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Skeletal muscle is composed of a large and heterogeneous assortment of cell

populations that interact with each other to maintain muscle homeostasis and

orchestrate regeneration. Although satellite cells (SCs) – which are muscle stem

cells – are the protagonists of functional muscle repair following damage, several

other cells such as inflammatory, vascular, and mesenchymal cells coordinate muscle

regeneration in a finely tuned process. Fibro–adipogenic progenitors (FAPs) are a muscle

interstitial mesenchymal cell population, which supports SCs differentiation during tissue

regeneration. During the first days following muscle injury FAPs undergo massive

expansion, which is followed by their macrophage-mediated clearance and the re-

establishment of their steady-state pool. It is during this critical time window that FAPs,

together with the other cellular components of the muscle stem cell niche, establish a

dynamic network of interactions that culminate in muscle repair. A number of different

molecules have been recently identified as important mediators of this cross-talk, and

its alteration has been associated with different muscle pathologies. In this review, we

will focus on the soluble factors that regulate FAPs activity, highlighting their roles in

orchestrating the inter-cellular interactions between FAPs and the other cell populations

that participate in muscle regeneration.

Keywords: FAPs, fibrosis, cytokine – immunological terms, muscle regeneration, stem cell

INTRODUCTION

Skeletal muscle is the most abundant tissue in healthy humans, accounting for 40% of body weight.
It is composed of multinucleated contractile cells called myofibers, which are formed during
development by fusion of differentiated mononuclear muscle cells, and their number remains
constant during post-natal growth. The regenerative potential of skeletal muscle relies primarily
on satellite cells (SCs), the prototypical muscle stem cells. Upon muscle injury SCs enter the cell
cycle, proliferate, and differentiate to repair damaged myofibers, while self-renewing to repopulate
the reserve pool (Feige et al., 2018).

Recently, several studies have indicated that the establishment of functional cross-talk between
SCs and other cell types within the muscle niche, including motor neurons, endothelial cells,
immune cells, fibrogenic cells, and adipogenic precursors, is crucial for muscle repair and
homeostasis (Tatsumi et al., 2009; Joe et al., 2010; Uezumi et al., 2010; Heredia et al., 2013;
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Saccone et al., 2014; Kuswanto et al., 2016; Verma et al., 2018;
Giordani et al., 2019; Lukjanenko et al., 2019). Indeed, different
stem/progenitor cell types are recruited to the regenerative
niche and influence muscle regeneration either by directly
differentiating into muscle cells or by releasing paracrine factors
(i.e., growth factors, cytokines) that control the regenerative
response of SCs (Pannérec et al., 2012). Among the non-
cellular components of the SCs niche the extra-cellular matrix
(ECM) plays a crucial role by undergoing a transient remodeling
during acute injury, followed by a prompt termination to avoid
pathological fibrosis and tissue degeneration. Although recent
findings have shown that myogenic cells can produce ECM
components (Fry et al., 2017b; González et al., 2017; Baghdadi
et al., 2018), and a recently identified population of interstitial
tenocytes has been implicated in ECM deposition in vivo
(Giordani et al., 2019), the main cellular sources of ECM proteins
are fibroblasts, myo-fibroblast, and fibro–adipogenic progenitors
(FAPs) (Serrano and Muñoz-Cánoves, 2010; Lemos et al., 2015;
Contreras et al., 2016; Mueller et al., 2016).

Since their discovery FAPs have attracted a considerable
attention (Joe et al., 2010; Uezumi et al., 2010), in particular, their
phenotypical plasticity, which appears critical for efficient muscle
repair. FAPs have been defined as multi-potent progenitors,
having the ability to differentiate into fibroblasts, adipocytes,
and possibly into osteoblasts and chondrocytes, although not
into myoblasts (Joe et al., 2010; Uezumi et al., 2010). They
share the expression of cell surface markers, such as Sca-1 and
PDGFRα with mesenchymal stem cells and can therefore be
broadly defined as mesenchymal precursors (Joe et al., 2010;
Mueller et al., 2016; Judson et al., 2017; Malecova et al., 2018;
Giordani et al., 2019).

Under quiescent conditions FAPs frequently localize close
to blood vessels but unlike pericytes FAPs reside outside
the capillary basement membrane and do not express NG2
(Joe et al., 2010).

However, upon muscle injury, FAPs become activated,
proliferate and expand, and provide a transient favorable
environment to promote SCs-mediated regeneration (Joe et al.,
2010; Heredia et al., 2013; Mozzetta et al., 2013). FAPs
expansion is critical during regeneration in order to sustain SCs
differentiation in a paracrine manner and to maintain the SCs
pool (Wosczyna et al., 2019). Indeed, in vivo depletion of FAPs
clearly established their absolute requirement for regeneration
and long-term maintenance of skeletal muscle (Wosczyna et al.,
2019). However, as regeneration proceeds, FAPs are cleared from
the regenerative niche by apoptosis (Lemos et al., 2015) and
failure in doing so has been associated with their pathological
accumulation and with a number of muscle dysfunctions. In fact,
beyond their supportive role in muscle regeneration, FAPs have
been identified as the major source of infiltrating fibroblasts and
adipocytes in degenerating dystrophic muscles (Uezumi et al.,
2010, 2011; Mozzetta et al., 2013; Kopinke et al., 2017). Similarly,
in chronic atrophic conditions, caused by moto-neurons deficits,
increased fibrosis is associated with accumulation of FAPs in
the interstitium of denervated muscles (Contreras et al., 2016;
Fry et al., 2017a; Madaro et al., 2018; Rebolledo et al., 2019).
Likewise, intra-muscular fatty infiltration and obesity-associated

muscle dysfunctions have been also linked to FAPs accumulation
and fibro–adipogenic differentiation (Dammone et al., 2018;
Gorski et al., 2018; Kang et al., 2018; Pagano et al., 2018;
Buras et al., 2019).

These findings emphasize that the FAPs lineage decisions
are dramatically influenced by signals released in their
microenvironment, whose pathological alteration might
culminate in excessive ECM accumulation (Lemos et al.,
2015; Contreras et al., 2016; Dammone et al., 2018; Madaro
et al., 2018), acquisition of altered cell fates, as in the case
of heterotypic ossification (Lees-Shepard et al., 2018), and
impaired myogenesis. In physiological conditions, FAPs’ cross-
talk with other cell populations is emerging as an important
and finely orchestrated process crucial for a successful muscle
regeneration. While it is now well established that a cross-talk
between SCs and fibrogenic cells is necessary for efficient SCs
expansion in response to injury, and to prevent interstitial
fibrosis accumulation (Murphy et al., 2011; Fry et al., 2017b;
Lukjanenko et al., 2019), increasing evidence indicates that FAPs
also actively interact with immune cells in a finely tuned manner
(Heredia et al., 2013; Lemos et al., 2015; Malecova et al., 2018;
Moratal et al., 2018).

Taken together, these observations demonstrate that FAPs
orchestrate a plethora of processes involved in regenerative
myogenesis, which have been recently reviewed elsewhere
(Wosczyna and Rando, 2018). In this mini-review, we will
instead specifically focus on the secreted signals, cytokines,
and paracrine factors controlling FAPs function and those
released by FAPs monitoring the different cell types involved
in muscle repair. We will first describe the signals secreted by
the various cell populations present in the regenerative niche
known to directly influence FAPs activity and then discuss the
signals released by FAPs themselves, highlighting their cellular
targets and functions (Table 1).

THE SECRETOME THAT REGULATES
FAPS ACTIVITIES

IL-4 and IL-13 Family
Interleukin-4 (IL-4) and IL-13 are Th2 cytokines, which have
been implicated as mediators in the cross-talk between the
immune system and FAPs (Heredia et al., 2013). The innate
immune system is activated rapidly upon muscle injury and
triggers the recruitment of Th2 lymphocytes, macrophages, mast
cells, and eosinophils to the injured sites (Tidball and Villalta,
2010; Heredia et al., 2013).

Interleukin-4/IL-13 signaling is crucial for skeletal muscle
repair, as demonstrated by studies showing a complete absence
of regenerated myofibers, persistence of cellular debris, and
an inflammatory infiltrate, in the muscles of IL-4/IL-13−/−

mice following cardiotoxin-induced injury (Heredia et al.,
2013). Although activation of type 2 immune responses has
been classically associated with alternatively activated (M2)
macrophages (Allen and Wynn, 2011; Palm et al., 2012),
eosinophils have been recently identified as the dominant
cell source of IL-4 and IL-13 (Heredia et al., 2013) during
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TABLE 1 | Schematic table illustrating the principal molecules, the producing and target cells, and the corresponding biological effects, that have been shown to act on,

or be released by, FAPs.

FAPs social network

Molecule Production

cells

Target Effects References Experimental

conditions

TGF-β Macrophages FAPs TGF-β induces FAPs fibrogenic differentiation and blocks

TNF-induced FAPs apoptosis.

Uezumi et al., 2011; Lemos

et al., 2015; Davies et al.,

2016

In vitro and in vivo

IL-15 Muscle

fibers

FAPs IL-15 stimulates FAPs proliferation and prevents adipogenic

differentiation in vitro and in vivo and promotes

FAPs-induced SC differentiation.

Kang et al., 2018 In vitro and in vivo

IL-4 Eosinophils FAPs IL-4 inhibits adipogenic differentiation of FAPs and

increases FAPs ability to remove cellular debris enhancing

regeneration.

Heredia et al., 2013; Dong

et al., 2014

In vitro and in vivo

IL-13 FAPs IL-13 promotes FAPs proliferation that supports

myogenesis, while inhibits FAPs differentiation into

adipocytes.

Heredia et al., 2013 In vitro and in vivo

TNF-α Macrophages FAPs TNF-α induces FAPs apoptosis preventing excessive

deposition of extracellular matrix during regeneration.

Lemos et al., 2015 In vitro and in vivo

IL-6 FAPs Myotubes IL-6 promotes myogenic differentiation. Joe et al., 2010 In vitro

FAPs IL-6 promotes pro-atrophic FAPs phenotype during

denervation.

Madaro et al., 2018 In vitro and in vivo

IL-33 FAPs Regulatory

T cells

IL-33 increases Treg cells proliferation promoting muscle

repair.

Kuswanto et al., 2016 In vitro and in vivo

Follistatin FAPs Satellite

cells

FAPs-secreted follistatin promotes multinucleated

myotubes formation.

Mozzetta et al., 2013 In vitro

IL-10 FAPs Myotubes IL-10 is upregulated in FAPs during muscle regeneration. Its

role is still unknown but the hypothesis is that the secretion

of IL-10 facilitates myoblast differentiation by preventing the

antimyogenic activity of TNF and IL-1β.

Lemos et al., 2012 n/a

BMP1-

MMP14

FAPs Macrophages FAPs-secreted BMP1 and MMP14 activate TGF-β

produced by macrophages in fibrotic DMD muscle.

Juban et al., 2018 In vitro

WISP1 FAPs Satellite

cells

FAPs-secreted WISP1 regulates satellite cell expansion and

asymmetric differentiation. FAPs-derived WISP1 is lost

during aging impairing muscle regeneration.

Lukjanenko et al., 2019 In vitro and in vivo

References relative to the evidence described are shown together with the experimental conditions (in vivo or in vitro) used to identify the described mechanisms. Where

experimental evidence is lacking we indicated the experimental procedure with n/a.

skeletal muscle regeneration. Specifically, it has been shown
that eosinophils secrete IL-4 to activate the regenerative actions
of FAPs. Indeed, Heredia et al. (2013) identified FAPs as the
cells specifically expressing the IL-4Rα, demonstrating, both
in vitro and in vivo, that FAPs are the cellular targets of
IL-4/IL-13 signaling during muscle regeneration. Intriguingly,
they also unveiled a previously unrecognized function of FAPs:
their capacity to phagocytoze necrotic debris, a crucial process
for successful completion of muscle repair (Heredia et al.,
2013). In addition, IL-4/IL-13 signaling, via activation of STAT6,
promotes FAPs proliferation to support myogenesis, while
inhibiting their differentiation into adipocytes (Heredia et al.,
2013). Accordingly, in the injured muscles of IL-4-knockout
mice, the levels of adipocytes are increased, while in vitro
and in vivo administration of IL-4 inhibits FAPs adipogenesis
(Heredia et al., 2013; Dong et al., 2014). In agreement with these
observations, glucocorticoids (GCs)-induced repression of IL-4
leads to intramuscular adipogenic accumulation by promoting
FAPs proliferation and differentiation into adipocytes (Dong
et al., 2014). Since GCs are known to suppress eosinophils, it is
likely that they inhibit IL-4 signaling by reducing the number of

infiltrating eosinophils upon muscle injury (Dong et al., 2014).
Yet, IL-4-polarized, anti-inflammatory macrophages have been
shown to induce adipogenesis of human FAPs isolated from
dystrophic muscles (Moratal et al., 2018), suggesting that IL-4
signaling might govern more complex cellular interactions than
previously expected.

IL-15
Interleukin-15 is expressed in human skeletal muscle and it has
been identified as an anabolic factor involved in muscle growth
(Quinn et al., 2002; Furmanczyk and Quinn, 2003). Indeed,
IL-15 can decrease protein degradation in muscle (Busquets
et al., 2005) and modulate muscle–adipose tissues interactions
(Quinn et al., 2005). A recent work identified IL-15 as a myokine
able to prevent intramuscular fatty infiltration, likely affecting
FAPs differentiation capacities (Kang et al., 2018). In this work,
the authors showed that IL-15 stimulates FAPs proliferation
and it directly inhibits their adipogenic differentiation, both
in vitro and in vivo, ultimately facilitating myofibers regeneration
(Kang et al., 2018). Moreover, intramuscular administration of
a recombinant IL-15 prevented fat accumulation in the murine
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model of glycerol-induced fatty degeneration (Kang et al., 2018).
Accordingly, in vitro treatment of FAPs with IL-15 impaired their
capacity to differentiate into adipocytes (Kang et al., 2018), likely
through the induction of desert Hedgehog (DHH) signaling, a
known repressor of FAPs adipogenesis (Kopinke et al., 2017).
Although these results suggest a positive role for IL-15 in
muscle regeneration, the evidence that IL-15 administration, and
expression, correlates with increased collagen deposition in vivo
after muscle damage (Kang et al., 2018), poses several unresolved
issues that warrant further investigation. Indeed, whether IL-
15 directly promotes FAPs differentiation into fibroblasts has
not been tested yet. Furthermore, even though FAPs expansion
and regenerative fibrogenesis have a positive impact on acute
muscle regeneration (Heredia et al., 2013; Fiore et al., 2016),
the evidence that IL-15 expression is positively correlated with
the number of FAPs and collagen deposition in subjects with
rotator cuff tear indicates that IL-15 might serve, instead, as
a signal to sustain FAPs pathogenic fibrogenesis in chronically
fibrotic muscles.

TNF-α
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic
cytokine secreted rapidly upon muscle damage by infiltrating
inflammatory cells and its impact on muscle regeneration is
still under debate. Indeed, while pharmacological blockade
of TNF-α has been associated with reduced muscle necrosis
and amelioration of the histological profile of dystrophic
muscles (Hodgetts et al., 2006; Huang et al., 2009; Piers et al.,
2011; Ermolova et al., 2014). More recently, TNF-α has been
implicated in preventing FAPs aberrant accumulation (Lemos
et al., 2015; Fiore et al., 2016), suggesting that anti-TNF therapies
might instead exert a pro-fibrotic effect.

During acute injury, TNF-α has been reported to promote
muscle repair by activating promyogenic p38 signaling (Chen
et al., 2007), thus inducing SCs differentiation (Palacios et al.,
2010). Recently, it has been suggested that TNF-α regulates
matrix production during acute damage, thus unveiling a crucial
function for TNF-α in mediating FAPs apoptosis and clearance
(Lemos et al., 2015; Fiore et al., 2016). Specifically, TNF-
α was found to be predominantly expressed and produced
by infiltrating monocytes that rapidly differentiate into pro-
inflammatory macrophages (M1) that accumulate in close
proximity to expanding FAPs. By using a mouse model unable
to recruit circulating monocytes to damaged muscles [the C–
C chemokine receptor type 2 (Ccr2)−/− mouse strain (Warren
et al., 2005)], Lemos et al. (2015) elegantly demonstrated that
in the absence of infiltrating TNF-a-producing macrophages,
FAPs accumulate in the sites of damage and aberrantly
differentiate into fibrogenic cells. Inflammatory cell-derived
TNF-α production is therefore required for FAPs clearance
to prevent pathological ECM accumulation. Of note, this
physiological role is altered in chronically damaged muscles,
such as those of dystrophic mice, where the abundance of
transforming growth factor beta 1 (TGF-β1) signaling impairs
the pro-apoptotic effects of TNF-α on FAPs (Lemos et al., 2015).
These data might offer a possible explanation for the apparent
controversial results reporting a positive effect of anti-TNF-α

therapies on dystrophic mice (Hodgetts et al., 2006; Huang et al.,
2009; Piers et al., 2011; Ermolova et al., 2014). Indeed, when
TGF-β1 is abundant, as in chronic degenerating muscles, the
anti-fibrotic role of TNF-α is irrelevant and pharmacological
approaches aimed at inhibiting its activity most likely exert
their beneficial effects through targeting of the pro-myogenic,
SC-mediated function of TNF-α.

TGF-β
The transforming growth factor beta (TGF-β) superfamily
comprises pleiotropic and multifunctional secreted peptides
implicated in a wide range of cell functions, including tissue
homeostasis and repair, immune and inflammatory responses,
ECMdeposition, cell differentiation, and growth (Biernacka et al.,
2011; Meng et al., 2016). Studies in a wide range of experimental
models have firmly established TGF-β1 as a crucial mediator
of fibrinogenesis and inhibition of its activity has consistently
been associated with reduced fibrosis (Biernacka et al., 2011;
Meng et al., 2016).

In the context of skeletal muscle, inhibition of TGF-β1
has been linked to improvement in muscle regeneration and
decreased fibrosis (Davies et al., 2016; Song et al., 2017;
Zhang et al., 2019), consistent with the importance of the
TGF-β1 signaling in regulating both regeneration and matrix
production. Several works have elucidated the detrimental,
cell-autonomous, impact of TGF-β signaling on muscle stem
cells by inhibiting their activation (Carlson et al., 2008; Wang
et al., 2016) and terminal differentiation (Carlson et al., 2008)
while promoting a fibrogenic switch in chronically degenerating
muscles (Biressi et al., 2014).

Nonetheless, recent findings point toward a prominent role
for inflammatory cell-derived TGF-β signaling in the survival
and fibrotic differentiation of FAPs. Specifically, during chronic
muscle damage, macrophages express and secrete high levels of
TGF-β1, antagonizing the TNF-mediated apoptosis of FAPs, and
instead induce their fibrogenic differentiation and consequent
ECM deposition (Lemos et al., 2015; Davies et al., 2016;
Fiore et al., 2016; Juban et al., 2018). Thus, in conditions
of chronic muscle damage, TGF-β1 acts as a dominant, pro-
survival signal that overrides the beneficial effect of the pro-
inflammatory cell-derived, and anti-fibrotic cytokine, TNF-α.
Thus, treatment with nilotinib, via specific inhibition of TGF-
β1-induced p38 signaling, restores FAPs apoptosis and prevents
fibrotic accumulation in dystrophic mice (Lemos et al., 2015).

Of note, FAPs from chronic fibrotic dystrophic muscles have
been identified as the main source of TGF-β-activating enzymes
(Juban et al., 2018). Indeed, once released, latent TGF-β1 must
be activated, either via enzymatic or mechanical mechanisms,
to exert its properties and to bind to its receptors (Travis and
Sheppard, 2014). FAPs exhibit high expression of a series of
latent TGF-β1 activators, among whichmatrix metallo proteinase
14 (MMP14) and bone morphogenetic protein 1 (BMP1) are
able to activate the latent TGF-β1 released by pro-inflammatory
macrophages (Juban et al., 2018). Notably, pharmacological
inhibition of BMP1 or MMP14 reduced muscle fibrosis in
dystrophic mice resulting in increased muscle fiber size and
reduced necrosis (Juban et al., 2018).
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In summary, these data support a model through which
chronic inflammation and fibrosis reciprocally sustain
themselves in degenerating dystrophic muscles, by reinforcing a
regulatory cross-talk between inflammatory cells and FAPs.

MOLECULES SECRETED BY FAPS

IL-6
In skeletal muscle, IL-6 is classified as a myokine produced and
released by muscle fibers in response to contraction (Pedersen
and Febbraio, 2008). It promotes lipolytic and anti-inflammatory
beneficial effects during exercise (Pedersen et al., 2003), working
as an energy sensor and exerting both local and endocrine
metabolic effects.

Interleukin-6 regulates both muscle hypertrophy and
regeneration (Muñoz-Cánoves et al., 2013). Indeed, IL-6

knockout mice show a reduced hypertrophic response to

overloading, ascribed to impaired myonuclei incorporation as

a consequence of the defective proliferation and migration of

SCs. Treatment with IL-6 promotes murine SCs proliferation, via

regulation of cell-cycle associated genes, Cyclin D1 and c-Myc

(Serrano et al., 2008), while during regeneration the IL-6/STAT3

axis controls SCs fate (Tierney et al., 2014). Interestingly, FAPs

were identified as one of the main source of IL-6 during

muscle regeneration. Upon muscle injury, IL-6 expression

remains constant in myogenic progenitors but increases nearly

10-fold in FAPs and in vitro co-culture experiments have

shown that IL-6 mediates the pro-myogenic activity of FAPs

(Joe et al., 2010).

The positive effect of IL-6, and others myokines, is normally

associated with transient production and short-term action.

By contrast, persistent inflammatory conditions, denervation,

and some types of cancer and other chronic diseases have
been associated with long-lasting elevated IL-6 levels. In
agreement with this notion, IL-6 has been shown to promote
skeletal muscle atrophy (Haddad et al., 2005). Accordingly,
in denervated muscles, FAPs show a persistent activation of
IL-6, thus promoting muscle atrophy without other systemic
effects (Madaro et al., 2018). Notably, in vivo pharmacological
inhibition of IL-6 effectively counteracts denervation-mediated
muscle atrophy (Madaro et al., 2018) and accumulation of FAPs
with hyper-activation of IL-6 signaling has also been found in
mouse models of amyotrophic lateral sclerosis (ALS) (Contreras
et al., 2016; Madaro et al., 2018).

Taken together, these observations suggest two apparently
opposing effects of FAPs-derived IL-6 during muscle
regeneration or in denervation-induced muscle wasting,
and further studies are needed to shed light on the molecular
mechanisms behind these apparently contradictory roles.

IL-33
Interleukin-33 is a nuclear chromatin-associated cytokine,
belonging to the IL-1 family, and constitutively expressed in
the nucleus of a wide variety of cell types, including fibroblasts,
epithelial cells, and endothelial cells (Carriere et al., 2007). IL-33

appears to function as an alarmin (alarm signal) that is rapidly
released upon cellular damage and stress (Liew et al., 2016) and
mediates a potent effect on the activation of regulatory T cell
lymphocytes (Treg) (Matta et al., 2014; Alvarez et al., 2019).

In skeletal muscle, the major IL-33-producing cell type has
been identified within the FAP cell population (Kuswanto et al.,
2016). FAPs start to express IL-33 within 6–12 h after acute
injury, inducing proliferation of muscle resident Treg (Kuswanto
et al., 2016). As previously demonstrated, Treg cells promote
muscle repair, accumulating in both acutely and chronically
injured skeletal muscles (Burzyn et al., 2013; Castiglioni et al.,
2015; Panduro et al., 2018). Interestingly, a severe decline in
Treg accumulation, caused by an impairment in IL-33-producing
FAPs, has been linked to regeneration defects in aged muscles
(Kuswanto et al., 2016). On the other hand, in vivo treatment with
IL-33 restored the Treg population in injuredmuscles of oldmice,
enhancing tissue regeneration.

Intriguingly, IL-33-expressing FAPs have been found in
close association with muscle spindles (Kuswanto et al., 2016),
which are stretch-sensitive mechanoreceptors that lie within
the skeletal muscle and comprise both sensory and motor
neurons. This finding raises the possibility that FAPs might
function as mechano-cellular sensors that modulate the cross-
talk between neural and immune cells to facilitate proper
homeostatic reorganization of skeletal muscle and neural circuits
upon injury. In agreement with this possibility, IL-33 expression
is increased in fibroblasts upon mechanical stress (Kakkar et al.,
2012) and PDGFRα+ mesenchymal precursors, found within the
endoneurium of peripheral nerves, have been recently implicated
in tissue repair and regeneration (Carr et al., 2019).

WISP1
Wnt family member 1 (WNT1) inducible signaling pathway
protein 1 (WISP1) is encoded by the cellular communication
network factor 4 (CCN4) gene, a member of the CCN family
of matricellular proteins that are involved in diverse biological
processes, such as ECM remodeling, tissue repair, and tumor
growth. CCN4/WISP1 is important in the musculoskeletal
system, where it regulates osteogenesis and chondrogenesis, as
well as skin repair (Ono et al., 2011, 2018; Maeda et al., 2015).

A recent study showed that in young mice CCN4/WISP1
is upregulated in FAPs following muscle injury, but this
induction is lost in FAPs of old muscles (Lukjanenko et al.,
2019). The FAP-secreted WISP1 plays an important role in
SCs expansion and asymmetric commitment to myogenic
differentiation. Indeed, similar to aging, the loss of WISP1 in
knockout mice affects SCs function and impairs myogenesis.
In agreement with this, the transplantation of young, but not
aged or WISP−/− FAPs, rescues the myogenic dysfunction of
aged SCs and their regeneration ability (Lukjanenko et al., 2019).
Even better, systemic treatment with recombinantWISP1mimics
rejuvenation beneficial effects, opening new prospects in the use
of this approach as a strategy to counteract aging and associated
muscular diseases.

Interestingly, these findings together with the reported
impaired interplay between FAPs and Treg during aging
(Kuswanto et al., 2016), the sensitivity of FAPs to muscle
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FIGURE 1 | Schematic illustration showing the known mediators that govern the interaction between FAPs, muscle stem cells (MuSCs), and the different immune

cells in skeletal muscle homeostasis. Green arrows (TGF-β, IL-13, IL-4, and IL-15) indicate the molecules that positively regulate FAPs expansion. Blue arrows (IL-33,

IL-6, Follistatin, IL-10, WISP1, MMP-14, and BMP-1) represent the molecules secreted by FAPs that act on the different cell targets. Red lines (TNF-α, IL-4, IL-13,

and IL-15) show the factors that inhibit the fibro-adipogenic differentiation of FAPs.

denervation (Madaro et al., 2018), and the recently reported
atrophic phenotype of FAPs-depleted skeletal muscles (Wosczyna
et al., 2019) clearly point toward FAPs as promising new
cellular targets for the treatment of muscle defects associated
with sarcopenia.

Follistatin
Follistatin is a potent natural antagonist of myostatin and activin
A, two TGF-β superfamily cytokines implicated inmuscle growth
inhibition, and it is therefore a potent pro-myogenic factor (Lee,
2007; Nakatani et al., 2008; Guo et al., 2009; Kota et al., 2009;
Rodino-Klapac et al., 2009; Winbanks et al., 2012).

In the context of skeletal muscle regeneration, follistatin
expression is induced 12 h after muscle injury (Iezzi et al., 2004)
and remains elevated for 5 days, concurrent with SCs
activation. Of note, FAPs have been described as the major
source of follistatin, displaying 10-fold higher expression
levels than SCs (Mozzetta et al., 2013; Formicola et al.,

2019). Follistatin is considered the central mediator of the
fusogenic effects exerted by histone deacetylase inhibitors
(HDACi) on skeletal muscles (Iezzi et al., 2004; Minetti
et al., 2006; Mozzetta et al., 2013). Indeed, HDACi treatment
in dystrophic mice induces the upregulation of follistatin
in muscle progenitor cells, promoting the formation of
multinucleated myotubes. In agreement with its pro-
myogenic activity, follistatin knock-down in FAPs reduced
the ability of HDACi to stimulate SCs-mediated formation of
myotubes, suggesting a crucial role of FAP-derived follistatin
as a mediator of the pro-differentiative activity of FAPs
(Mozzetta et al., 2013).

A proper balance between follistatin and its antagonists is
crucial to preserve reciprocal functional interactions between
FAPs and SCs and to preserve muscle homeostasis (Baccam et al.,
2019; Formicola et al., 2019). Indeed, pharmacological inhibition
of the activin receptor type-2B pathway (AcvR2B), which
blocks both myostatin and activin A activity, reverses muscle
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atrophy in SC-depleted skeletal muscles, while also restoring
stem cells regenerative potential (Formicola et al., 2019). Of
note, beneficial effects of AcvR2B targeting in SCs-depleted
muscles are accompanied by an increased number of FAPs
(Formicola et al., 2019), an observation that further supports the
notion that restoration of a proper balance of regulatory factors
between the different cells within the regenerative niche is key
for muscle repair.

Once again, a role of FAPs emerges not only in regulating
muscle regeneration but also in mediating signaling pathways
associated with maintaining muscle mass. Future experiments
should elucidate the possible use of FAPs as a source of
trophic factors.

IL-10
Interleukin is a broadly expressed anti-inflammatory cytokine
that inhibits the activation of the innate immune system
and Th1 activation, preventing inflammatory and autoimmune
pathologies (Saraiva and O’Garra, 2010; Ouyang et al., 2011).
Like IL-6, IL-10 is also considered a myokine expressed in
skeletal muscle in a wide range of conditions. It influences
different aspects of muscle biology, such as regeneration, exercise,
metabolism, and aging (Furmanczyk and Quinn, 2003; Nunes
et al., 2008; Villalta et al., 2011; Deng et al., 2012; Dagdeviren et al.,
2016, 2017). Its anti-inflammatory activity has been investigated
in different muscle-related disorders (Hong et al., 2009; Nitahara-
Kasahara et al., 2014; Villalta et al., 2014; Dagdeviren et al.,
2016, 2017; Zhang et al., 2018). The main source of IL-10 in
regenerating skeletal muscle is macrophages and Tregs (Villalta
et al., 2011, 2014; Deng et al., 2012) although it has also been
demonstrated that FAPs increase IL-10 expression upon muscle
damage (Lemos et al., 2012). This evidence is in line with the
crucial pro-myogenic activity of FAPs, which likely contribute to
muscle repair also through the secretion of an anti-inflammatory
cytokine, such as IL-10, to counteract the anti-myogenic activity
of TNF-α. Although the function of IL-10 released by FAPs has
not yet been demonstrated in vivo, this work underscores the
complexity of the interplay between inflammatory cells and the

other players in muscle regeneration. Future studies are needed
to better understand this mechanism.

CONCLUDING REMARKS

In conclusion, the available evidence reviewed above clearly
indicates that FAPs act as crucial regulators of skeletal muscle
homeostasis (Figure 1). However, several critical issues need
to be addressed before defining them as the co-star of
skeletal muscle repair. First, their molecular heterogeneity
makes it difficult to target them genetically, to uniquely assess
their requirement, and to define the function of FAP-specific
expression of the different factors described above. Future
single-cell transcriptomic approaches will help identify sub-
populations differently altered during the diverse stages of muscle
regeneration and, more importantly, in pathological situations.

Finally, the evidence of the association of FAPs with nerve
structures (Kuswanto et al., 2016), and the ability of FAPs to
respond to nerve lesions (Contreras et al., 2016; Madaro et al.,
2018), suggest a mechano-sensitivity of FAPs and emphasize
the urgency to improve our understanding of the molecular
regulation governing FAPs activity during muscle adaptation.
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