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Abstract

The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by

several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte

competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction

from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the

cumulus–oocyte complexes to FGF10 during in vitromaturation did not affect cleavage rates, but increases (P!0.05) in the percentage of

embryos at the 8–16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes.

The progression of oocytes through meiosis and cumulus expansion was increased (P!0.05) by FGF10. The importance of the

endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity

decreased (P!0.05) the percentage of oocytes developing into blastocysts and limited (P!0.05) cumulus expansion. Expression profiles

of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10

influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the

importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo

development implicates it as a noteworthy oocyte competent factor.

Reproduction (2010) 140 815–826
Introduction

Oocyte competency is defined as the intrinsic ability of
oocytes to resume meiosis, accept spermatozoa for
fertilization, cleave after fertilization, and facilitate
proper embryonic development that leads to the
production of healthy offspring (Sirard et al. 2006, Li
et al. 2008). Proper follicle development is vital for
oocyte competence, and folliculogenesis is controlled by
a variety of endocrine and intraovarian factors (Gilchrist
et al. 2008, Li et al. 2008, Binelli & Murphy 2010).

The oocyte plays an active role in regulating
folliculogenesis. Specific members of the transforming
growth factor-b (TGFB) superfamily of paracrine factors,
most notably bone morphogenetic protein-15 (BMP15)
and growth differentiation factor-9 (GDF9), are produced
within the oocyte and act on cumulus and granulosa
cells to regulate folliculogenesis and oogenesis. GDF9 is
vital for folliculogenesis. Gdf9-null mice are infertile and
the follicles fail to develop past the primary follicle stage
(Dong et al. 1996). Targeted disruption of Bmp15 yields
a subfertile phenotype in mice characterized by poor
oocyte competency (Yan et al. 2001). BMP15
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overexpression promotes follicular development in
mice (McMahon et al. 2008). Moreover, specific
BMP15 mutations in sheep improve ovulation and
lambing rates (Galloway et al. 2000).

Another large class of paracrine-acting factors that
have received some recent attention for their abilities to
regulate follicular development and oocyte maturation
are the fibroblast growth factors (FGFs). At least 22 genes
encode various FGFs that function as important paracrine
regulators of proliferation, morphogenesis, and angio-
genesis in various tissues (Ornitz & Itoh 2001, Itoh 2007).
Several FGFs are expressed within oocytes and follicular
somatic cells. FGF8 is produced by the mouse oocyte and
acts cooperatively with BMP15 to promote glycolysis in
cumulus cells in antral follicles (Valve et al. 1997,
Sugiura et al. 2007). Granulosa cell production of FGFs,
most notably FGF2 (Knee et al. 1994, Ben-Haroush et al.
2005), is linked to primordial follicle development,
granulosa cell proliferation, and LH receptor expression
(Gospodarowicz & Bialecki 1979, Oury & Darbon 1988,
Nilsson et al. 2001, Garor et al. 2009).

There is also evidence for FGFs providing a paracrine
link between thecal cells and granulosa/cumulus cells.
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Figure 1 Expression profiles of FGFRs in bovine cumulus cells and
oocytes prior to maturation. Cumulus and oocytes were separated
before maturation, tcRNA was extracted, and qRT-PCR was completed.
Log-transformed ratios of the target mRNA to reference RNA (18S) were
used for statistical analysis. (A) FGFR abundance profiles in cumulus
cells (each replicate contained cells derived from 20 COCs; 3 replicate
studies). (B) FGFR profiles in denuded oocytes (20 oocytes/replicate;
3 replicate studies).
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FGF7 and FGF10 are produced by thecal cells in cattle
(Parrott & Skinner 1998, Buratini et al. 2007), and their
primary receptor partner, FGF receptor 2b (FGFR2b),
presides on granulosa cells (Buratini et al. 2007). FGF10 is
also detected within the oocyte (Buratini et al. 2007).
Studying the roles of these thecal- and oocyte-derived
molecules is of particular interest since in vitro oocyte
maturation systems lack thecal cells and their products,
and the lack of these molecules may contribute to poor
oocyte competency outcomes in in vitro production
systems for cattle, humans, and potentially other
mammals (Gilchrist et al. 2008, Li et al. 2008, Loureiro
et al. 2009).

The importance of FGF10 as a paracrine-acting
mediator of oocyte competency was examined in this
work. FGF10 is an important mediator of mesenchymal–
epithelial communication in various organs and tissues
(Bellusci et al. 1997, Sekine et al. 1999, Bazer et al.
2009). In addition, intraovarian FGF10 mRNA concen-
trations are greater in healthy, growing bovine follicles
than in follicles undergoing atresia (Buratini et al. 2007).
Studies presented herein determined that FGFRs utilized
by FGF10 are expressed in cumulus cells and oocytes
and that providing FGF10 during in vitro maturation
(IVM) promotes bovine oocyte maturation, cumulus
expansion, and the rate of embryo development
in vitro. Further studies were completed to provide
insight into mechanisms controlled by FGF10 during
oocyte maturation.
Results

FGFR transcript profiles in cumulus cells and oocytes

Four genes encode FGFRs in mammals (FGFR1–4),
and alternatively spliced variants for three of these
FGFRs provide an extensive diversity of extracellular
domains that bind various FGFs (Powers et al. 2000,
Itoh & Ornitz 2004). Some FGFs bind to multiple
FGFRs (e.g. FGF1 and FGF2) whereas others, such as
FGF10, associate primarily with only a few receptor
subtypes. FGF10 associates primarily with one spliced
variant of FGFR2, termed R2b, and one spliced
variant of the FGFR1 group, termed R1b (Miralles
et al. 1999, Powers et al. 2000, Itoh & Ornitz 2004).
An initial study was completed to describe the relative
expression of these and other FGFRs in cumulus cells
and oocytes.

Cumulus–oocyte complexes (COCs) were harvested
and cumulus and oocytes were separated after their
collection from ovaries. Quantitative (q) RT-PCR was
completed to assess the relative expression of the b and
c spliced variant forms of FGFR1 and R2 as well as
FGFR3 (primers recognized both R3b and R3c) and R4
(no splice variants exist). Transcripts for each FGFR were
detected in cumulus cells (Fig. 1A). Each of the FGFR
transcripts was also detected in oocytes, although
Reproduction (2010) 140 815–826
the presence of FGFR3 mRNA was barely detectable
(w37 cycles to reach threshold values; based on 45
cycles of amplification).
FGF10 supplementation during IVM improves embryo
development

The role of FGF10 during oocyte maturation was initially
examined by collecting the COCs from slaughterhouse-
derived ovaries and completing IVM and IVF followed
by in vitro culture (IVC). Methods described previously
were used (Rivera & Hansen 2001, Loureiro et al. 2009)
with the exception that oocyte maturation medium
lacked serum (instead it contained 1 mg/ml polyvinyl
alcohol (PVA)). FGF10 supplementation during oocyte
maturation did not impact cleavage rates (Fig. 2A), but
supplementation with 0.5 ng/ml FGF10 increased
(P!0.05) the percentage of cleaved embryos at the
8–16-cell stage by day 3 post IVF (Fig. 2B). In addition,
0.5 ng/ml FGF10 increased (P!0.05) the percentage of
oocytes that developed into blastocysts on day 7 post IVF
(Fig. 2C, left side). Similarly, an increase (P!0.05) in the
percentage of blastocysts on day 7 was evident when
data were expressed as the percentage of cleaved
embryos that formed blastocysts (Fig. 2C, right panel).
The percentage of expanded, hatching, or hatched
blastocysts (collectively termed as advanced blastocysts)
on day 8 post IVF were also greater (P!0.05) in oocyte
cultures containing 0.5 ng/ml FGF10 than nontreated
controls both when data were expressed as the
percentage of oocytes that formed advanced blastocysts
(Fig. 2D, left side) or the percentage of cleaved
embryos that formed advanced blastocysts (Fig. 2D,
right side). A biphasic response to FGF10 supple-
mentation was evident throughout the study. Speci-
fically, effects on the percentage of 8–16-cell embryos,
blastocysts on day 7, and advanced blastocysts on day 8
www.reproduction-online.org
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Figure 2 In vitro development of bovine embryos is enhanced by adding
FGF10 to the medium during oocyte maturation. COCs were matured
for 21–22 h in maturation medium containing 1 mg/ml PVA (no serum)
and either 0, 0.5, 5, or 50 ng/ml FGF10, then those were fertilized and
cultured. Presumptive zygotes were inspected visually using a
stereomicroscope to assess embryo development status at specific
times. (A) The proportion of zygotes that cleaved at 72 h post IVF.
(B) The proportion of cleaved zygotes at 72 h post IVF, which contained
between 8 and 16 cells. (C) The proportion of oocytes (left side) or
cleaved embryos (right side) that reached the blastocyst stage by day 7
post IVF. (D) The proportion of oocytes (left side) or cleaved embryos
(right side) that reached advanced blastocyst stages on day 8 post IVF
(expansion, hatching, and hatched). All values represent means and
S.E.M.s from eight replicate studies, each containing 20–33 zygotes/
treatment group. Different superscripts within each panel represent
differences observed due to treatments (P!0.05).
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were not observed when 5 or 50 ng/ml FGF10 was
provided (Fig. 2B–D).

Differential staining was completed on a subset of
blastocysts (nZ17–28 blastocysts) to investigate whether
FGF10 supplementation during oocyte maturation
affects numbers of inner cell mass (ICM) and trophoblast
cells. Exposing COCs to 0.5 ng/ml did not affect the
numbers of ICM, trophoblast, overall cell numbers, or
ICM:trophoblast ratio on day 8 post IVF (37.2G4.1 vs
42.8G2.3 ICM/blastocyst, 134.8G7.8 vs 122G8.7
trophoblast/blastocyst for controls and 0.5 ng/ml treat-
ments respectively).
Blocking endogenous FGF10 action during oocyte
maturation reduces subsequent embryo development

Thecal cells are the predominant source for FGF10 in
bovine follicles but the oocyte also produces FGF10
in antral follicles (Buratini et al. 2007). Anti-FGF10 IgG
was used to determine the importance of oocyte-derived
FGF10 during IVM. In the first study, the effectiveness
of anti-FGF10 IgG at blocking FGF10 actions was
examined. Providing an excess of anti-FGF (0.1 mg/ml;
25-fold excess compared with 0.5 ng/ml FGF10) did not
affect cleavage rates or rates of early embryonic
development (data not shown) but it effectively blocked
FGF10 (0.5 ng/ml) from increasing (P!0.05) the percen-
tage of oocytes that formed blastocysts on day 7 post IVF
(Fig. 3A). Anti-FGF10 also reduced (P!0.05) the
percentage of oocytes that formed blastocysts when
comparing this group with nontreated controls (Fig. 3A).
Similar effects were observed when analyzing the
outcomes based on the percentage of cleaved embryos
that formed blastocysts on day 7. Addition of 0.5 ng/ml
FGF10 increased (P!0.05) the percentage of cleaved
embryos that formed blastocysts on day 7 (41.1G3.9
vs 27.1G5.1% for controls) whereas addition of
anti-FGF10 decreased (P!0.05) the percentage of
blastocysts on day 7 (18.2G45%). Providing control
IgG did not affect the percentage of cleaved embryos that
formed blastoycsts on day 7 (35.6G3.8%).

A second study was completed to further define the
developmental events affected by anti-FGF10 treatment
in the absence of supplemental FGF10 (Fig. 3B). Anti-
FGF10 treatment did not affect the cleavage rates or
the percentage of oocytes reaching the 8–16-cell stage by
day 3 post IVF (data not shown). On day 7, post IVF, fewer
(P!0.05) blastocysts resulted from the oocytes exposed
to anti-FGF10 (0.1 mg/ml). In addition, providing a
3.9-fold molar excess of FGF10 (50 ng/ml) reversed the
negative effect of anti-FGF10 on the percentage of
oocytes forming blastocysts on day 7 (Fig. 2B). The same
effects of treatments were observed when examining
the percentage of cleaved embryos that formed blasto-
cysts on day 7 (26.0G4.5% for controls; 14.6G2.6% for
anti-FGF10 treatment; 25.4G2.9% for IgG control; and
27.8G3.4% for anti-FGF10 plus 50 ng/ml FGF10).
Reproduction (2010) 140 815–826
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Figure 3 Evidence for an endogenous source of FGF10 during oocyte
maturation in vitro. COCs were cultured in maturation medium in the
presence or absence of anti-FGF10. FGF10 was included in some
samples to verify the effectiveness of the anti-FGF10 treatment. Control
IgG (labeled as IgG) was also included. (A) The effects of providing anti-
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during COC maturation on blastocyst formation on day 7 post IVF (nZ7
replicate studies). (B) Limiting the effects of anti-FGF10 by providing
excess FGF10 (50 ng/ml; nZ4 replicate studies). Different superscripts
within each panel represent differences observed due to treatments
(P!0.05). Data are presented as the percentage of oocytes that
developed into blastocysts on day 7 post IVF.

100
TI/MIIA

B

C

1st PB

TI/MII 1st PB

a

a a
a

a a a

a
b

ab ab abb b

75

50

%
 O

oc
yt

es
 (

21
 h

)

25

0

100

75

50

%
 O

oc
yt

es
 (

21
 h

)
%

 O
oc

yt
es

 (
6 

h)

25

0

100

75

50

25

0
0 0.5

FGF10 (ng/ml)

50 Anti-
FGF10

IgG

– + IgG

Condensed chromatin

a

ab b

a
a

– + IgGAnti-FGF10:

0FGF10 (ng/ml): 0.5 5 50 0 0.5 5 50

Figure 4 FGF10 impacts oocyte progression through meiosis and first
polar body extrusion. (A and B) After 21–22 h, cumulus was removed
and denuded oocytes were processed to determine the proportion of
oocytes reaching telophase I (TI), meiosis II (MII; B only) and extruding
their first polar body (1st PB). (A) The effect of FGF10 supplementation
during IVM on oocyte maturation (nZ6 replicate studies; 8–10
oocytes/treatment per study). (B) The effect of adding anti-FGF10 (or
control IgG; each at 0.3 mg/ml) during IVM on oocyte maturation (nZ6
replicate studies; 8–10 oocytes/treatment per study). (C) After 6 h of
maturation, cumulus was removed and denuded oocytes were
processed to determine the proportion of oocytes containing
condensed chromatin (nZ5 replicate studies; 15–20 oocytes/treatment
per study). Different superscripts represent differences observed due to
treatments (P!0.05).
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Effects of FGF10 on oocyte maturation

The physiological basis for the newly described FGF10
effects was explored by determining whether FGF10
supplementation affects oocyte maturation. The percen-
tage of oocytes reaching telophase I or metaphase II
(TI/MII) after 21–22 h of maturation were influenced by
FGF10 supplementation (Fig. 4A). Supplementation with
0.5 or 5 ng/ml FGF10 did not affect the percentage
of TI/MII oocytes but exposure to 50 ng/ml FGF10
increased (P!0.05) the percentage of TI/MII oocytes
compared with controls. The percentage of oocytes
extruding their first polar body were influenced by
FGF10 supplementation (Fig. 4A). Supplementation with
0.5 and 50 ng/ml FGF10, but not 5 ng/ml FGF10,
increased (P!0.05) the first polar body extrusion rates
as compared with the control. A related study was
completed to determine whether endogenous sources of
FGF10 impact bovine oocyte maturation (Fig. 4B).
Supplementing anti-FGF10 (0.3 mg/ml) during IVM did
not affect the percentage of TI/MII oocytes and the first
polar body extrusion rates at 21 h post IVM.

In a third study, the effect of FGF on the early
progression of meiosis was examined by describing
how FGF10 affects chromatin condensation during IVM
(Fig. 4C). Adding 50 ng/ml FGF10 increased (P!0.05)
the proportion of oocytes containing condensed chro-
matin after 6 h. Supplementation with 0.5 ng/ml FGF10
Reproduction (2010) 140 815–826
or anti-FGF10 did not affect the percentage of oocytes
with condensed chromatin.

In a final study, oocytes devoid of cumulus cells were
matured in vitro in the presence or absence of FGF10 or
anti-FGF10 to examine whether FGF10 acted directly
on the oocyte to exert its beneficial effects on oocyte
maturation (Fig. 5). Bovine oocyte maturation can
proceed in the absence of cumulus cells, albeit to a
lesser extent than intact COCs (Homa 1988, Lonergan
et al. 1996). Providing 50 ng/ml FGF10 decreased
(P!0.05) the percentage of TI/MII oocytes at 21 h post IVM.
www.reproduction-online.org
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Adding 0.5 ng/ml FGF10 or anti-FGF10 did not affect the
percentage of TI/MII oocytes. None of the treatments
affected the first polar body extrusion rates.
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Figure 6 The effect of FGF10 supplementation on expression profiles
of selective transcripts in cumulus cells and oocytes. COCs were
cultured for 21 h in maturation medium containing or lacking
0.5 ng/ml FGF10. Cumulus cells and oocytes were separated, tcRNA
was extracted from each, and qRT-PCR was completed. (A) Expression
profiles for cumulus cells (nZ5 samples/treatment; each sample
contained cumulus cells from 20 to 25 COCs). (B) Expression profiles
for oocytes (nZ6 pools/treatment; each pool contained 20–25
oocytes). DCt values were used for statistical analysis, and data are
reported based on fold change (GS.E.M.) relative to the control (no
FGF10 treatment). Asterisks indicate differences observed between
treatment groups for a given transcript (P!0.05).
Effects of FGF10 on cumulus expansion

FGF10 also affected the cumulus expansion rates during
IVM. The first study examined the dose–response effect
of FGF10 supplementation on the degree of cumulus
expansion (rank scoring from 1 to 3; nZ9 replicate
studies; 20–30 COCs/treatment per study). A biphasic
response to increasing FGF10 concentrations was
observed. Cumulus expansion was increased (P!0.05)
in oocytes matured in medium containing 0.5 ng/ml
when compared with controls (2.43G0.07 for 0.5 ng/ml
FGF10 vs 2.20G0.05 for control) but not when greater
concentrations of FGF10 were provided (2.24G0.06
and 2.31G0.06 for 5 and 50 ng/ml FGF10 respectively).

Data were also analyzed to determine the propor-
tion of COCs in each rank category. The proportion
of oocytes with fully or near fully expanded cumulus
(index scoreZ3) were greater (P!0.05) in oocytes
supplemented with 0.5 ng/ml FGF10 than controls
(51.0G5.6% for 0.5 ng/ml FGF10 vs 35.3G3.8% for
controls) but not when greater amounts of FGF10 were
supplemented (34.1G4.5 and 43.8G4.3% for 5 and
50 ng/ml FGF10 respectively). TUNEL analysis was
completed on a subset of the COCs used in these
experiments, and the supplementation with FGF10 did
not affect the percentage of apoptotic cumulus cells at
21 h post maturation (data not shown).

The effect of endogenous FGF10 on cumulus expan-
sion rates was examined by anti-FGF10 supplementation
www.reproduction-online.org
(nZ5 replicate studies; 20–30 COCs/treatment per
study). Adding 0.5 ng/ml FGF10 increased (P!0.05)
the cumulus expansion score and co-supplementation
with anti-FGF10 (0.1 mg/ml) blocked (P!0.05) this effect
(2.06G0.07 for controls; 2.26G0.05 for 0.5 ng/ml
FGF10 treatment; 2.05G0.04 for 0.5 ng/ml FGF10 plus
anti-FGF10; and 2.21G0.04 for 0.5 ng/ml FGF10
plus control IgG). In a final study, providing anti-FGF10
in the absence of exogenous FGF10 reduced (P!0.05)
the mean COC expansion score (1.87G0.05 vs 1.7G0.06
for control versus anti-FGF10 exposure; nZ3 replicate
studies; 20–30 COCs/treatment per study).
Effects of FGF10 on cumulus and oocyte gene
expression

To examine the molecular basis of FGF10 actions during
oocyte maturation, expression profiles for candidate
genes were completed on cumulus cells and oocytes.
FGF10 modified the relative abundance of only a few
transcripts in cumulus cells and oocytes after 21 h of
maturation (Fig. 6). Adding 0.5 ng/ml FGF10 decreased
(P!0.05) the concentrations of CTSB and SPRY2 mRNA
in cumulus cells (Fig. 6A) and increased (P!0.05) the
BMP15 mRNA abundance in oocytes (Fig. 6B). BMP15
mRNA abundance was also increased (P!0.05) in
Reproduction (2010) 140 815–826
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oocytes obtained from FGF10-treated COCs when data
were normalized based on oocyte numbers used for
qRT-PCR analysis (data not shown).

A second study was completed to describe how
FGF10 impacts candidate gene expression after 6 h of
maturation. No changes in transcript abundance were
detected in the subset of the cumulus-specific transcripts
(CTSB, EGFR, FSHR, HAS2, and SPRY2) and all of the
oocyte-specific transcripts (data not shown).
Discussion

Embryos generated from IVM/IVF procedures usually are
less able to produce viable offspring than in vivo-derived
embryos in cattle and humans (Fitzgerald et al. 1998,
Loureiro et al. 2009, Binelli & Murphy 2010). The
absence of specific thecal-derived products during IVM
may be one reason for these reductions in oocyte and
embryo competency. This work determined that at least
one thecal- and oocyte-derived product, FGF10,
improves embryogenesis when provided during IVM.

The first study described the types of FGFRs expressed
in bovine cumulus cells and oocytes as they begin IVM.
Transcripts for each of the four genes were readily
evident in cumulus cells. Oocytes also contained
transcripts for all four receptor classes, although very
little FGFR3 mRNA was detected. As described pre-
viously, FGF10 reacts primarily with R1b and R2b with
high affinity and with several other FGFRs with much
lower affinities (Miralles et al. 1999, Powers et al. 2000,
Itoh & Ornitz 2004). By using primer sets that specifically
amplify single FGFR1 and R2 spliced variants (Naimi
et al. 2002, Berisha et al. 2006, Guerra et al. 2008),
transcripts for R1b and R2b were detected in both tissues
and it appeared that R1b mRNA was the predominant
FGF10 receptor partner in cumulus cells whereas R2b
was more prevalent in oocytes. During the initial
validation of primer efficiencies, all primer pairs
effectively and specifically reacted with their target
sequences (87–104% efficiency). Standard curves (either
absolute or relative curves) were not included during the
examination of the test samples, and therefore statistical
comparisons between amplicons could not be made. To
the best of the authors’ knowledge, this is the first report
of FGFR1 and R2 mRNA subtype profiling in bovine
COCs. A previous report has described R3c and R4
expression in preantral bovine follicles (Buratini et al.
2005). Interestingly, that report indicated that R3c was
more prevalent than R4 during preantral development.
This was not observed in the present work; rather, R3
mRNA (both b and c isotypes) was barely detectable
in oocytes. This suggests that FGFR transcript profiles
are distinct in preantral and postantral stages bovine
follicle development.

Cleavage rates were unaffected in oocytes supple-
mented with FGF10 during IVM, but subsequent embryo
development rates were improved with this treatment.
Reproduction (2010) 140 815–826
The most obvious postfertilization effects included 1) the
proportion of embryos reaching the 8–16-cell stage on
day 3, and 2) the proportion of embryos reaching the
blastocyst stage on day 7 and advanced blastocysts on
day 8 post IVF. It remains unclear exactly how FGF10
treatment promotes embryo development, but exposure
to FGF10 did not affect blastomere numbers on day 8
suggesting that the embryotrophic effects of FGF10 do
not require improvements in blastomere numbers on
days 7 and 8. Similar outcomes were observed by others
(Rizos et al. 2002, 2003). In those studies, bovine oocyte
quality affected subsequent blastocyst yields more so
than blastocyst quality. Perhaps FGF10 enhances the
ooplasm microenvironment by altering the concen-
trations of specific molecules that promote embryo
development during the first few cleavage events.
Embryonic genome activation occurs at the 8–16-cell
stage in bovine embryos (Betteridge & Flechon 1988).
Improvements in embryo development were detectable
this time, and it is quite possible that enhancements in
the early developing embryo created a greater pro-
portion of competent 8–16-cell embryos that continued
to develop into blastocysts.

Biphasic oocyte responses were evident when FGF10
was added to the maturation medium. Observing
maximal responses with 0.5 ng/ml indicates that FGF10
likely interacts with high-affinity FGFRs (i.e. R1b and/or
R2b) to elicit its response (ED50Z0.1–1 ng/ml; Ornitz
2000, Powers et al. 2000). Similar biphasic dose
responses to FGF supplementation, and other paracrine-
acting factors, for that matter, are evident in various cell
types (Butterwith et al. 1993, Murono et al. 1993, Halevy
et al. 1994, Garcia-Maya et al. 2006, Li et al. 2009a). This
phenomenon could have been caused by receptor
downregulation events associated with ligand overload-
ing (Murono et al. 1993). Alternatively, this effect could
reflect differential receptor usage that could have
prompted secondary signaling systems that interfered
with the primary signaling response (Wang et al. 2004,
Garcia-Maya et al. 2006, Hayashi et al. 2008).

Subsequent investigation into how FGF10 improves
oocyte competency determined that FGF10 improves
several aspects of oocyte maturation. One feature of
maturation that was improved by FGF10 was cumulus
expansion. The magnitude of FGF10 effects on cumulus
expansion scores and the percentage of COCs that
underwent full expansion by 21 h were not great, likely
because expansion rates already were fairly great to begin
with, but they did occur when using the same
concentration of FGF10 required to improve subsequent
embryo development (0.5 ng/ml). An endogenous source
of FGF10 also appears important for cumulus expansion
in cattle. In situ hybridization work in bovine follicles
found copious amounts of FGF10 mRNA in thecal cells
and immunoreactive FGF10 protein throughout the
thecal and granulosa layers (Buratini et al. 2007). Oocytes
also contain FGF10 transcripts (Buratini et al. 2007).
www.reproduction-online.org
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The IgG treatments used for this work likely targeted the
oocyte-derived FGF10 and any residual thecal-derived
FGF10 that remained bound to extracellular matrix
within COCs. The IgG neutralization appeared specific
for FGF10. This IgG was used previously to neutralize
FGF10 actions on mouse incisor growth (Harada et al.
2002). In the present work, providing IgG molecules
prevented supplemental FGF10 from stimulating cumu-
lus expansion and subsequent embryo development
rates, and providing molar excesses of FGF10 partially
overcame the neutralization effects of FGF10 IgG on
embryonic development into the blastocyst stage. In
addition, providing FGF10 IgG in the absence of
supplemental FGF10 decreased cumulus expansion.
These observations implicate modifications in cumulus
cell activity as a potential source for FGF10-induced
increases in oocyte competency.

FGF10 also affects other aspects of oocyte maturation.
FGF10 improved the percentage of oocytes containing
condensed chromatin after 6 h of maturation, oocytes
progressing to TI/MII, and oocytes extruding their first
polar body after 21 h. However, the concentrations of
FGF10 needed to observe many of these responses were
greater than those needed to improve subsequent
embryo development. With the exception of the polar
body extrusion rates, other benefits to oocyte meiotic
maturation required 50 ng/ml FGF10. Providing anti-
FGF10 did not affect meiotic maturation rates. These
observations indicate that FGF10-dependent improve-
ments in bovine oocyte competency are not dependent
on improvements in oocyte maturation; rather, modifi-
cations in cumulus function likely are the primary target
for FGF10 actions. Cumulus cells are needed for FGF10
to positively impact oocyte maturation. FGF10 supple-
mentation to oocytes devoid of cumulus cells did not
improve their ability to mature in vitro. Polar body
extrusion rates were unaffected by FGF10 supple-
mentation when cumulus cells were absent and meitotic
maturation rates decreased when 50 ng/ml FGF10 was
added. Moreover, adding FGF10 IgG to block endogen-
ous FGF10 activity did not affect maturation rates in
these oocytes.

To further understand how FGF10 improves oocyte
competency, a series of transcripts identified by others as
putative competency markers in cumulus and oocytes
were examined. Several cumulus-specific transcripts are
linked to oocyte competency. The gene encoding
cathepsin B (CTSB) contained an interesting FGF10-
dependent expression pattern. Several cathepsin tran-
scripts, including CTSB and CTSZ, are inversely related
to oocyte quality. In one study, cumulus derived from
COCs of prepubertal heifers, a model of poor oocyte
competency, contained more CTSB mRNA than COCs
from mature cows (Bettegowda et al. 2008). Oocyte
quality and postfertilization development could be
improved by exposing COCs to a membrane-permeable
cathepsin inhibitor (Bettegowda et al. 2008). In another
www.reproduction-online.org
study, cows with a low rate of antral follicle development
contained greater amounts of CTSB mRNA than cows
with higher numbers of antral follicles (Ireland et al.
2009). In the present work, CTSB mRNA abundance
decreased in cumulus from COCs exposed to FGF10.
CTSZ, by contrast, exhibited no FGF10-dependent
changes in transcript abundance. FGF10 supple-
mentation also reduced the cumulus concentrations
SPRY2 mRNA. This is not surprising given that SPRY2 is a
modulator of FGF signaling (Sugiura et al. 2009). The
remaining cumulus competency markers were not
impacted by FGF10. Included in this work were the
following transcripts: EGFR and FSHR, receptors essen-
tial for normal oocyte maturation and cumulus expan-
sion (Assidi et al. 2008, Caixeta et al. 2009); HAS2, a key
player in cumulus expansion (Dragovic et al. 2005,
Assidi et al. 2008); KITLG, a component of stem cell
survival and oocyte growth (Cho et al. 2008); and
INHBA, an inhibin subunit (Assidi et al. 2008).

Several putative oocyte competency factors were
also examined for whether they associate with FGF10-
mediated increases in oocyte competency. Included
among these were FST (Hussein et al. 2006, Lee et al.
2009), GDF9 (Dragovic et al. 2005), JY1 (Bettegowda
et al. 2007) and HIST2H2AC (Dode et al. 2006, Caixeta
et al. 2009), andBMP15 (Hussein et al. 2006). Changes in
overall RNA abundances are evident throughout oocyte
maturation and early embryonic development in cattle
and other species (Robert et al. 2002), and identifying a
suitable internal control (or set of controls) is imperative
for proper interpretation of outcomes at these stages. This
work did not compare transcript profiles over time
because of these complications with identifying suitable
reference transcripts; rather, control and FGF10-treated
oocytes were examined within specific time-points. The
abundance of the internal control (18S) did not differ
among treatments within each time-point. Moreover,
correcting the raw Ct values for numbers of oocytes in
each RNA sample yielded the same outcomes as the DCt

method. These arguments support the use of 18S as the
reference transcript for this work. However, the accuracy
of these findings may have been improved if more
extensive methods that utilize multiple reference genes
(e.g. Relative Expression Software Tool or REST) or
include external cRNA to control for variations in RT
and/or PCR efficiencies between samples were utilized
in this work.

BMP15 was the only oocyte transcript investigated
which was affected by FGF10 treatment. It is one of the
several members of the TGFB superfamily expressed in
oocytes during folliculogenesis and ovulation ( Juengel &
McNatty 2005, Gilchrist et al. 2008). BMP15 transcripts
are first evident at the primary follicle stage of most
mammals ( Juengel & McNatty 2005, Gilchrist et al.
2008). Deficiencies in BMP15 expression cause primary
follicle arrest in ewes (Galloway et al. 2000) and are
linked with infertility in women (Di Pasquale et al. 2004,
Reproduction (2010) 140 815–826

Downloaded from Bioscientifica.com at 08/24/2022 07:55:22PM
via free access



822 K Zhang and others
2006). Several recent findings implicate BMP15 as a vital
mediator of oocyte competency. Recombinant BMP15
induces cumulus expansion in mice (Li et al. 2009b,
Mottershead & Watson 2009) and limits cumulus cell
apoptosis in bovine COCs (Hussein et al. 2005). In
addition, culturing bovine COCs with BMP15 did not
affect fertilization rates in vitro but increased subsequent
blastocyst formation rates (Hussein et al. 2006). Perhaps
some or all of the FGF10-mediated effects observed in
this work resulted from an increase in BMP15
production. The extent of this functional linkage must
be described more thoroughly, but it is tempting to
speculate that that one of the major actions of FGF10 is
to serve as an upstream regulator of BMP15 expression
during the final stages of oocyte maturation.

It remains unclear to what extent using a heterologous
recombinant protein had on the outcomes. The human
FGF10 protein chosen for this work is 94% identical in
amino acid sequence to bovine FGF10. It reacts with
approximately the same potency as other FGFs on
various tissues, although a subtle reduction in activity
was observed when comparing the potency of this
protein with other FGFs (FGF1, 2, and 7) for their ability
to stimulate interferon-t production in bovine trophec-
toderm (TE; Cooke et al. 2009). It is presumed that
human FGF10 reacts with the same FGFR subtypes as
bovine FGF10, although that has not been verified. It
remains possible, therefore, that certain aspects of
FGF10 activity during oogenesis were not identified by
using human FGF10 in bovine COCs.

In summary, work presented herein provides evidence
that thecal- and oocyte-derived FGF10 improves oocyte
competency. Providing FGF10 to bovine COCs during
IVM improved oocyte maturation, cumulus expansion,
and subsequent embryo development. The mechanisms
controlled by FGF10 have not been elucidated. A closer
examination of metabolic, transcriptomic, and proteo-
mic changes regulated by FGF10 is warranted. However,
based on the present findings, FGF10 is likely to act on
cumulus cells in ways that improve their ability to
regulate meiosis and provide ooplasm with components
of importance for early embryonic survival.
Materials and Methods

Unless stated otherwise, reagents were purchased from
Sigma–Aldrich Co. All studies were completed in accordance
and with the approval of the Institutional Animal Care and
Use Committee at the University of Florida.
Bovine IVM, IVF, and IVC

Bovine oocyte IVM, IVF, and IVC were completed as described
previously (Rivera & Hansen 2001, Loureiro et al. 2009). In
brief, ovaries from beef and dairy cattle were obtained from
Central Beef Packing Co. (Center Hill, FL, USA) and washed
several times with 0.9% (w/v) sodium chloride supplemented
Reproduction (2010) 140 815–826
with 100 U/ml penicillin and 0.1 mg/ml streptomycin. COCs
were collected, and groups of 10–12 COCs were cultured in
50 ml drops of oocyte maturation medium (TCM199 containing
Earle’s salts (Invitrogen Corp.) supplemented with 25 mg/ml
bovine FSH (Bioniche Life Sciences, Belleville, ON, Canada),
2 mg/ml estradiol 17-b, 22 mg/ml sodium pyruvate, 50 mg/ml
gentamicin sulfate, 1 mM glutamine, and 1 mg/ml PVA).
Maturation medium was supplemented with varying concen-
trations of recombinant human FGF10 (Invitrogen Corp.;
0.5–50 ng/ml prepared in TCM199 containing Earle’s salts) or
immunoglobulin (IgG; anti-FGF10 polyclonal, IgG-purified
(SC-7375) or control IgG (SC-2028), Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA). In one study, IVM was completed
using denuded oocytes. For this, COCs were vortexed for 4 min
to remove cumulus before maturation.

After 21–22 h at 38.5 8C in 5% CO2 in humidified air,
COCs were transferred to fertilization medium and exposed
to Percoll-gradient-purified bovine spermatozoa (Rivera &
Hansen 2001, Loureiro et al. 2009). The same pool of semen
from three bulls was used throughout the studies. After 8–10 h
at 38.5 8C (5% CO2 in humidified air), cumulus cells were
removed by vortexing in 1000 U/ml hyaluronidase and
denuded putative zygotes were placed in groups of 25–30 in
50 ml drops of synthetic oviduct fluid (Millipore, Billerica, MA,
USA) containing 25 mg/ml gentamicin sulfate, 0.4 mM sodium
pyruvate, 2.77 mM myo-inositol, 0.5 mM sodium citrate,
1 mM alanyl glutamine, 5.3 mM sodium lactate syrup, 10 ml/ml
nonessential amino acids, 20 ml/ml essential amino acids, and
4 mg/ml fatty acid-free BSA. Drops were covered with mineral
oil and maintained at 38.5 8C in 5% CO2, 5% O2, and 90%
N2 for 8 days. The proportion of cleaved zygotes and the
proportion of embryos containing 8–16 blastomeres were
recorded on day 3 post IVF. The proportion and stage of
blastocysts (early, regular, expanded, hatching, and hatched)
were recorded at days 7 and 8 post IVF.
Nuclear maturation, cumulus expansion, and apoptosis
following oocyte maturation

After maturation, the degree of cumulus expansion in COCs
was scored visually by phase-contrast microscopy on a 1–3
scale (1, poor expansion characterized by few morphological
changes compared with before maturation; 2, partial expan-
sion characterized by fair expansion but notable clusters
lacking expansion; 3, complete or nearly complete expansion)
as described previously (Kobayashi et al. 1994).

To assess progression through meiosis after IVM, oocytes
were denuded by vortexing for 4 min in saline after 6 or 21 h of
maturation. Chromatin condensation status was determined at
6 h and meiotic staging and first polar body extrusion was
completed at 21 h. At both time-points, oocytes were fixed with
4% (w/v) paraformaldehyde (Polysciences, Inc., Warrington,
PA, USA), permeabilized with 0.1% Triton X-100, and stained
for 15 min with 1 mg/ml Hoechst 33342 (Invitrogen Corp.).
Chromatin status and meiotic staging were determined with
epifluorescence microscopy as described previously (Roth &
Hansen 2005, Marei et al. 2009). The presence of first polar
body extrusion was determined under stereomicroscopy.
www.reproduction-online.org
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Table 1 Primers used for quantitative RT-PCR.

Transcript Primer sequence (5 0–3 0)

Oocyte
BMP15 For: GTCAGCAGCCAAGAGGTAGTG

Rev: CCCGAGGACATACTCCCTTAC
FST For: CAGAGCTGCAAGTCCAGTACCA

Rev: CATGTAGAGCTGCCTGGACAGA
GDF9 For: GGGAAATGTGTTCCTTGCTAATTC

Rev: AGCAGCAAAACCAAAGGAAGAA
HIST2H2AC For: GTCGTGGCAAGCAAGGAG

Rev: GATCTCGGCCGTTAGGTACTC
JY1 For: TTGGAACTTCCATGGACGACC

Rev: ATTTGCTGGTGATCCCAAGAG
Cumulus
CTSB For: CGATGCCCGGGAACAGT

Rev: GAGCACAGGATCCCTGATC
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In some studies, COCs were processed after IVM to
determine the percentage of TUNEL-positive cumulus cells.
For this, COCs were washed in 0.01 M PBS (pH 7.2) containing
1 mg/ml polyvinyl pyrrolidone (PBS–PVP) and fixed in 4%
(w/v) paraformaldehyde. COCs were permeabilized in 0.5%
(v/v) Triton X-100, and 0.1% (w/v) sodium citrate for 30 min at
RT in a humidified box. COCs were incubated in 25 ml drops of
the TUNEL reaction mixture containing FITC-conjugated dUTP
and terminal deoxynucleotidyl transferase (Roche Applied
Sciences) for 1 h at 37 8C in the dark. COCs were counter-
stained with 1 mg/ml Hoescht 33342, mounted on slides, and
analyzed with epifluorescence microscopy. The proportion of
TUNEL-positive cumulus cells were calculated by dividing the
number of TUNEL-positive nuclei with total nuclei numbers in
each of the four fields under 200-fold magnification.
CTSZ For: GGGAGAAGATGATGGCAGAAAT
Rev: TCTTTTCGGTTGCCATTATGC

EGFR For: ACCCTGATCTGGAAGTTTGCA
Rev: TCGAGACCTGGCCCTTCAC

FSHR For: TGGTCCTGTTCTACCCCATCA
Rev: GAAGAAATCCCTGCGGAAGTT

HAS2 For: TAAATGTGGCAGGCGGAAGAAGG
Rev: GTCTTTGTTCAAGTCCCAGCAGCA

INHBA For: GCTACCACGCCAACTACTGTGA
Rev: AGAGGGATGAGCCCGATGT

KITLG For: AATGGGCAGCCGTAGCATT
Rev: TCCAGTAAAAGGCCCCAAAA

SPRY2 For: CACGTGCTGTCTCTGGATCAG
Rev: GGCCCCTCCGTGTACTCA

FGFRs
R1b For: ACGTCCTGGTGACGGAGG

Rev: CCGGTGCCATCCATTTGA
R1c For: ACTGCTGGAGTTAATACCACCG

Rev: GCAGAGTGATGGGAGAGTCC
Differential staining in blastocysts

Differential staining for TE versus ICM cells was completed as
described previously (Block et al. 2008). In brief, blastocysts
obtained on day 8 post IVF were incubated with 100 mg/ml
RNase A (Qiagen) for 1 h and were transferred to as little
solution as possible into 100 mg/ml propidium iodide (Invi-
trogen Corp.), 0.2% Triton X-100, and 1 mg/ml PVP in PBS for
30 s. After three washes in PBS–PVP, embryos were placed into
a solution containing 10 mg/ml Hoechst 33342, 4% parafor-
maldehyde, and 1 mg/ml PVP in 0.01 M PBS (pH 7.2) for
15 min. After a final series of washes, blastocysts were placed
into glycerol drops on microscope slides and TE and ICM cells
were counted by using epifluorescence microscopy.
R2b For: GTGGAAAAGAACGGCAGTAAATA
Rev: GAACTATTTATCCCCGAGTGCTTG

R2c For: CACCACGGACAAAGAAATTG
Rev: ATGCAGAGTGAAAGGATATCCC

R3 For: GCAGCGGCTACAGGTGCTCA
Rev: CAGGCCGCGTCCAGTAAGGG

R4 For: GCAGACGCTCCTCACCCGAC
Rev: CGAGACTCACGAGGCCAGCG

The relative standard curve approach (five serial dilutions of a
follicular/oocyte RNA pool) was used to verify primer efficiencies.
The following primers sets were designed previously: CTSB and CTSZ
(Bettegowda et al. 2008); BMP15 (Marina et al. 2006); JY1 and
FSHR (Ireland et al. 2009); HIST2H2AC (Goossens et al. 2005); HAS2
(Assidi et al. 2008); FGFR1b (Guerra et al. 2008); FGFR1c and R2c
(Berisha et al. 2006); FGFR2b (Naimi et al. 2002). Remaining primers
were designed using Primer Express Software (version 3.0;
Applied Biosystems, Inc.).
Real-time qRT-PCR

Cumulus cells and oocytes (nZ25–30/group) were separated
from each other by vortexing either immediately after isolating
COCs from follicles (0 h; no maturation) or after 6 or 21 h after
beginning IVM. Denuded oocytes were removed and washed
thrice in PBS–PVP. Cumulus cells were transferred to
microcentrifuge tubes and centrifuged at 700 g for 2 min at
room temperature to remove residual solution. Both oocytes
and cumulus cells were snap-frozen in liquid nitrogen and
stored at K80 8C.

Total cellular (tc) RNAwas extracted from cumulus cells using
the RNeasy Micro kit (Qiagen) and from oocytes using the
PicoPure RNA Isolation kit (MDS Analytical Technologies,
Sunnyvale, CA, USA). RNA concentrations were determined
using a NanoDrop 2000 Spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). The A260/280 ratios were !1.8 in all
cumulus samples. Limited amounts of RNA prevented
determination of RNA quality in the oocyte samples. RNA
(10 ng/reaction for cumulus samples; entire RNA sample for
oocyte samples) was incubated in RNase-free DNase (New
England Biolabs Inc., Ipswich, MA, USA) and reverse
transcribed using the High Capacity cDNA RT kit (Applied
Biosystems, Inc., Foster City, CA, USA). Primer sets (Table 1)
were used in combination with a SYBR Green detection system
and a 7300 Real-Time PCR System (Applied Biosystems, Inc.)
to provide relative quantities of specific transcripts in cumulus
and oocyte transcripts. Primers were used at a concentration
www.reproduction-online.org
of 200 nM and were mixed with RT products and SybrGreen
PCR Master Mix (Applied Biosystems, Inc.). After an initial
activation/denaturation step (50 8C for 2 min, 95 8C for 10 min),
40 cycles of a two-step amplification protocol (60 8C for 1 min,
95 8C for 15 s) were completed. A dissociation curve analysis
(60–95 8C) was used to verify the amplification of a single
product. Amplicons derived from newly synthesized primer
pairs were sequenced (UF DNA Sequencing Facility) to ensure
the correctness of amplification. Each sample was run in
triplicate and a fourth reaction lacking exposure to reverse
transcriptase was included to verify the absence of genomic
contamination. Relative amount of 18S RNA was used as an
internal control for quantifying relative gene expression. In one
Reproduction (2010) 140 815–826
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study, the ratio of target to reference RNAwas used to determine
relative expression ð2KCtðtargetÞ=2KCtðreferenceÞ. The remaining
studies used the comparative threshold cycle (Ct) approach to
determine relative abundance (Michael et al. 2006). The
average DCt value for each transcript was calculated (target
CtK18S Ct) and used to calculate the fold-change ð2KDDCt Þ.
Statistical analysis

All analyseswerecompletedwith least-squaresANOVAusing the
general linear model of the Statistical Analysis System (SAS for
Windows, version 9.0; SAS Institute, Inc., Cary, NC, USA).
Statistical analyses used arcsin-transformed percentage data
generated from each replicate (experimental unitZaverage
percentage within each replicate). Differences in the individual
means were separated further by completing pair-wise compari-
sons (probability of difference analysis; SAS Institute, Inc.).
Percentage data were graphed using nontransformed values and
S.E.M.s. Differential staining data were analyzed using embryo as
the experimental unit, and data were analyzed to describe the
effect of FGF10 treatment on TE and ICM cell numbers and
proportion of cells that were ICM (ICM/Total). COC expansion
was analyzed in two ways: 1) the mean COC expansion index
was calculated for each treatment within each replicate and
2) the proportion of COCs observed within each of the
nonparametric rankings (1, 2, and 3). When analyzing qRT-PCR
data, either log-transformed ratios or DCt values were used for
the statistical analyses. Data were presented either as the ratio of
target to reference RNA or as fold differences from control values.
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