* = (t10)*. Elementary
intuitionistic reasoning allows us to conclude that I—g D& =&)D (& =&),
and therefore also E* I—ZI:D (t10)* = (t20)*.

(ii) t1 = t2 is obtained from S*U{( —eq) :eq € E} '_(Ej?c(?a) t1 =t3, t3 =t2 by
Transitivity.

If the terms have sort ¢ by induction hypothesis they coincide. Otherwise, also
by induction hypothesis, we know that E* |_11;D (t10)* = (t30)*, (t30)* = (t20)*.
Simple intuitionistic reasoning allows us to conclude that {£; = &2,& = &3} I—II: D
&1 = &3, and therefore also E* I—IIJJD (t10)* = (t20)*.

(iii) t1 is f(t11,.--,t1k), t2 is f(t21,...,tor) and t; = tg is obtained from
S*U{(—eq):eq€ E} l_g](agE) t11 = to1,...,t1x = top, by Congruence.

It t1 and t3 have sort ¢ then f € Cj and therefore all the terms ¢;; are also
of sort ¢. By induction hypothesis, then, t1; and ¢2; must be identical and t;
coincides with to. Otherwise, f can either be v or a generator among —, M, LI, =.
In the first case K = 1 and by induction hypothesis t1; coincides with t9;
since they must have sort ¢. Therefore, t; and 9 also coincide and we repeat
step (iii) of the Base to obtain E* I—ZI;D (t10)* = (t20)*. Finally, if f is a
generator then all the terms ¢;; are of sort 7. Thus, by induction hypothesis,
E* EDP (t110)* = (t210)*, . .., (t1x0)* = (taxf)*. Using again intuitionistic rea-
soning we have that {{1 = &2,& = &} I—II;D (E1NE) = (EaN&), (G1VE&) =
(&2 V &), (&1 D &) = (&2 D &4). Given that — is translated using £ and D this
is enough to guarantee that E* I—II;D (t10)* = (t20)*.

(iv) t1 is s10’, to is s90’ and t; = to is obtained using the conditional equation
(s11 = s21 & ... & s1p = S9p — 81 = s2) € S® from S*U{( — eq) : eq €
E} '_gEEc?E) s110" = 5010, ..., 510" = s91.0' by CEQ Modus Ponens.

Obviously, all the terms are 7-terms and the induction hypothesis implies
that E* F'D (s110'0)* = (s210'0)",..., (s1x0'0)* = (s0'0)*. Moreover, by



Fibring Non-Truth-Functional Logics: Completeness Preservation 21

equational appropriateness, we have {(s110'0)* = (s210'0)*, ..., (s1,0'0)* =
(s2k0'0)*} FEP (510'0)* = (s26'6)*. Therefore, E* HI'P (110)* = (t29) QED

THEOREM 3. Every equationally appropriate logic system is adequate.

Proof: Let £ be an equationally appropriate logic system and 'U{d} C L(C, ).

If T FS § then also I' 5 6, ie., S*U{( — v(y) = T) : v € T'} I—CEQ )
v(6) = T, by Theorem 1. Therefore, using the previous lemma, we have that
{y=t:yeT} I—;,D D § = t. Trivial intuitionistic reasoning allows us to conclude
that I—;:D &1 = (& = t), and therefore it follows that T’ I—f;D d.

If I S § then also T' 5 4, ie., S*U{( — v(€1) < v(yotl)) 1y e T} I—CEQ )
v(&1) < v(6ot1), by Theorem 1. Therefore, using the previous lemma, we have
that {(&1 Ayo™t) =& vy € T} HDP (& A do™) = & . Trivial intuitionistic
reasoning allows us to conclude that I—IIJDD (&1 D &) = (&1 N&) = &), and
therefore it follows that {& D yo™ 1y € T} H'P ¢ D 6. Thus, by Lemma

3, we already know that ['o ! FI'P §oF1 and by structurality, using o1, we

have I' l—gD J. QED

The equivalence between adequacy and equational appropriateness for rich
systems will be used below for showing that adequacy is preserved by fibring rich
systems, but this equivalence may also be useful for establishing the adequacy
of logics endowed with a semantics presented by conditional equations. Indeed,
it is a much easier task to verify equational appropriateness than to establish
adequacy directly.

5.2. PRESERVATION OF COMPLETENESS BY FIBRING

We consider in turn the preservation of soundness and of adequacy by fibring.
THEOREM 4. Soundness is preserved by fibring.

Proof: Let £ be the fibring of two sound logic systems £’ and L”. It is enough
to prove the following: T’ l—gD 0 implies that T’ l—g 6, and T’ l—fD 0 implies

that T’ I—f 0, by Theorem 1. Moreover, it is enough to prove that Prem(r) l—g
Conc(r) for every r € P, and Prem(r) ¥ Conc(r) for every r € D. Let r € P.
Assume, without loss of generality, that » = h/(r’). Then, by definition of proof,
Prem(r") l—ng/ Conc(r') and, so, Prem(r") }—‘ggl Conc(r'), by the soundness of
L'. This means that

S U{(—=v(®)=T):4" € Prem(r)} l—g(%c?g)
and then, by the uniformness of CEQ under change of notation by n (cf.
(Meseguer, 1998)), we obtain

W) U{(— oW (v) =T): 9 € Prem(r)} 5 G, o(R (Cone(r))) = T.

v(Conc(r')) =T

This immediately implies 7'(Prem(r')) I—S ' (Conc(r')), that is, Prem(r) I—f
Conc(r). The proof for derivations is smnlar QED
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Consider two sound logic systems £’ and £” that are both consistent, in the
sense that both contain formulae that are not theorems. It may happen that the
corresponding fibred logic system L is no longer consistent. For instance, assume
that £’ corresponds to classical propositional logic plus an additional axiom A,
for some proposition A, and that £” also corresponds to classical propositional
logic but with additional axiom — A. Obviously, £ is not consistent. In order
to have both £’ and £” sound, it is clear that the corresponding isp’s must
imply v(A) = T and —(v(A)) = T, respectively. Thus, the isp of £ must
imply T = L. Therefore, the only interpretation structure presented by the
isp of L corresponds to the trivial Boolean algebra, which, as mentioned earlier
(just after Definition 4), satisfies any set of conditional equations. This example
makes clear that Theorem 4 just states the preservation of soundness by fibring
and clearly does not imply the preservation of consistency. Preservation of
soundness is nevertheless very important in itself. Finding sufficient conditions
under which consistency might be preserved by fibring is beyond the scope of
this paper.

Finally, we consider the problem of preservation of adequacy by fibring,
taking advantage of the technical machinery presented before on the encoding
of the meta-logic in the object Hilbert calculus.

LEMMA 5. Richness is preserved by fibring provided that conjunction, dis-
junction, implication, true and false are shared.

Proof: It is trivial that the signature and valuation requirements are preserved
since we are sharing conjunction, disjunction, implication, true and false. More-
over, it is clear that Modus Ponens is still a derivation rule in the fibring. QED

LEMMA 6. Equational appropriateness is preserved by fibring provided that
conjunction, disjunction, implication, true and false are shared.

Proof: Let £’ and £” be equationally appropriate logic systems, and £ their
fibring by sharing conjunction, disjunction, implication, true and false. From
the previous lemma we already know that L is rich.

Now, let ceq be (t1 = s1 & ... & t, = s, =t =35) € S° and 0 a ground
substitution. Clearly, by definition of fibring, ceq must be the translation of a
conditional equation in some of the components. Let us assume, without loss
of generality, that ceq comes from L', i.e., ceq is h/(ceq’), where ceq’ is the
conditional equation (#] = s} & ... & t), = s/, = ' =s') € §'°. Since we know
that £’ is equationally appropriate, it follows that

{10 = (s10')", ..., (th0)" = (sL,0) ) FE'P  (£0) = (s'0')",

where 6’ is the following ground substitution:
— for every i > 1, 0/(xz;) = v(&—1) and ' (y;) = &o;.

By definition of fibring of Hilbert calculi, then, it must be also the case that
(W ((10)" = (16)))s . B ((6,8))" = (s,0))} P B ((£0)" = (s'6')").

Consider now the substitution ¢ on schema variables defined by:
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— 0(§2i-1) = O(w)";
— 0(&i) = 0(vi).
Using o and the structurality of the Hilbert calculus, now, we must also have
(W (10)" = (16))), . B ((6,0))" = (s,0)) o B2 1 ((0) = (86))o

But, in fact, a_straightforward inductive proof allows us to conclude that
R ((u'60)*)o = (B (u')8)* for every term u’ of sort 7 over X(C’, Z), and therefore

{(t10)" = (510)", ..., (tn0)* = (520)"} F)P (t0)* = (s0)*.

Thus, £ is equationally appropriate. QED

THEOREM 5. Given two rich and complete logic systems, their fibring while
sharing conjunction, disjunction, implication, true and false is also complete.

Proof: The preservation of soundness is immediate consequence of Theorem 4.
The preservation of adequacy is a consequence of the previous lemma and the
equivalence between equational appropriateness and adequacy for rich systems.
In fact, let £ and £” be two rich and complete logic systems and let £ be their
fibring while sharing conjunction, disjunction, implication, true and false. By
Theorem 2, £' and L” are also equationally appropriate and thus so is £, by
Lemma 6. Finally, by Theorem 3, £ is adequate. QED

EXAMPLE 10. By fibring while sharing conjunction, disjunction, implication,
true and false the logic systems L, and Lxp we obtain a new modal para-
consistent logic system L¢ oxp that is complete. Observe that if we add to

Le,exD:
— ( —o(y]) <v((Ly1)°)) as a valuation axiom;
— (0,& D (L&)°) as an axiom in the Hilbert calculus;

we still obtain a complete logic system that is equivalent to the system C{ of
(da Costa and Carnielli, 1988) both at the proof-theoretic and the semantic
levels. A

6. Self-fibring versus truth-functionality

In this section we address the problem of fibring two copies of the same logic
(self-fibring) and show that, contrarily to what happens in the case of a truth-
functional logic, in the case of a logic with non-truth-functional semantics there
is no collapse of unshared symbols. This construction is illustrated within the
context of the C,, hierarchy of paraconsistent systems (da Costa, 1963).

It is not difficult to see that, if S is a truth-functional isp (that is, all the
connectives are truth-functional derived connectives) then the self-fibring S®& S
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of § with itself, without sharing of connectives (just sharing the propositional
symbols in Cj), produces a copy of S where each connective appears duplicate.
In fact, if ¢ € C, (k > 0) and ¢ is its duplicate then va([e(ty, ..., tx)]%) is
equal to va([¢/(t1,...,tx)]%) for every interpretation A, assignment p over A
and terms 1, ..,t; of sort ¢. Additionally, if ¢ € Cy is a constant symbol, such
as t or f, then va([c]4) is also equal to v4([¢']a). Of course, this property
can be extended to every rich and complete logic system £ while sharing Cp,
conjunction, disjunction and implication in the self-fibring £ ® L. In such cases
the formulae ¢(ty, ..., tx) and ¢/ (t1,...,t;) will be equivalent in £ & L, even if ¢
and ¢’ are not explicitly shared.

On the other hand, if S is an isp with some non-truth-functional connective
¢, then va([c(ty, ..., tx)]%) and vA([¢ (t1, ..., tx)]") do not necessarily coincide in
the models of S ® S and, consequently, the formulae c(t1, ..., tx) and ¢/(t1, ..., tg)
are not necessarily equivalent in £ & £, unless ¢ and ¢’ are explicitly shared.

As a concrete instance, consider the isp & of Example 1, representing the
semantics of the paraconsistent calculus C; (cf. (da Costa, 1963)). If we perform
the fibring S&S of S with itself, while sharing the symbols in Cp, then we obtain
two families of connectives: {A,V, D, =} and {A',V/, D', ='}. A model for S& S
gives a valuation map v 4 such that

va([tifita]) = va([trf't2]) for § € {A,V,D},

because those connectives are truth-functional. On the other hand, v4([-t]%)
does not coincide necessarily with v4([='¢]%). For example, let v; and va be two
Ci-bivaluations such that vi(p1) = vi(—p1) = 1 and va(p1) = 1, va(—p1) = 0.
Moreover, assume that in fact vi(p) = vo(p) for every propositional symbol
p € Cy. We can thus define an interpretation A of S @ S as follows:

— A, ={0,1} (with its usual Boolean algebra structure);
— w4 restricted to the fragment {A,V, D, } coincides with vy;
— w4 restricted to the fragment {A’, V', D', ="} coincides with vs;

— w4 extended to the mixed language C' & C is obtained from v; and vy
by using the same techniques used in the proof of Proposition 6.1 in
(Carnielli and Coniglio, 1999), namely, va([-t]%) = 1 iff va([t]%) = 0
iff va([~'¢]%) =1 for all assignments p and all mixed terms ¢ of sort ¢.

The interpretation A satisfies: va([-p1]a) # va([“'p1]a), showing that —
and —’ do not collapse. Considering the fibring at the logic system level, we
obtain, by the completeness preservation Theorem 5, that —t; and —'¢; are not
equivalent formulae (unless they are both theorems).

The example above shows that the fibring of C,, with itself produces, for every
n > 1, two disjoint copies of C,, (as the same argument can be applied to the
whole hierarchy of paraconsistent calculi C,,). We exclude Cy(which is just the
Classical Propositional Calculus) since in this case the self -fibring will collapse
with Cp, because this system is truth-functional. On the other hand, the fibring
of C, with C,,, with m > n, produces a new paraconsistent system with two
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paraconsistent negations, -, and —,,, whose axioms correspond to adding the
axioms of C,, and of C,,,, and whose interpretations are given by maps which are
simultaneously C,, and C,, valuations. It is an open question whether or not there
exists a formula (in the language of C,;,) which encodes in C,,, the paraconsistent
negation —,, for m > n (this, in fact, happens with the classical negation, which
is representable in every calculi Cy,). If this question has a positive answer, then
the fibring of C, and C,, (without sharing the negation) will be equivalent
to Cp, for m > n. Of course, the fibring of C,, and C,, (while sharing the
negation) will be equivalent to C,,. If we generalize this argument, including in
the object signature C' an unary symbol —, for every n > 0, then the infinite
fibring of the whole hierarchy C,,, without sharing the negations —,,, will produce
a new paraconsistent system with infinitely many paraconsistent negations.
If negations are shared in the fibring, the result coincides with the Classical
Propositional Calculus Cy. It is worth remarking that, although we concentrate
most of the time on paraconsistent calculi because these are excellent examples
of interesting non-truth-functional logic systems, it is clear that our treatment
is fully general.

7. Concluding remarks

The first main contribution of this paper is a general semantics for two basic
forms of fibring propositional-based logics encompassing systems with possibly
non-truth-functional valuations. We should stress that the present approach is
not just an adaptation of previous work but it involves the conceptual break-
through of dropping the widely accepted principle of truth-functionality. This
goal is achieved by recognizing that such valuations can be represented in
some appropriate meta-logic and by developing new techniques based on this
representation. In this case, since it suited our needs, we have used condi-
tional equational logic as the meta-logic. However, it must be clear that we
could have adopted, instead, any other meta-logic where non-truth-functional
valuation semantics could be defined. Although restricted to systems with a
finitary propositional base, the proposed semantics deals with a wide variety of
logics from paraconsistent to modal, many-valued and intuitionistic systems. In
this setting, fibring appears as a universal construction within the underlying
category, generalizing previous results for truth-functional systems (Sernadas
et al., 1999).

It should be stressed that the two basic forms of fibring we consider (un-
constrained fibring and constrained fibring by sharing some symbols) appear
as “operations” on the class of logics at hand. Usually, in applications, these
operations are not enough to obtain the envisaged logic: a fine tuning of the
resulting logic may be necessary, namely by adding interaction axioms, like it
is illustrated in Example 6.

The second main contribution of this paper is the completeness preservation
theorem that generalizes to possibly non-truth-functional logics the result es-
tablished in (Zanardo et al., 2001). This new result is obtained using a different
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technique exploiting the properties of conditional equational logic where the
requirements on the valuations are specified.

As an example of application of our techniques, the use of fibring for combin-
ing paraconsistent logics with other logics is illustrated by recovering the modal
paraconsistent logic C* of da Costa and Carnielli (da Costa and Carnielli, 1988)
as a fibring plus an additional interaction axiom. We believe that fibring is a
very natural way of establishing new combined systems involving non-truth-
functional logics. This approach is more widely applicable than it appears to
be: a large family of logics (including many-valued and intuitionistic) admits
bivalued non-truth-functional semantics (cf. (Béziau and da Costa, 1994)).
Whenever that happens, the completeness preservation theorem can then be
used for establishing the completeness of the result as long as the given logics
are complete and fulfill the requirements of richness. As another example, the
fibring of a logic with itself is examined within the context of the C, hierarchy
of paraconsistent systems (da Costa, 1963).

In short, our approach offers a framework formalizing the minimal meta-
mathematical requirements that are sufficient to express a large variety of logic
systems, possibly non-truth-functional; such representations of logic systems
constitute a category and they can be combined by means of fibring (that is,
through universal constructions in the category). We have also proved that the
completeness of such logic systems is preserved by fibring under certain reason-
able assumptions on the logic systems, guaranteeing the important property of
non-destructiveness of our fibring constructions.

Note that, although we have adopted Hilbert calculi as the proof-theoretic
notion of logic, it would have been possible to consider other well known
formalisms. Namely tableaux systems, as in (Beckert and Gabbay, 1998), or
systems of natural deduction, as in (Rasga et al., 2002).

Other lines of research are obvious, towards relaxing the assumptions of this
paper. For instance, we may want to work with more general object logics (e.g.,
predicate logics), or with a more general meta-logic (e.g., disjunctive conditional
equational logic), or with an even more general universe of truth-values (e.g.,
involving less or extra generators), or with weaker richness requirements and
still obtain completeness preservation by fibring. This line of work is even more
important as it should help to solve a small but annoying technicality related to
our notion of truth-functional connective. In fact, as mentioned with respect to
Example 2, the modality L is not truth-functional according to our definition.
As we have explained, it would be very easy to make it truth-functional (as it
should) by adding a modal operator [J to the meta-signature. It is important
that we solve this lack of expressiveness in order to raise the distinction between
this modality L and the paraconsistent negation — of Example 1 that, on the
contrary, is well known to be non-truth-functional in an essential way.

Still other lines of research are related to more general forms of fibring,
namely heterogeneous forms of fibring where we want to combine two (or more)
logics that are defined in quite different forms (either at the deductive system
level or at the semantic level).
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