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There is emerging evidence that cancer stem cells (CSCs), like normal tissue stem cells, are regulated by a niche formed of
mesenchymal cells. In this review we summarize the current knowledge of the role of cancer associated fibroblasts (CAFs) in
a tentative CSC niche. We also discuss findings from our own studies showing that CAF derived factors have a strong stimu-
latory effect on the stem cell properties of breast cancer cells. Based on recent literature we conclude that CAFs are strong
modulators of the stem cell properties of cancer cells. This effect is likely to be particularly relevant under circumstances of
early stages of tumor cell dissemination and metastasis. 
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Nowadays it is increasingly accepted that tumor cells are 
a heterogeneous population composed of subpopulations of 
cells that share certain properties with normal stem cells, 
such as the ability to self-renew and the expression of stem 
cell markers [1]. These so called cancer stem cells (CSCs) 
are highly tumorigenic when injected into mice [2] and sub-
sequent studies have shown that these cells are particularly 
responsible for tumor metastasis [3] and resistance towards 
radiation or chemotherapy [4,5]. CSCs have been described 
and isolated from various tumor tissues including breast [2], 
prostate [6], colon [7], brain [8] and pancreas [9]. 

In recent years it has also become evident that tumor 
growth and progression are not just determined by properties 
of the malignant cancer cells themselves, but also by the tumor 
microenvironment. The tumor microenvironment includes
endothelial cells, pericytes and cancer associated fibroblasts
(CAFs) as well as immune cells, bone marrow derived cells 
and the extracellular matrix [10]. All these cells interact – di-
rectly and indirectly- with the tumor cells, thereby affecting

tumor progression and disease outcome. Since normal stem 
cells are regulated in defined niches involving different mes-
enchymal cells [11,12] the question has been raised whether 
CSCs are also regulated in certain niches located within the 
complex tumor microenvironment.

This review will focus only on the role of fibroblasts in
regulating CSCs. Some recent findings from our own stud-
ies will also be included. In brief, we will first describe the
functions of fibroblasts in normal stem cell niches. The two
main parts will describe evidences for a role of fibroblasts
in CSC niches and their impact on CSC phenotypes. The
final part will give an overview on roles of fibroblasts in the
formation of the premetastatic niche. For more detailed 
reviews on the current status of tumor microenvironment-
dependent regulation of CSCs we refer to other recent 
reviews [13–16].

Fibroblasts in stem cell niches. The term stem cell niche
was first introduced by Schofield in 1978, who defined a stem
cell niche as an anatomical compartment in which the local 
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microenvironment regulates stem cell maturation and self 
renewal [11,17,18]. 

These niches are formed by neighboring cells, including
epithelial and stromal cells, as well as the extracellular matrix 
[12,19]. The signals provided by the niche can be secreted
molecules and matrix components as well as cell surface 
proteins. 

There are a number of excellent reviews describing stem
cells niches of the bulge of hair follicle [12,20,21], the bone 
marrow [22,23] and the crypts of the colon and small-intestinal 
villi [15]. With regard to other organs, including breast, stem 
cell niches are much less described if identified at all.

In the crypts of the intestine stromal cells release bone 
morphogenic proteins (BMPs), which block proliferative Wnt 
and Notch signals, thereby fostering differentiation. At the
crypt bottom BMPs are inhibited by noggin, which acts as 
a scavenger receptor to inhibit the binding of BMPs to their 
signaling receptors [15,24,25]. Similar processes regulate the 
start of hair growth cycles, where the niche receives stimuli 
from specialized mesenchymal cells – the so called dermal pa-
pilla – that stimulate stem cells within the bulge to differentiate
downwards to regrow a new hair follicle [12]. Although there is 
also strong evidence for a stroma dependency within the mam-
mary stem cell niche, stroma derived signals – positive as well 
as negative – still need to be identified [19]. In contrast to the
mouse mammary gland, where the epithelium is mainly em-
bedded in adipose tissue, the human mammary epithelium is 
embedded in extracellular matrix with interlobular fibroblasts
and many blood vessels [26]. In vivo transplantation experi-
ments showed that epithelial outgrowth within the cleared 
mammary fat pad of mice did only occur in the presence of 
fibroblasts and/or collagen gels indicating indeed a strong
dependency on the microenvironment [19,27–29]. 

Further evidence for the importance of the microenviron-
ment was provided by experiments including injection of 
alveolar bud stem cells isolated from pregnant mice into the 
cleared fat pad of pubertal mice [19,30]. These cells switched
to a pubertal developmental program indicating that their 
phenotype was largely controlled by the microenvironment. 

Evidences for the role of fibroblasts in cancer stem cell
niches. Because of their role in normal stem cell niches the 
question was raised if fibroblasts play also a role in the regula-
tion of CSCs. 

Many solid tumors are characterized by a strong infiltration
of activated fibroblasts, so called cancer associated fibroblasts
(CAFs), which phenotypically resemble myofibroblasts found
during woundhealing. CAFs are mainly defined by the expres-
sion of certain markers like α-smooth-muscle actin (αSMA), 
fibroblast-activated protein (FAP), fibroblast-specific protein-
1 (FSP1/S100A4), neuron-glial antigen-2 (NG2) and PDGF 
β-receptor. Not all markers are expressed by all CAFs, and 
different marker combinations probably reflect different CAF
subtypes [31] (for CAF reviews please see [31–33]). CAFs are 
further characterized by the release of growth factors such as 
TGF-beta or hepatocyte growth factor (HGF) [31,32,34], but 

also chemokines [35,36] and proteases [37]. In addition, stem 
cells and CSCs were shown to be regulated by Wnt, Notch, 
BMPs, hedgehog as well as cytokines and chemokines giving 
an indication for a possible CAF CSC interaction [15,38,39]. 
Earlier studies have demonstrated that especially tumor cells 
located in close proximity to the CAF interface show a nuclear 
expression of beta-catenin [40] as it is also observed in CSCs.
Also in breast cancer it was shown that CD44+CD90+ CSC 
like cells are located mainly at the tumor periphery adjacent 
to CD90+ fibroblastic cells at the invasive front indicating
a tumor growth from “the outside” [41].

The first study giving strong evidence of a fibroblast-de-
pendent regulation of CSCs was published by Vermeulen 
et al [34] who showed that primary isolated colon CAFs, as 
well as a myofibroblast cell line, release HGF which induced
a nuclear translocation of beta-catenin in tumor cells thereby 
inducing a stem cell typical gene transcription profile. To
identify CSCs a TCF/LEF reporter gene assay was performed 
to monitor Wnt-dependent expression of EGFP. High reporter 
gene activity was associated with high expression of colon 
CSC markers and the up-regulation of the c-Met receptor. The
stimulatory effect of CAF/myofibroblast conditioned medium
on the Wnt-reporter activity could be blocked by a neutralizing 
antibody against HGF or a specific inhibitor against the HGF
receptor c-Met. The CAF induced CSCs also had a higher
tumorigenicity in a subcutaneous xenograft tumor model. In
addition, it was demonstrated that HGF secreted by myofi-
broblasts induces a CSC phenotype in differentiated tumor
cells, indicating a high degree of plasticity between CSCs and 
more differentiated tumor cells.

These interesting findings were supported by later studies
showing that basal-like human mammary epithelial cells can 
spontaneously dedifferentiate into stem-like cells [42]. A stem
cell like state overlaps highly with a mesenchymal state char-
acterized by the up-regulation of transcription factors like 
Twist, Snail, Slug and ZEB and the expression of N-Cadherin, 
vimentin and fibronectin [43]. Within these studies it was
further demonstrated that cells that acquired stem cell/mes-
enchymal properties by exposure to an induction cocktail 
including recombinant TGF-beta and Wnt5a, neutralizing 
antibodies against DKK1 and E-cadherin in combination with 
short hairpin RNA-mediated knock-down of SFRP1 develop 
autocrine signaling loops keeping them in an autonomous 
stem cell/mesenchymal state independent from external 
stimuli [43]. This induced phenotype was so far demonstrated
only after exogenous addition of this induction cocktail over
a defined time frame. If CAF-secreted factors have a similar
capacity, remains to be shown. 

Another study dealing with pancreatic ductal adenocar-
cinoma (PDAC) presented the first evidence for therapeutic
benefit of targeting the CSC niche formed by activated pan-
creatic stellate cells (PSCs) [44]. PDAC is a tumor disease 
characterized by a very strong infiltration of myofibroblasts
[45]. PSCs reside in a quiescent state in the exocrine pancreas 
and become myofibroblast-like and start to proliferate upon
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inflammatory processes and tissue injury [46]. The study by
Lonardo et al [44] showed that activated PSCs -in contrast 
to their quiescent counterpart – express Nodal and Activin, 
two members of the TGFbeta family. Co-culture experiments 
using different sets of primary isolated pancreatic tumor cells
and immortalized PSCs isolated from chronic pancreatitis 
showed a PSC mediated increase in sphere formation of pan-
creatic cancer cells which could be abrogated by pretreatment 
with an inhibitor against Alk4/7, the receptor for Nodal and 
Activin. Based on these observations the authors suggested 
that targeting PSCs e.g. by hedgehog inhibitors could be an 
important step to develop more effective therapies for PDAC.
Consequently, they could demonstrate in an ortothopic trans-
plantation model of human pancreatic cancer tissue in nude 
mice that a triple combination therapy, of a hedgehog and an 
Alk4/7 inhibitor together with gemcitabine, resulted in effec-
tive inhibition of disease progression. 

CSC phenotypes regulated by CAFs. There are thus strong
indications that CAFs can regulate CSCs in several ways by 
(a) acting directly on CSC and promoting their self renewal or 

(b) re-inducing a stem cell phenotype in more differentiated
tumor cells (reprogramming) or (c) induction of autocrine 
signaling loops in tumor cells that keep them in a stem cell 
like state (Fig. 1). 

To dissect which of these mechanisms dominates in vari-
ous settings, different experimental setups can be used. The
potential of CAFs to promote the self-renewal of CSCs can be 
investigated by exposure of a tumor cell population that is en-
riched for cells expressing CSC marker (e.g. CD133+) to CAF 
conditioned medium and by monitoring the sphere forming 
capacity. Reprogramming of more differentiated tumor cells
can be tested by exposure of a more differentiated tumor cell
population to CAF conditioned medium and investigation of 
alterations in the fraction of sphere-forming cells. Stimulatory 
effects on self-sustaining autocrine signaling can be tested in
a second round of sphere formation using non-conditioned 
control medium.

We have addressed these questions in a model system us-
ing cells from tumors of MMTV-PyMT breast cancer model 
(described in [47]). Therefore, we isolated primary tumor cells

Figure 1. CAF dependent modulation of CSCs 
(A) CSCs have the ability to self-renew and to give raise to more differentiated tumor cells (B) CAF can induce a stem cell phenotype in more differenti-
ated tumor cells, thereby increasing the CSC pool (C) CAF can also act directly on CSCs and promote their self-renewal (D) CAF derived signals can 
induce a CSC phenotype that is independent from external signals because of autocrine signaling loops. 
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(I3TC) and CAFs from a tumor of this mouse model. CAFs 
were isolated via outgrowth assays and immortalized by serial 
passaging. The cells were determined to be free from fibroblast
and epithelial cell contamination respectively. 

We performed a limited dilution assay (LDA) with the I3TC 
tumor cells using non-conditioned medium, CAF conditioned 
medium and conditioned medium of the tumor cells. The latter
was used to define if the observed effects are fibroblast-specific.
The number of spheroids was counted after 2 weeks. Compared
to the non-conditioned medium both conditioned media were 
significantly more potent in inducing sphere formation in I3TC
cells (p<0,0001 for both conditions). Furthermore, the CAF-
derived conditioned medium was significantly more potent
than the tumor cell-derived conditioned medium (p=0,008) 
(Fig. 2A). 

The question of whether the obtained spheroids developed
autocrine signaling loops, and became independent of factors 
provided by the conditioned medium, was addressed through 
the collection and re-dissociation of the spheroids grown in 
conditioned medium followed by a second round of LDA in 
non-conditioned medium. Due to the very low yield of sphe-
roids in the cultures with non-conditioned medium, these 
analyses were restricted to spheroids formed after exposure to
medium conditioned by CAFs or tumor cells. In this second 
round of LDA, in non-conditioned media, the sphere growth 
was analyzed after 3 weeks to detect spheroids larger than
50μm, which was the pre-defined cut-off.

The sphere forming capacity of the I3TC cells in the sec-
ond round of LDA was a bit lower than the sphere forming 
capacity of the control cells in the non-conditioned medium 
in the first LDA when counted after 3 weeks (p<0,05 for both
conditions) (Fig. 2B+C). This indicates that the cells did not
become independent from the conditioned medium and that 
the frequency of self-renewing cell divisions –and thereby the 
frequency of CSCs- was not increased.

Stem cells are regulated by the activation of different path-
ways including Notch signaling, hedgehog, Wnt and BMPs 
[15,38,39]. In addition CSCs have been shown to express 
several embryonic stem cell markers like e.g. Nanog, Sox2, Oct 
or Bmi-1 [48–51]. Via real-time PCR analysis we investigated 
if the I3TC spheroids, formed after growth in the different
conditioned medium, varied with regard to their “stemness” 
gene expression profile or “stemness” pathway activation.

CAF conditioned media and the tumor conditioned 
medium induced a similar stemness gene expression profile
showing only a minor up-regulation of stemness marker when 
compared to the spheroids grown in non-conditioned medium 
(Fig. 2D). A slight, but not significant, increase in the expres-
sion of genes indicating Notch-, Wnt- and hedgehog-pathway 
activation was observed. In contrast, expression of the stem 
cell markers Bmi or Nanog, and the differentiation marker
GATA-3, did not show any differences.

These data indicate that the conditioned media mainly af-
fects the number of cells able to form spheroids, without major 
impact on the cellular spheroid composition. 

Taken together, we have shown evidence that CAF-released 
factors can increase the sphere forming capacity of mouse 
breast cancer cells but the effect is not fibroblast-specific since
tumor cell released factors are equally potent. It is noteworthy, 
that these analyses of the effects of tumor cell-derived factors
should be included in studies analyzing paracrine control of 
cancer stem cells.

One situation, where paracrine signaling from stromal cells 
can be of particular importance, includes the early stages of 
metastasis when single or few disseminated cells should es-
tablish their growth in a new organ.

In addition to our study, which was based on  use of a genet-
ic mouse model for breast cancer, another recently published 
study provided strong evidence of a fibroblast-dependent niche
for human breast cancer cells [52]. That study shows that hu-
man primary isolated CAFs, and normal fibroblasts exposed to
tumor cell conditioned medium, express and release high levels 
of the chemokine CCL2 (monocyte chemotactic protein-1) 
which promoted the sphere forming capacity of different breast
cancer cell lines. In contrast to findings in our experiments,
the group also found a significant increase in the potential to
form secondary spheres in non-conditioned control medium 
for cells derived from spheroids grown in the presence of 
CAF conditioned medium or CCL2, which indicates that the 
stem cell properties of these cells were no longer dependent 
on external factors. 

It was found that the increase in secondary sphere formation 
was mainly due to CCL2 induced self-renewal of already exist-
ing CSCs rather than reprogramming of non-CSCs. CCL2 was 
found to activate Notch signaling as indicated by an upregula-
tion of HES-1 and Notch1 relative mRNA expression. These
results were supported by IHC analysis of CCL2 and Notch1 on 
primary breast cancer species showing a correlation between 
upregulated CCL2 and Notch1 and a poor differentiation status
of the tumor [52]. An important role for Notch activation in 
CSC self-renewal has been described for glioblastoma CSCs 
where endothelial cell-derived factors were identified as key
components for CSC Notch activation [53]. 

Taken together, our own studies and other published work 
strongly suggest that CAFs play a central role in regulating CSC 
phenotypes by providing regulatory factors such as HGF, IL-6, 
chemokines, members of the TGF-beta family and factors ac-
tivating Wnt signaling (table 1). Collectively, the studies imply 
targeting of CAFs or CAF-derived factors as a therapeutic op-
tion for attacking and erasing CSCs, and thereby also reducing 
the risk of metastasis outgrowth or tumor relapse. 

Table 1. Fibroblast derived factors in normal and cancer stem cell niches. 
n.d.=not defined

Fibroblast derived factors
Stem cell niche normal cancer
intestine crypts BMPs[15,25] HGF[34]
mammary gland n.d. CCL2[52], IL-6[66] 
pancreas n.d. Nodal, Activin[44]



723FIBROBLAST-DEPENDENT REGULATION OF CANCER CELLS

Figure 2. Analysis of sphere forming ability and gene expression of I3TC tumor cells after exposure to CAF conditioned medium
(A) Results of 1st LDA with I3TC in non-conditioned medium (control), CAF conditioned medium and tumor cell (I3TC) conditioned medium. Spheroids 
were counted after 2 weeks. Tumor spheres were collected and used for a 2nd LDA in non-conditioned medium (B), which was analysed after 3 weeks. (C)
According to the results of the 2nd LDA the control spheres of the 1st LDA were also counted after 3 weeks to enable comparison. Represented is the sphere
forming cell frequency as 1/n cells; ***:p<0,0001; **:p<0,01; *:p<0,05. (D) CAF and tumor cell conditioned media had only a slight influence on the gene expres-
sion level of tumor spheres. The data is presented as the expression ratio (ratio=2-ΔΔCT) towards the spheroids grown in non-conditioned medium (control). 
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Fibroblasts regulating CSCs in (pre-)metastatic niches. 
A large majority of cancer deaths are caused by metastatic 
disease [54,55]. Coghlin and Murray [56] define metastasis
as ‘the development of secondary tumors at a distance from 
primary site of cancer’. This multistage process includes the ac-
quisition of a wide range of abilities such as the loss of cellular 
adhesion, increased invasiveness, intravasation and survival 
in the vascular system followed by extravasation and survival 
and proliferation in a new organ site [54]. Recent reviews 
have also revisited the seed-and-soil concept and emphasized 
the importance of a hospitable microenvironment to initiate 
growth of a secondary tumor [14,57]. 

Besides their involvement in CSC niches at the primary tumor 
site, fibroblasts are also described as contributing to the formation
of the (pre-)metastatic niche. It is suggested that stromal niche 
signals play a crucial role in the initiation of metastatic growth. 
The group of Huelsken [58] was recently able to define one of
these stromal signals. They identified periostin, a component of
the extracellular matrix, as a key player in the metastatic colo-
nization of breast tumors in the MMTV-PyMT genetic mouse 
model. This study showed that periostin is expressed by CAFs at
the primary tumor site but also became induced in the stroma 
of secondary target organs by infiltrating cancer cells. The data
gave strong evidence that the stromal production of periostin 
determines the metastatic efficiency. Based on tandem affinity
purification-tag enrichment and tandem mass spectrometry
periostin was found to bind to Wnt ligands in a way, which en-
hanced their CSC-stimulatory effects. The authors could further
demonstrate that periostin deficiency has no effect on the pri-
mary tumor formation or the relative size of the CSC population 
at the primary tumor site, but specifically prevents the initiation
of metastatic growth in the secondary site [58]. 

Other stromal derived components, which play a role in 
metastasis, were described in the work of O’Connell et al 
[59]. They used a transgenic mouse model to investigate the
role of a particular subset of stromal cells in metastasis. These
mice expressed a viral thymidine kinase under the control 
of a S100A4 promotor allowing specific ablation of S100A4+ 
stromal cells. Orthotopic injection of 4T1 breast tumor cells 
led to an accumulation of S100A4+ cells at the primary tumor 
site and within the metastatic environment of the lungs. 
Depletion of these S100A4+ cells attenuated metastasis and 
increased apoptosis within metastatic foci. Additionally they 
could identify that the majority of the S100A4+ stromal cells, 
which affect metastasis, are fibroblasts. Subsequent studies
implied Tenascin-C as a particularly important pro-metastatic 
S100A4+ cell-derived factor.

These findings are in agreement with other findings showing
that Tenascin-C, in an autocrine way, enhances the expression 
of stem cell signaling factors like musashi homolog 1 (MSI1) 
and leucine-rich repeat-containing G-protein-couple-recep-
tor 5 (LGR5) in breast cancer cells and thereby increases their 
capacity to form pulmonary metastases [60]. Tenascin-C has 
also been discussed as an important component of neural 
stem/progenitor cell niches [61]. 

The group of McAllister [62] has uncovered an additional
mechanism whereby tumor-derived systemic signaling can 
promote the formation of a metastasis-permissive stroma 
at distant sites. This was demonstrated in a study of instiga-
tor -responder tumors, where it was shown that a subset of 
hematopoietic bone marrow cells became activated by tumor 
released endocrine factors and subsequently, through secretion 
of granulin, induced proinflammatory and matrix-remodeling
genes in tissue fibroblasts.

Together these selected examples suggest that targeting the 
metastatic niche, or signals, which promote the formation of 
this niche could serve as a novel and promising strategy for 
adjuvant treatments. 

Summary. Based on recent literature and our own ex-
perimental findings, this review emphasizes, that CAFs have
a strong regulatory impact on the growth of CSCs or the induc-
tion of a stem cell like phenotype. However, it should be noted 
that this is not a CAF-specific feature, since tumor cells them-
selves and other cell types of the tumor microenvironment also 
release factors that induce and regulate stem cell pathways. 
All in all, recent data point towards a high complexity and 
redundancy of the CSC niche within the primary tumor that 
can compensate for the loss of a single factor. Eventually the 
CSC modulation of fibroblasts is most important in the case
of disseminated CSCs. If this is indeed the case a set of most 
interesting and novel strategies for adjuvant cancer treatments 
can be envisioned.

Materials and methods

Cell isolation and culture. CAFs as well as the tumor cells 
were obtained from the MMTV PyMT mammary mouse 
tumor model [47] in FVB background. 

Isolation of CAFs from the tumor tissue was adapted from 
a previously published outgrowth assay [63] with minor 
modifications. The tissue pieces were cultured in high glucose
DMEM (ThermoScientific, Sweden) medium supplemented
with 10 % fetal bovine serum (ThermoScientific) and 5 µg/ml
insulin (Sigma-Aldrich Sweden AB) The outgrown fibroblasts
were collected by trypsinisation when confluent. The cells were
immortalized by serial passaging as described in [64]. 

The tumor cells (I3TC) were isolated in a similar way.
A tumor piece was mechanically homogenized, resuspended 
in DMEM media and filtered through a 100µm cell strainer.
Contaminating fibroblasts were removed by brief trypsinisa-
tion.

PCR analysis was performed to exclude any epithelial/fi-
broblast, endothelial or immune cell contaminations. 

Fibroblast/tumor cell conditioned medium was gener-
ated by incubation of the cells at 75% confluence for 24h in
DMEM:F12 w/o serum. Media was collected and centrifuged 
at 4000rpm for 10min at 4°C to remove any cell debris.

Limited Dilution Assay – first round. A single cell sus-
pension of tumor cells was generated by trypsin and disapase 
(StemCellTechnologies, Grenoble, France) treatment. The cells
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were seeded in a descending cell number (16,8,4,2,1 per well) 
in Ultra-Low Attachment (Corning) 96-well plates in fibrob-
last-, tumor cell- and non-conditioned medium, all diluted 1:2 
with complete CSC medium (GlutaMax supplemented with 
4μg/ml heparin (StemCellTechnologies), B27 without vitamin 
A (LifeTechnologies), 5μg/ml human insulin (Sigma-Aldrich), 
20ng/ml EGF and 10ng/ml bFGF (both LifeTechnologies)). 
Fresh conditioned/non-conditioned medium was added every 
six days. After two weeks wells containing spheres larger than
50μm were counted. 

Limited Dilution Assay – second round. Spheres were 
collected from the first LDA and separated using TrypLET-

MExpress (LifeTechnologies) and a 40µm cell strainer. Cells 
from the different conditions were seeded in descending cell
numbers in non-conditioned medium. Fresh medium was 
added every 6 days.

RNA Preparation and quantitative real time PCR. 
RNA was isolated with GenEluteTM Mammalian Total RNA 
Miniprep Kit (Sigma-Aldrich) according to manufactur-
er’s instructions. cDNA synthesis was performed by using 
SuperScriptTM III Reverse Transcriptase (LifeTechnologies) 
with random hexamer primers. Quantitative real time PCR 
was accomplished using Power SYBR Green PCR Master Mix 
(LifeTechnologies) in accordance with manufacturer’s protocol. 
Primer sequences: Bmi (fwd: TCTTTTCCGCCCGCTCA-
GATCG; rev: ACCCTCCACACAGGACACACATTAA), 
Nanog (fwd: CTGATTCAGAAGGGCTCAGCACCAG; rev: 
GGTCCAGGTCTGGCTGCTCCAA), GATA3 (fwd: AAGGCAAC-
CACGTCCCGTCC, rev: CGGCATACCTGGCTCCCGTG), 
Hes-1 (fwd: CGGCCTCTGAGCACAGAAAGTCATC; 
rev: TCTAGCTTGGAATGCCGGGAGC), Notch-1 (fwd: 
TGCCACAATGAGATCGGCTC; rev: GGGCACATAG-
GGCAGTTCA), Lgr5 (fwd: CGCCTTCCCCAGGTCCCTTCAA; 
rev: CCGTGGTCCACACCCCGATTC), Ptch1 (fwd: 
GTGCCTCAAGCGCACCGGA; rev: ACCACAGCAGCCT-
GGAGGGAG), Gli-1 (fwd: GTGCACGTTTGAAGGCTGTCGG; 
rev: TGTGCGACCGAAGGTGCGTC) and GAPDH (fwd: 
ATTGTCAGCAATGCATCCTG; rev: ATGGACTGTGGT-
CATGAGCC).

Data and statistical analysis. LDA data were analysed 
with extreme limiting dilution analysis software (ELDA) [65]
to estimate the frequency of sphere forming cells. The data is
presented as the estimated frequency of sphere forming cells 
± upper/lower confidence interval.

The qPCR-results were analysed using the standard ΔΔCT 
method. The expression level of GAPDH was used as endog-
enous reference for normalization (ΔCT), and the expression 
is calibrated towards control spheroids (ΔΔCT). The data is
presented as the expression ratio (ratio=2-ΔΔCT). GraphPad 
Prism 5 was used to calculate the statistical significance using
One-way ANOVA with Bonferroni post hoc test.
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