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Clinical observations and accumulating laboratory evidence support a complex

interplay between coagulation, inflammation, innate immunity and fibrinolysis in venous

thromboembolism (VTE). VTE, which includes deep vein thrombosis (DVT) and pulmonary

embolism (PE), and the subsequent complications of post-thrombotic syndrome (PTS),

are significant causes of morbidity and mortality in patients. Clinical risk factors for VTE

include cancer, major trauma, surgery, sepsis, inflammatory bowel disease, paralysis,

prolonged periods of immobility, and aging. Abnormalities in venous blood flow or stasis

initiates the activation of endothelial cells, and in concert with platelets, neutrophils

and monocytes, propagates VTE in an intact vein. In addition, inflammatory cells play

crucial roles in thrombus recanalization and restoration of blood flow via fibrinolysis

and vascular remodeling. Faster resolution of the thrombus is key for improved disease

prognosis. While in the clinical setting, anticoagulation therapy is successful in preventing

propagation of venous thrombi, current therapies are not designed to inhibit inflammation,

which can lead to the development of PTS. Animal models of DVT have provided

many insights into the molecular and cellular mechanisms involved in the formation,

propagation, and resolution of venous thrombi as well as the roles of key components

of the fibrinolytic system in these processes. Here, we review the recent advances in our

understanding of fibrinolysis and inflammation in the resolution of VTE.

Keywords: venous thromboembolism, venous thrombus resolution, DVT, PE, inflammation, fibrinolysis,

plasminogen, innate immunity

Cardiovascular diseases, involving disorders of the heart and blood vessels, are a leading cause of
death and disability globally. Thrombosis is the major underlying cause of the pathology of the
three major cardiovascular disorders: ischemic heart disease (acute coronary syndrome), stroke
and venous thromboembolism (VTE) (1). Historically, cardiovascular diseases were believed to be
solely caused by aberrations in the structures and functions of the cardiovascular system, but in
recent years, the role of systemic inflammation as well as the involvement of innate and adaptive
immunity in the pathophysiology of cardiovascular diseases has become clear (2–5).

VTE, which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), is an
exceedingly common and serious clinical problem (6–8). DVT occurs when a thrombus forms
in a vein, usually in the deep veins of the legs or pelvis. The most serious complication of
DVT occurs when part of the clot detaches and travels via the circulation to the pulmonary
arteries, causing a blockage or pulmonary embolism (PE). PE can be fatal due to hypoxia and
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circulatory collapse (9). Initiation of the formation of an
intravascular venous thrombus involves a complex interplay
between innate immune cells, platelets, and the venous
endothelial cells (10). The activation of the coagulation cascade
by these cells and the deposition of fibrin leads to the formation of
the venous thrombus. Conversely, the immune cells involved in
the initiation of the blood clot formation also express and release
fibrinolytic factors and thus orchestrate the resolution of the
venous thrombus by modulation of the fibrinolysis system. These
concepts are illustrated in Figure 1. This review summarizes the
recent advances in our understanding of the interplay between
inflammation, innate immunity and fibrinolysis focusing on
venous thrombosis and its resolution.

CAUSES OF VTE

VTE is a multifactorial process and is associated with several
different risk factors. The prevalence of these risk factors
predisposes an individual to venous thromboembolic events. In
1856, the German physician Rudolf Virchow first postulated
that VTE was caused by abnormalities in the normal blood
flow or stasis, increased blood hypercoagulability and endothelial
damage or dysfunction, which later came to be known as
“Virchow’s triad.” Reduced blood flow caused by prolonged
periods of inactivity, especially in elderly subjects, long
hospitalizations due to illness, pregnancy and long distance
travel with limited movement such as air-travel, are associated
with increased risk of VTE (11). Similarly, individuals with
increased levels of clotting factors in the circulation, resulting
from diseases, medications, or inherited traits, have increased risk
of VTE (12). Tumor cells frequently produce large amounts of
the procoagulant transmembrane receptor tissue factor, which
can be released in tumor-derived microparticles rendering the
blood hypercoagulable in individuals with cancer, and is likely
to be a major cause for the observed high incidence of VTE
in cancer patients (13). In fact, cancer patients make up 20%
of all newly diagnosed VTE (14). Finally, trauma or damage to
the venous endothelium can lead to disturbances in the balance
between procoagulant and anticoagulant properties of the venous
endothelium and are also predisposing factors for VTE (15).

Patients present with either acute DVT wherein the clot
has been present for <14 days, or chronic DVT, when
the clot is present for more than 28 days and sometimes
indefinitely (16, 17). Anticoagulant therapy is used to prevent
the formation of more clots and prevents thrombus propagation.
In cases of severe, life-threatening PE, treatment also consists
of thrombolytic therapy (streptokinase, urokinase, or tissue
plasminogen activator) and catheter directed or surgical
thrombectomy to remove the thrombus (18).

POST-THROMBOTIC SYNDROME (PTS)

One of the major complications of chronic DVT is the
development of post-thrombotic syndrome (PTS) (19). PTS
is a debilitating condition with symptoms including difficulty
in walking, leg swelling and ulceration in the skin of the

affected leg. PTS occurs in about one in 2–3 patients who had
an earlier episode of thromboembolism (20, 21). In 10% of
the patients suffering from PTS the symptoms become severe
(20, 22). When a thrombus forms, a natural inflammatory
response is initiated, mediated by the immune cells present
in the thrombus, that ultimately leads to reabsorption of the
clot through fibrinolysis and thrombus recanalization, or the
restoration of blood flow (23). While the inflammatory response
is necessary for the contraction and recanalization of the
thrombus, the very presence of this inflammation causes damage
to the surrounding vein wall and the venous valves leading to
valvular dysfunction (24). Failure to recanalize the thrombus
and the ensuing obstruction of blood flow can cause venous
hypertension below the level of the obstruction, resulting in
venous reflux, which is a major cause for the development of PTS
(22, 24). Venous reflux can also result from the entrapment or
destruction of the delicate venous valve leaflets by the resolving
thrombus. The involvement of inflammation in the development
of PTS is supported by the observation that VTE patients with
PTS have higher circulating levels of the inflammatory markers,
IL-6 and ICAM-1, compared to patients without PTS (25). Over
30% of patients with DVT develop chronic venous insufficiency
(26), and patients with thrombi that fail to recanalize within
the first 6 months from the occurrence of DVT have a higher
likelihood of developing PTS (27, 28). Clinical studies suggest
that vein wall changes occur as a direct consequence of initial
thrombus burden (29). A more rapid resolution of the thrombus
is thus beneficial to the preservation of the vein wall patency and
valvular function (30, 31).

UNDERSTANDING DVT AND ITS
RESOLUTION—ANIMAL MODELS

Our current understanding of the molecular mechanisms
involved in DVT and its resolution is largely derived from
the use of rodent models of stasis- or stenosis-induced venous
thrombosis, where the inferior vena cava of the animal is either
completely or partially ligated to induce formation of a venous
thrombus (32–37). These animal models mimic many of the
clinical and pathophysiological features observed in human DVT
(34, 38), including the presence of inflammatory cells in the
milieu (10) (Figure 1) and the complex interactions of the
thrombus with the vein wall which mimic the biomechanical
compliance changes seen in patients with PTS (39, 40). Like
human DVT, the formed venous thrombi are fibrin and red
blood cell rich, and have a laminar structure consisting of layers
of platelets, leukocytes, and fibrin, that encompass the main
erythrocyte mass (41). They differ from arterial thrombi in being
platelet poor and red blood cell rich. Of the different experimental
animal models, murine models offer the distinct advantage of
genetic manipulation to dissect molecular mechanisms, which
has proven very useful in providing insights into the cellular
and molecular processes involved in human DVT. However,
these models also have limitations. A recent consensus endorsed
by the International Society on Thrombosis and Hemostasis,
and the ATVB Council of the American Heart Association
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FIGURE 1 | Innate immune cells in DVT. Venous thrombosis can be initiated by venous stasis, increased blood hypercoagulability or endothelial damage. Innate

immune cells, neutrophils, and monocytes, bind to the activated vascular endothelium and along with platelets, initiate thrombus formation and fibrin deposition. The

thrombus grows by deposition of more fibrin, accumulation of red blood cells and immune cells. Thrombus infiltrating neutrophils and macrophages (differentiated

from monocytes) modulate generation of plasmin and matrix metalloproteinases (MMPs), and thus set the stage for fibrinolysis and the collagen remodeling required

for the resolution of the thrombus. In the early phase of thrombus resolution, fibrinolysis occurs at a high rate generating fibrin degradation products (FDPs),

intrathrombus collagen fibrils start to appear, and thrombus-associated immune cells are induced to produce inflammatory cytokines and various proteases. As the

thrombus matures, the rate of fibrinolysis slows down, intrathrombus collagen deposition increases, matrix remodeling via macrophage secreted MMPs occurs and

eventually blood flow through the thrombus is restored. Resolution of inflammation and acceleration of this process is believed to be beneficial for restoring vein wall

patency and reducing the pathology associated with PTS.

provides a useful guide for the application of murine models to
VTE research (37). Below are highlighted the most frequently
used models:

IVC Stasis Model
This is a robust model that accurately mimics many features of
human DVT and it is well-established in the DVT literature (42–
47). Stasis is induced by complete ligation of the inferior vena
cava immediately below the renal veins, and all the side branches
are either cauterized or ligated (48). Themodel produces thrombi
of reproducible size and variation between animals is relatively
small (Figure 2). While the model does not reproduce the
clinical scenario where a thrombus is non-occlusive, it does
reproducibly mimic complete occlusion, which is pathologically
significant since human acute DVTs are initially occlusive in
88% of cases (49). A limitation of this model is that the lack
of flow limits the effect of systemically administered agents on
the thrombus.

IVC Stenosis Model
This model also involves IVC ligation, except that the thrombus
grows in the presence of blood flow, mimicking partial occlusion
of the vein in clinical scenario and represents a chronic DVT
condition. In this model, a spacer (either a small gauge needle or
suture) is placed on the IVC before the ligation and is removed

after the ligation is performed to allow for very low blood flow
through the vena cava (10, 50–53). One serious limitation of this
model is the large variation in thrombus size after ligation and
absence of a thrombus in a significant number of animals. A
variation of this model that includes endothelial damage created
by placement of a vascular clip onto the IVC has also been
reported (54, 55).

Ferric Chloride-Induced Venous
Thrombosis Model
In this model, venous thrombus formation is initiated by
oxidative damage to the vein wall by using a ferric chloride
solution (56). A filter paper soaked ferric chloride is placed
on the vein, such as femoral vein or inferior vena cava, for a
period of time and upon removal of the filter paper, a thrombus
is formed that represents an acute complete occlusive venous
thrombus. A major drawback of this model is that it mimics
only a small percentage of human DVT cases where the cause
of DVT is due to endothelial damage, such as in cases of trauma
or burn injury.

Electrolytic IVC Thrombosis Model
This model involves initiation of a venous thrombus by electrical
stimulation of the vena cava endothelium using an electrical
impulse (57). Major advantages of this model are that the
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FIGURE 2 | Histochemical analysis of thrombus sections from a stasis

induced mouse model of DVT. In this model, thrombus formation occurs

maximally at day 4 and resolves naturally thereafter with day 12 serving as a

measure of thrombus resolution. (A) Hematoxylin and Eosin (HandE) stain

showing overall tissue morphology; (Original magnification x100, Scale bar

500µm) and (B) cell infiltrates. The nucleated cellular population at day 4

comprises mostly of neutrophils and few macrophages, whereas both

macrophages and neutrophils can be seen at day 12 (Original magnification

x400, Scale bar 100µm). (C) Martius Scarlet Blue (MSB) stain showing fibrin

content in red (Original magnification x100, Scale bar 500µm). (D) Picrosirius

Red stain showing collagen content in red (Original magnification x100, Scale

bar 500µm). As the thrombus resolves, it becomes smaller in size, fibrin

content is decreased via fibrinolysis and there is an increase in intrathrombus

collagen content.

thrombus is formed in the presence of blood flow and is relatively
consistent in size. Prolonged time to induce the thrombus is a
major drawback of this model.

Pulmonary Embolism Models
While much has been gained from animal models of VTE,
these models fail to reproduce the sequence of both VTE
and PE. Specific murine PE models have been developed
to study the effects of either gene deletions or specific
pharmacological manipulations on the outcome of PE. Many
of these models involve intravenous administration of various
coagulation factors, such as thrombin (58, 59), thromboplastin
(60), or collagen (61) via either the inferior vena cava, jugular
vein or tail vein, resulting in rapid onset of widespread
thrombosis at the pulmonary level. A photochemical PE
model that has been used employs direct irritation of the
venous endothelium by use of the photosensitizing dye,
Rose Bengal (tetrachlorotetraiodofluorescein), which generates
oxygen radicals and focal vascular injury after exposure to green

light (62). A novel model of direct quantification of PE events
following femoral VTE induced by ferric chloride has also been
described in which PE burden is detected by fluorescent labeling
of platelets and in vivo quantification of emboli in pulmonary
arteries (63).

FORMATION OF VENOUS THROMBI

Thrombus formation generally starts at the venous valve sinuses,
the slowing down of the blood flow around the valvular sinuses
and the consequent rise in the local hematocrit value, naturally
predisposes those areas to the event of thrombosis (64). This
is supported by the clinical observation that in most of the
lower extremity DVT cases, thrombus formation starts in the
soleal veins of the calf and then propagates to other veins (65,
66). In microscopic examination of small thrombi formed in
the valve pockets from human patients, two major regions can
be seen: red areas, near to the valve pockets that are rich in
red blood cells and fibrin, and white areas comprising mostly
of platelets (67). In contrast to venous thrombosis, arterial
thrombosis is initiated after an atherosclerotic plaque rupture
and arterial thrombi are rich in platelets and white in appearance.
The presence of a high number of red blood cells in a fresh
venous thrombus was previously believed to be result of passive
trapping of the red blood cells in a growing fibrin meshwork;
however, recent data suggests that this may be a coordinated
process involving specific interactions between red blood cells
and different components in the milieu of the thrombus. Red
blood cells can interact with both platelets and leukocytes via
integrin mediated interactions (68, 69). In a mouse model of
ferric chloride-induced arterial thrombosis, it was shown that red
blood cells were the first type of cells to arrive and bind to the
endothelium at the site of thrombus initiation (70). Subsequent
interaction of the endothelium bound red blood cells with
platelets involving glycoprotein Ib-α receptor was required for
the thrombus propagation. A similar mechanism is also possible
in case of venous thrombosis.

Venous thrombus formation is initiated by the activation
of the coagulation cascade, followed by thrombin-induced
conversion of fibrinogen to fibrin (71). The risk of VTE
is associated with elevation in the blood fibrinogen level
(hyperfibrinogenemia) as well as abnormal fibrin clot structure
and function. When compared with individuals with normal
circulating fibrinogen levels, individuals with higher fibrinogen
levels (>4 g/L) were 2-fold more disposed to experience VTE
and this was significant in older patients (72). This finding
was also validated in a rodent model, where intravenous
infusion of fibrinogen in mice resulted in a shorter time
to vessel occlusion and a larger thrombus (73). On the
other hand, genetic mutations that lead to defects in fibrin
function and quantity in the circulation are also associated
with increased incidences of VTE. Afibrinogenemia (absence of
fibrinogen) and hypofibrinogenemia (low plasma level), as well as
dysfibrinogenemia (normal level but altered function) conditions
are also known to be at higher risk for VTE events (74). Further,
there are reports of altered fibrin clot structure in patients with
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idiopathic thromboembolism that appeared to have a genetic
component (75).

The interaction of blood leukocytes with the activated venous
endothelium is a major event in venous thrombus formation.
The release of tissue factor from endothelium-bound monocytes
and leukocyte microparticles initiates the coagulation cascade
(10), leading to the activation of thrombin and the conversion
of fibrinogen to fibrin. This is also associated with changes
in the cytokine milieu within the thrombus, originating from
the interactions between the activated platelets, red blood
cells, leukocytes and the endothelium (Figure 1). These ensuing
inflammatory signals augment thrombus formation and initiate
the eventual process of thrombus resolution (76, 77). As blood
flows over the growing thrombus, fibrin and various cells are
deposited in alternating layers, giving rise alternating white
and red bands typical of Lines of Zahn (78). While platelet
numbers are lower than in arterial thrombi in the rapidly
growing venous thrombi, activated platelets also express P-
selectin, which aids in the infiltration of peripheral leukocytes
into the thrombus. Neutrophils are among the first leukocytes
to be recruited to the thrombus, followed by monocytes that
differentiate into macrophages (79). In the acute or early phase
of thrombus formation, the fibrin network undergoes rapid
polymerization. Extracellular DNAfibers, released by neutrophils
during inflammation and known as neutrophil extracellular
traps (NETs), stimulate thrombus formation and coagulation
(Figure 1) and are abundant in thrombi in animal models of
DVT (51).

VENOUS THROMBUS RESOLUTION

As the thrombus ages, leukocyte infiltration into the thrombus
increases and the thrombus appears more structured with
the deposition of collagen fibrils (Figure 1). Resolution of the
thrombus involves both neutrophils and monocytes that are
capable of modulating the generation and activity of plasmin,
required for fibrinolysis, or the degradation of the fibrin network.
These cells also secrete matrix metalloproteases (MMPs) (80–83),
which can further activate the plasminogen activation system and
set the stage for the degradation and remodeling of extracellular
matrix components in the more mature thrombus (Figure 1). It
is believed that thrombus-associated fibroblasts deposit collagen
after activation by TGF-beta, although direct evidence supporting
this is still lacking. Maturation of the thrombus is marked by a
decrease in the overall fibrinolytic activity within the thrombus
(84). In clinical cases, the majority of the patients have reduced
D-dimer level present in the circulation 1 month after the
first episode of DVT (85). Neutrophils and monocytes continue
to secrete MMPs as well as various inflammatory cytokines,
both of which contribute to the remodeling and resolution of
the thrombus.

In the late phase of thrombus resolution, differentiated
macrophages infiltrate the thrombus and endothelial cell lined
channels within the thrombus also become apparent. Distinct
layers of collagen deposition starting at the vein wall adjacent
area and protruding toward the center of the thrombus become

readily visible (Figure 2D, right panel). Macrophages continue to
secrete MMPs (86), required for degradation and remodeling of
the collagen matrix. It has been demonstrated that endocytosis
of collagen molecules by CD206 positive macrophages is the
major route of collagen turnover in vivo (87), although whether
the same phenomenon occurs in a venous thrombus remains to
be investigated.

THE ROLE OF FIBRIN(OGEN)

Fibrin and its degradation products themselves are known for
modulating inflammatory responses in variety of immune cells.
Fibrin can enhance leukocyte migration to the deposition site
(88, 89). Direct interaction of fibrin via CD11b/CD18 integrin
with peripheral blood mononuclear cells results in heightened
production of inflammatory cytokines such as TNF-alpha, IL-6
and IL-1beta (90, 91). Studies have shown interaction of fibrin
with RAW 264.7 macrophages results in enhanced production
ofmacrophage inflammatory protein-1alpha (MIP-1alpha),MIP-
1beta, MIP-2, and monocyte chemoattractant protein-1 (92).
It was postulated that this interaction is mediated by the
Toll-like receptor (TLR)-4, since the response was abrogated
in vivo in mice that express mutant TLR-4 (92). On the
other hand, studies with fibrinogen-γ390−396A knock-in mice
identified the CD11b/CD18 integrin as the primary receptor
for the fibrin mediated pro-inflammatory macrophage cytokine
secretion (93). In addition, interaction of fibrin with endothelial
cells results in induction of IL-8 mRNA (94), whereas fibrin
enhances binding of leukocytes to the vascular endothelium via
ICAM-1 (95). Functional studies have shown that fibrinogen
gene deletion or pharmacological depletion of fibrin reduced
inflammation and delayed the onset of multiple sclerosis in
animal models (96), indicating a role for fibrin in the modulation
of inflammatory responses. While there is no direct evidence
for fibrin modulation of inflammation in DVT, the presence
of fibrin is likely to augment pro-inflammatory responses and
fibrin-initiated modulation of the inflammatory cascade in the
thrombus milieu cannot be ruled out.

FIBRINOLYSIS AND VENOUS THROMBUS
RESOLUTION

Activation of the inactive zymogen plasminogen to the serine
protease plasmin, which digests the fibrin component of a
thrombus, is the key step in fibrinolysis and thrombolysis.
Plasmin is an essential element of early venous thrombus
resolution, contributing not only to fibrinolysis, but also
leukocyte infiltration, the activation of other protease zymogens
(e.g., MMP-9) and the regulation of coagulation factors (97–
101). Plasminogen is synthesized in the liver and circulates in the
blood, wherein it becomes incorporated into the thrombus as it is
forming due to its affinity for lysine residues on fibrin (102). The
degradation of fibrin polymers by plasmin results in release of
fragment E and two molecules of fragment D which are released
as a covalently linked dimer (D-dimer) (103). Detection of D-
dimer in the circulation is a marker of ongoing clot formation
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and an elevated D-dimer level in patients after treatment for DVT
predicts an ongoing risk of recurrent VTE (85, 104). It should be
noted that due to lack of D-dimer standardization, elevated levels
of D-dimer are usually followed up by additional screenings to
confirm the presence of ongoing VTE events.

The conversion of plasminogen into plasmin is primarily
mediated by two plasminogen activators, tissue-type (tPA)
and urokinase-type plasminogen activator (uPA), which
proteolytically cleave between residues Arg561-Val562 of
plasminogen, inducing its activation (105). Whereas, tPA is
primarily involved in clot dissolution (106), uPA principally
regulates plasmin-mediated cell migration and tissue remodeling,
as well as the activation of latent growth factors and cytokines
(107). tPA is slowly released from endothelial cells to affect
activation of endogenous plasminogen (108) and this activity
is accelerated when in a ternary complex with fibrin (109).
Additional plasminogen-cleaving serine proteases include
several coagulation proteins and plasmin itself [reviewed
in (102)].

Several published gene targeting and gene transfer studies
have confirmed the significant role of tPA-mediated plasminogen
activation in removing fibrin from the vascular tree and
maintaining vascular patency (110), but also established a less
appreciated role of uPA in prevention of thrombosis during
traumatic or inflammatory conditions (111). uPA and its cellular
receptor, uPAR, are produced by macrophages, and these cells
have proved to be critical components of the process of thrombus
resolution because they are known to produce a variety of
proteases, growth factors, chemokines and matrix-degrading
enzymes (55). While tPA has been implicated in the resolution
of human DVT (106), genetic deficiency of tPA in mice did not
affect thrombus resolution. On the other hand, uPA deficiency
markedly impairs thrombus resolution in mice (55). Further, it
has been shown by bone marrow transplantation studies that
uPA derived from bone marrow cells was responsible for venous
thrombus resolution (55). Indeed, when uPA is delivered to
formed venous thrombi inmice, either by direct injection into the
thrombi or via transducing macrophages, resolution occurs more
rapidly (112, 113), demonstrating its critical role in this process.

INHIBITION OF FIBRINOLYSIS

The fibrinolytic system is tightly regulated and is normally
restricted in the thrombus (101). Major inhibitory regulators
of fibrinolysis are members of the family of serine protease
inhibitors, known as serpins (114). In the circulation, plasmin
binds rapidly to the serpin α2-antiplasmin (a2AP, also known
as SERPINF2) and is thereby inactivated [reviewed (115)]. In
the thrombus, the interaction of plasmin with a2AP is blocked
because the lysine-binding sites and the catalytic site of plasmin
are occupied by fibrin, suggesting that that the primary role
of a2AP is not to regulate plasmin-mediated fibrinolysis, but
to inhibit circulating plasmin in order to prevent activation of
fibrinogen (116). Crosslinking of a2AP to fibrin also significantly
enhances the resistance of fibrin to degradation by plasmin
through competitive inhibition (117, 118). Congenital deficiency

of a2AP causes a rare bleeding disorder because of increased
fibrinolysis (119). Deficiency of a2AP in mice resulted in
decreased mortality in a photochemical injury model of PE (62),
supporting the importance of plasmin activity in acute PE.

The activities of the plasminogen activators must also be
tightly controlled and many studies demonstrate that the
serpin plasminogen activator inhibitor-1 (PAI-1; also known
as SERPINE1) is the primary inhibitor of both tPA and uPA
induced fibrinolysis (120). PAI-1 is secreted from liver and is
synthesized by a variety of cell types including, hepatocytes,
platelets, vascular endothelium, adipose tissue, monocytes and
macrophages (102, 121). Thrombolysis resistance is linked to
the PAI-1 secreted from the alpha-granules of activated platelets
(122). Measurements of PAI-1 levels in 25 venous thrombi and 21
arterial thrombi showed an inverse correlation between the PAI-1
levels and resistance to thrombolysis (123).

PAI-1 circulates in plasma and numerous studies associate
the increased levels of PAI-1 activity with reduced fibrinolytic
responses in patients with DVT (124). A unique feature of
PAI-1 is its lack of disulfide bonds, allowing it to circulate in
plasma in three forms: active, inactive and latent (125). The latent
form can be stabilized by vitronectin binding (126). It has been
considered that elevated PAI-1 could suppress fibrinolysis and
increase thrombosis, hence increasing the clinical manifestations
of DVT. However, studies on the role of elevated levels of PAI-
1 in patients with venous thrombosis have been contradictory
(127, 128). A 4G polymorphism located in the promoter region
of the PAI-1 gene has been reported to be associated with elevated
levels of PAI-1 and further was correlated with risk of DVT
(129, 130). Further, it has also been reported that preoperative
plasma PAI-1 is an independent risk factor for the onset of DVT
in patients who went through total hip arthroplasty (131). In
contrast, a study involving 308 individuals who developed VTE
and 640 controls showed no association between the plasma
levels of fibrinolytic factors, including PAI-1 antigen, and VTE
(132). PAI-1 inhibitors have been suggested to be used against the
development of intravascular thrombosis, however preclinical
animal studies using PAI-1 inhibitors to decrease circulating PAI-
1 levels have yielded both negative and positive results [reviewed
in (133)].

PAI-1 is a major inhibitor of plasma fibrinolytic activity.
Overexpression of PAI-1 in transgenic mice results in increased
cellular fibrin and platelet rich occlusions in the tail and hindlegs
(134). Conversely, mice genetically deficient in PAI-1 possess
induces a mild hyperfibrinolytic state and accelerated clot lysis
compared to wild type mice (120). In addition, PAI-1 deficient
mice show a greater resistance to venous thrombosis after local
injection of endotoxin in the footpad and increased capacity
to lyse experimental plasma clots in a PE model (120). Several
groups have investigated the role of PAI-1 in VTE using mouse
models and found that PAI-1 plays a role in both venous
thrombus formation and resolution, highlighting the importance
of the balance of prothrombotic and antithrombotic activities in
DVT. PAI-1 deficiency through pharmacological inhibition or
genetic deletion, results in delayed total venous occlusion (135,
136) and decreased early thrombus size (137, 138). In a stasis IVC
ligation model, mice with genetic deletion of PAI-1 resulted in
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a significant improvement in venous thrombus resolution with
also a significant increase in the vein wall fibrosis (100). This has
also been shown by Siefert et al. wherein PAI-1 deficiency results
partially impaired venous thrombus formation and accelerated
venous thrombus resolution (46), demonstrating that PAI-1
influences both processes. Conversely, PAI-1 overexpression in
mice had larger venous thrombosis, but they also had reduced
vein wall fibrosis (139).

In addition to PAI-1, the serpin plasminogen activator
inhibitor type-2 (PAI-2, also known as SERPINB2), regulates
plasminogen activation in models of venous thrombosis (46).
PAI-2 was originally discovered as an effective inhibitor of uPA
activity in in vitro assays (140), however, compared with PAI-1, it
is found to be a slower inhibitor of uPA by a factor of 10-fold and
tPA by a factor of 50-fold in in vitro assays using recombinant
proteins. PAI-2 is one of the most abundantly induced proteins
in monocytes and macrophages in response to inflammatory
stimuli, with induction reported over 105-fold (141), and
multiple lines of evidence link PAI-2 to inflammatory pathways
that sculpt the nature of innate immune responses [reviewed
in (142)]. PAI-2 is found predominantly as an intracellular
protein which is characterized by the lack of a classical secretory
signal (143), and many of its immune modulatory activities are
independent of inhibition of extracellular uPA (144, 145). Unlike
PAI-1 deficiency, PAI-2 gene-deficient mice do not display any
overt baseline changes in fibrinolysis or spontaneous thrombosis
(146). It has been shown that in the stasis model of DVT, genetic
deficiency of PAI-2 in mice significantly accelerates venous
thrombus resolution, while thrombus formation is unaffected
(46). This outcome was independent of any effect on the initial
thrombus formation. The accelerated thrombus resolution was
accompanied by increased levels of active uPA in PAI-2 deficient
thrombi, with no significant effect on MMP-2 or−9 activities
(46). While the increased uPA activity in the absence of PAI-2
seemingly suggested a direct role for PAI-2 in the inhibition of
uPA, the mechanism appears more complex since the thrombi in
PAI-2 deficient mice also had a concomitant reduction in PAI-1
levels, which could contribute to increased active uPA found in
the thrombus. It was also found that genetic deficiency of PAI-
1 significantly accelerated venous thrombus resolution similar to
PAI-2 deficiency, but there were also substantial differences, since
PAI-1 deficiency had an additional negative effect on thrombus
formation and also altered intrathrombus MMP activities (46).
Additional differences were observed in the repertoire of
inflammatory cells present in venous thrombi between PAI-2 and
PAI-1 deficient mice. Increased early neutrophil accumulation
and decreased late macrophage infiltration was associated with
PAI-2 deficiency and not PAI-1 deficiency. These data suggest
that PAI-2 and PAI-1 modulate several distinct, but possibly
overlapping pathways during venous thrombus resolution.

IMMUNE CELLS IN DVT RESOLUTION

Experimental rodent models of DVT have revealed important
insights into the innate immune cells and coordinated
inflammatory processes involved in DVT and its resolution.

Inflammation is central to both the initiation and resolution of
venous thrombi and is directed at restoration of tissue integrity
and function (147). Activation of the vein wall endothelium
causes surface expression of cell adhesion molecules such as P
and E-selectins that facilitate the transmigration of circulating
leukocytes and microparticles (84, 148). As mentioned above,
neutrophils, the most abundant immune cells, infiltrate the
venous thrombus early and play a critical role during the early
phase of venous thrombus resolution. They are found in both
the vein wall and thrombus and are essential for initiating lysis
of the thrombus via fibrinolysis and collagenolysis (149–152).
Depletion of neutrophils in several experimental rodent models
results in impaired venous thrombus resolution, associated
with larger thrombi as well as increased fibrosis (153, 154).
Neutrophils also facilitate recruitment of monocytes into the
thrombus and as the thrombus matures, macrophage numbers
increase and eventually become the predominant inflammatory
cells present in the thrombus (42, 155). Macrophages produce
various chemokines, inflammatory cytokines and matrix-
degrading proteases such as uPA and MMPs that promote
fibrinolysis and the tissue remodeling required to eventually
restore blood flow in the thrombosed vein (84). In studies of
the effect of MMP-9 deficiency on stasis DVT, it was found that
MMP-9 modulates midterm vein wall collagen content, with
an altered local inflammatory and profibrotic environment,
likely directed by monocytes (40, 156). As potent phagocytic
cells, macrophages also contribute to clearance of apoptotic
neutrophils and other proteins within the thrombus.

Macrophages are present as a heterogenous population and
based on in vitro studies, may be distinguished by two main
polarization phenotypes: (1) those that promote inflammatory
responses (M1-like or classically activated) which are induced by
interferon-γ (IFN-γ) together with a variety of TLR agonists or by
these agonists alone, and which express inflammatory mediators,
such as TNF-alpha, IL-6, IL-12, and iNOS; and (2) those that
attenuate inflammatory responses (alternatively activated M2-
like) which express mediators such as Arginase-1, the mannose
receptor (CD206) and the transcription factor Fizz1 (157). The
role of macrophage polarization in venous thrombus resolution is
only now emerging. Using the stasis model of venous thrombosis
and resolution in mice, genetic deficiency or pharmacologic
inhibition of p53 was shown to impair thrombus resolution and
was associated with increased fibrosis and altered expression of
MMP-2 (47). Using mice that lacked p53 in the myeloid cells,
it was shown that the effect of p53 loss was mediated by cells
of the myeloid lineage, resulting in enhanced polarization of the
cytokine milieu toward an M1-like phenotype. In stasis (chronic)
and non-stasis (acute and chronic) models of DVT resolution, a
predominance of anti-inflammatory M2-like macrophages were
identified in venous thrombi (158). Since CD206 positiveM2-like
macrophages play a critical role in mediating collagen turnover
(87), a key event in the inflammatory vascular remodeling
processes associated with venous thrombus resolution (84), M2
polarization is likely to be important for VTE resolution.

In addition to innate immune responses, there is evidence
for adaptive immune regulation of sterile inflammation in DVT
resolution. CD4+ and CD8+ T cells infiltrate the thrombus and
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TABLE 1 | Effect of interventions in mouse models of deep vein thrombosis on thrombus resolution.

Intervention DVT model Effect on venous

thrombus resolution

Changes in the fibrinolytic system References

IFN-gamma gene deletion Stasis Enhanced No changes in tPA, uPA, PAI-1 mRNA (43)

p53 gene deletion Stasis Impaired No change in active uPA (47)

Tnfrp55 (tumor necrosis factor

receptor p55) gene deletion

Stenosis Impaired Decreased uPA mRNA (167)

Tbx21 (T-Box Transcription

Factor TBX21) gene deletion

Stenosis Enhanced Decreased PAI-1 mRNA (169)

Effector memory T cell depletion Stenosis Enhanced Decreased tPA mRNA (159)

Statin treatment Stasis Enhanced Decreased PAI-1 protein (170)

TLR9 gene deletion Stasis Impaired N.D. (171)

Activated Protein C treatment Stasis Enhanced No changes in active uPA and PAI-1 protein (45)

MMP-9 gene deletion Stasis Enhanced Increased PAI-1 protein (156)

MMP-2 gene deletion Stasis Impaired N.D. (172)

ApoE gene deletion Stasis Impaired Reduced uPA and increased PAI-1 protein (138)

Type 2 diabetes Stenosis Impaired Reduced uPA and increased PAI-1 protein (173)

CCR2 gene deletion Stasis Impaired Reduced intra-thrombotic uPA positive cells (42)

PAI-1 gene deletion Stasis Enhanced Increased active uPA (46)

PAI-2 gene deletion Stasis Enhanced Increased active uPA and decreased PAI-1

protein

(46)

uPA gene deletion Stenosis Impaired N.D. (55)

N.D., not determined.

vein wall rapidly on DVT induction and remain in the tissue
throughout thrombus resolution (159). In the vein wall, recruited
T cells were found to largely consist of effector-memory T (TEM)
cells. Reducing the number of TEM cells through a depletion
recovery procedure showed that intravenous TEM activation
modulated neutrophil and monocyte recruitment and delayed
thrombus neovascularization and resolution (159).

INFLAMMATORY FACTORS AND VENOUS
THROMBUS RESOLUTION

The process of venous thrombus resolution is associated with a
number of changes in the expression of inflammatory cytokines
(84), although there are only a few reports demonstrating
a direct role for inflammatory cytokines in modulating the
resolution of venous thrombi. Clinical studies show that the
levels of serum cytokines including C-reactive protein, IL-6, IL-
8, and TNF-alpha, are associated with the risk of VTE [(160–
164) and reviewed in (165)]. IL-6 has been linked to fibrosis
and it has been found that neutralization of IL-6 by systemic
injection of antibodies in a stasis DVT model, accelerates
thrombus resolution along with reducing monocyte recruitment
and decreasing vein wall fibrosis (166). Global genetic deletion of
IFN-gamma in mice was found to accelerate venous thrombus
resolution through enhanced MMP-9 and VEGF expression
(43). The TNF-alpha/TNF-receptor-rp55 signaling axis was also
demonstrated to modulate venous thrombus resolution. Genetic
deletion of the TNF-receptor-rp55 inhibited venous thrombus
resolution and administration of an anti-TNF-alpha antibody or
the TNF-alpha inhibitor (etanercept) had a similar effect (167).

The mechanisms involved were determined to involve regulation
of intrathrombic uPA, MMP-2, and MMP-9 levels (167). Direct
administration of macrophage chemoattractant protein 1 (MCP-
1) into experimental venous thrombi in a rat stenosis model
stimulated increased thrombus resolution, which resulted in
thrombus recanalization, independent of an effect on monocyte
recruitment (168).

PRECLINICAL STUDIES OF MODULATORS
OF DVT AND ITS RESOLUTION

The majority of DVT studies focus on the contribution of
various factors to the development (or initiation) of the venous
thrombus, whereas the number of studies devoted to identifying
modulators of venous thrombus resolution are limited. Listed
in Table 1 are transgenic and other challenge mouse models
that have revealed insights into mechanistic processes of
venous thrombus resolution along with the effects on the
fibrinolytic system.

Although such models are instrumental in understanding
disease pathophysiology, they are limited in terms of clinical
applicability for the treatment of VTE. They also fail to simulate
the clinical scenario in which patients usually present with
an existing thrombus. On the other hand, outcomes from
pharmacological modulation of preclinical DVT models provide
more immediate promise for direct clinical application. Using
a primate model of stasis induced venous thrombosis, it was
found that prophylactic inhibition of P-selectin using a small
molecule inhibitor (PSI-421) was effective in reducing the
thrombus size, enhancing recanalization of the thrombus and
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reducing vein wall scarring, compared to treatment with low
molecular weight heparin (Enoxaparin) (174). This observation
was reconfirmed in a follow-up study using an anti-P-selectin
aptamer (ARC5692) (175). When the p53 activator quinacrine
was administered in a mouse model of stasis induced venous
thrombosis, thrombus resolution was substantially accelerated
and this was associated with a less intrathrombus inflammatory
macrophage phenotype and reduced collagen deposition (47).
Interestingly, quinacrine treatment also accelerated resolution of
an existing thrombus, simulating the clinical scenario. Inhibition
of IFN-gamma signaling by treatment with anti-IFN-gamma
antibodies after the establishment of a stasis DVT in mice
was effective in accelerating venous thrombus resolution, in
addition to reducing fibrosis, without an effect on the coagulation
function (43). Another study used anti-IL-6 antibodies to show
that blockage of IL-6 resulted in reduced vein wall intima
thickness and collagen deposition, although in this study the
antibody was administered before the formation of the venous
thrombus (166). In a rat stenosis model of venous thrombosis, a
small molecule PAI-1 inhibitor (PAI-039; tiplaxtinin), accelerated
venous thrombus resolution and increased vena cava blood flow
at a low dose, although at a high dose paradoxically decreased
venous thrombus resolution (176). These studies indicate that
PAI-1 plays complex roles in this process.

CURRENT THERAPIES AND FUTURE
PERSPECTIVES

There are between 350,000 and 600,000 cases per year of
venous thromboembolism (VTE) in the U.S. and 100,000
deaths from PE (177, 178). DVT, a major cause of morbidity
and mortality, has an incidence rate of 1 person per 1,000
annually (177). Anticoagulants are currently used for treatment
of DVT, commonly either the vitamin K antagonist warfarin
or direct-acting oral anticoagulants. In the case of warfarin,
parenteral anticoagulation with low-molecular weight heparin
is also prescribed for concomitant use. Direct-acting oral
anticoagulants can be divided into two classes: direct thrombin
inhibitors (dabigatran) and direct factor Xa inhibitors (apixaban,
edoxaban, and rivaroxaban). Despite the use of anticoagulants,
approximately 25 to 50% of DVT patients develop PTS and
about 5% of patients suffering from an unresolved PE develop
chronic thromboembolic pulmonary hypertension (CTEPH) as a
late complication (179).

Surgical interventions for DVT are generally performed for
large symptomatic lesions, particularly those that enlarge or
worsen despite the anticoagulation therapy. These interventions

focus on pharmacological thrombolytic therapy administered
through a catheter positioned in or near the thrombus, as
well as mechanical means to disrupt, aspirate or disperse the
thrombus. Pharmacological therapy is most effective for acute
DVT of <2 weeks duration. As the thrombus resolves into a
more fibrotic lesion, the effectiveness of the pharmacological
therapy diminishes. Invasive catheter-directed therapy for DVT
is associated with multiple risks, including bleeding at the
puncture site or in remote anatomic sites (such as brain).
In general, these interventions for DVT cannot be used in
patients with acute trauma, patients who have undergone recent
surgery, patients with pregnancy and patients who are at risk for
bleeding (180).

Invasive interventions for the treatment of DVT are often
carried out with the intent to lower the future risk of PTS. A
number of studies have demonstrated that early thrombolytic
therapy of DVT results in less subsequent venous reflux,
decreased symptoms of PTS and improved venous patency (181).
A recent large multi-center trial (ATTRACT) with randomized
patients with acute femoral or iliac DVT examined the efficacy
of catheter-directed pharmacomechanical thrombectomy vs.
standard anticoagulation plus compression stockings (182). The
results showed no overall decrease in the rate of “mild-to-
moderate” PTS, however there was a significant decrease in
the incidence of acute pain and swelling and “moderate-to-
severe” PTS at 2 years. While the scientific rationale for these
results is not known, it seems that addressing thrombolysis
by pharmacomechanical interventions are not sufficient to
control PTS development. Thus, therapies that modulate the
inflammatory response during venous thrombus resolution may
be required to modulate the inflammation that promotes PTS.
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