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FGFs (fibroblast growth factors) and their receptors (FGFRs)
play essential roles in tightly regulating cell proliferation,
survival, migration and differentiation during development and
adult life. Deregulation of FGFR signalling, on the other hand,
has been associated with many developmental syndromes, and
with human cancer. In cancer, FGFRs have been found to
become overactivated by several mechanisms, including gene
amplification, chromosomal translocation and mutations. FGFR
alterations are detected in a variety of human cancers, such
as breast, bladder, prostate, endometrial and lung cancers, as
well as haematological malignancies. Accumulating evidence
indicates that FGFs and FGFRs may act in an oncogenic fashion
to promote multiple steps of cancer progression by inducing

mitogenic and survival signals, as well as promoting epithelial–
mesenchymal transition, invasion and tumour angiogenesis.
Therapeutic strategies targeting FGFs and FGFRs in human
cancer are therefore currently being explored. In the present
review we will give an overview of FGF signalling, the main
FGFR alterations found in human cancer to date, how they may
contribute to specific cancer types and strategies for therapeutic
intervention.

Key words: cancer, fibroblast growth factor (FGF), fibroblast
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INTRODUCTION

Cancer

Human cancers usually develop through a multi-stage process that
may extend over decades. During cancer development, normal
cells are progressively transformed into highly malignant cells
by accumulating a number of genetic changes and acquiring
a set of specific properties that have been summarized as
the hallmarks of cancer [1–5]. Four of these hallmarks, self-
sufficiency in growth signals, insensitivity to anti-growth signals,
evading apoptosis and limitless replicative potential, contribute
to uncontrolled cancer cell proliferation [1]. Malignant cancer
cells also acquire the capabilities of invading the adjacent normal
tissue and metastasizing to distant organs, as well as of sustained
angiogenesis to access nutrients and oxygen to promote the
growth of the tumour [1]. In addition to these six classical
hallmarks, further hallmarks of cancer cells have been proposed,
including evasion of immune surveillance [6], enhanced anabolic
metabolism [5], various stress phenotypes (i.e. DNA damage,
and mitotic, metabolic, proteotoxic and oxidative stresses) [4] and
genomic instability [3]. Given the complexity of carcinogenesis,
the mechanisms and the temporal sequence by which these
features are acquired will probably vary between cancer types and
subtypes [1].

Cancers may be hereditary or sporadic depending on whether
the tumour-causing mutations occur in the germline or in somatic
cells respectively [3]. Tumours display a tremendous complexity

and heterogeneity in the pattern of mutations, and often
display mutations in multiple genes, chromosomal abnormalities
and changes in gene expression [4]. The accumulation of
genetic alterations leading to overactivation of growth-promoting
oncogenes and/or inactivation of growth-inhibitory tumour
suppressor genes is strongly linked to tumour progression [7].
It is thought that some mutations, so-called driver mutations, give
cancer cells a considerable growth advantage and promote cancer
cell expansion, whereas others, termed passenger mutations, do
not contribute to cancer progression [8]. Increasing evidence
suggests that the continued activity of one or a few driving
oncogenes promote the malignant phenotype of tumours that
become dependent on these oncogenes for the maintenance of the
tumour hallmarks, a phenomenon called ‘oncogene addition’ [9].
RTKs (receptor tyrosine kinases) represent an important family
of genes that is commonly affected by mutations and alterations
in human cancers.

RTKs in cancer

RTKs constitute a large family of cell-surface receptors with 58
members divided into 20 subfamilies in humans, all of which
share a common overall composition with an extracellular ligand-
binding region, a single-pass transmembrane domain and an
intracellular tyrosine kinase domain [10]. Growth factor binding
to the ligand-binding domain induces RTK activation and the
initiation of intracellular signalling cascades that control vital
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cellular processes, such as cell proliferation, differentiation,
migration and survival [10]. RTKs thereby play key roles in
maintaining tissue homoeostasis during the development and
adult life of multicellular organisms [11,12]. Accumulating
evidence indicates that deregulation of RTK signalling, on
the other hand, is linked to the development of various
human diseases, including cancer [11,13]. Mechanisms that
have been implicated to contribute to aberrant RTK activation
in carcinogenesis include gene amplification, chromosomal
translocation, point mutation, autocrine activation and impaired
receptor down-regulation [11,14–17]. Most often altered RTKs
act as oncoproteins, but in certain cases RTKs may also
have tumour suppressor functions (see below) [13]. Prominent
examples of RTKs that have been found altered in human cancer
include members of the ErbB/EGFR [EGF (epidermal growth
factor) receptor], PDGFR [PDGF (platelet-derived growth factor)
receptor], VEGFR [VEGF (vascular endothelial growth factor)
receptor), HGFR [HGF (hepatocyte growth factor) receptor]/MET
and FGFR [FGF (fibroblast growth factor) receptor] families
[11,16].

Aberrant RTK activation following the above alterations may
promote several steps of cancer progression. Most cancers
originate from epithelial tissues and the consensus view is that
the majority of human sporadic cancers originate from a single
progenitor cell containing somatic driver mutations that give
survival and growth advantages to the cell [13]. Growth factors
and their receptors have been implicated in a number of the
subsequent steps of progression to a malignant cancer phenotype
[13]. First, growth factors, such as EGF and IGF-1 (insulin-
like growth factor-1), may participate in promoting the clonal
cancer cell expansion that leads to the formation of benign
lesions [13]. These cells may further undergo EMT (epithelial–
mesenchymal transition), a process that involves loss of epithelial
cell polarity, enhanced migratory capacity, the acquirement of a
mesenchymal phenotype and secretion of proteases [18]. This is
followed by degradation of the basement membrane and migration
and invasion of the cells into the normal adjacent tissue, giving
rise to malignant lesions [18]. A large number of oncogenes
and tumour suppressors, as well as growth factors, including
TGFβ (transforming growth factor β), HGF, FGF and EGF,
have been implicated in these processes [13,19]. Having invaded
neighbouring tissues, cancer cells can gain access to and enter
blood and lymphatic vessels (intravasation), followed by their
transport through the circulation, lodging in capillaries in distant
tissues and exit from vessels (extravasation) to penetrate into
the surrounding tissues to form micrometastases, some of which
may eventually grow to macroscopic metastases [20]. The growth
and survival of primary and secondary tumours larger than a
few millimetres in size require access to the circulation and the
generation of new vessels by tumour angiogenesis [21]. VEGF,
PDGF and FGF all play roles in stimulating angiogenesis [13,22].
Taken together, RTKs may thus participate in promoting several
steps of carcinogenesis, including clonal cancer cell expansion,
EMT, invasion and angiogenesis.

In the present review we will focus on FGFs and FGFRs,
deregulation of which have been identified in a variety of human
cancers. We will start by giving an overview of signalling
pathways and biological processes induced by FGFs and their
receptors. We will then discuss the main mechanisms by which
FGFs and FGFRs have been found to be altered in human cancer,
and highlight the cancer types in which FGF/FGFR alterations
have been commonly found to date and how they may contribute
to a malignant phenotype. We will finally discuss possibilities
for therapeutic interventions of FGFs and FGFRs in treatment of
human cancer.

THE FGF SIGNALLING SYSTEM

FGFs and FGFRs

The FGF family consists of 18 ligands that bind to four
homologous high-affinity FGFRs (FGFR1–FGFR4) [12,22,23].
The FGFs are secreted polypeptidic growth factors that bind to
receptors expressed at the cell surface of target cells. Most FGFs
have signal sequences for secretion, except FGF1 and FGF2 that
utilize a non-classical secretion pathway circumventing the ER
(endoplasmic reticulum). In addition to the 18 secreted ligands
that bind to cell-surface receptors, four members of the FGF
family, the FHFs (FGF homologous factors), are not secreted and
act intracellularly [12].

The FGFRs have an overall structure similar to most RTKs
[23]. They are single-pass transmembrane proteins that consist
of an extracellular part that binds FGF ligands, a transmembrane
domain and an intracellular tyrosine kinase domain that transmits
the signal to the interior of the cell (Figure 1). The intracellular
kinase domain is similar to the VEGFR and PDGFR kinases
in that it has an insert, resulting in a split kinase domain. The
extracellular part is composed of three Ig-like domains (I–III)
with an acidic, serine-rich region between domains I and II
(termed the acid box). The first Ig-like domain is, together with
the acid box, thought to play a role in receptor autoinhibition
[24]. Domains II and III constitute the FGF ligand-binding site.
In FGFR1–3, alternative splicing in Ig-like domain III creates
isoforms with different ligand-binding specificities (FGFR1 IIIb–
FGFR3 IIIb and FGFR1 IIIc–FGFR3 IIIc) [12,23]. The FGFR IIIb
isoforms are predominantly epithelial and the IIIc isoforms are
predominantly mesenchymal, with their corresponding ligands
only activating either the epithelial or mesenchymal isoforms,
except FGF1 which binds all receptor isoforms [25]. Thus
paracrine signalling is achieved by, for instance, epithelial
cells producing ligands that only activate the corresponding
mesenchymal FGFR IIIc isoforms, and vice versa.

FGFs also bind to low-affinity receptors present on most
cells, the HSPGs (heparan sulfate proteoglycans) [12]. HSPGs
consist of a proteoglycan core that binds two or three linear
polysaccharides (heparan sulfate chains). The FGFs bind to
the negatively charged polysaccharides through electrostatic
interactions. HSPGs both protect the ligands from degradation
and are also involved in the complex formation between the
FGFs and the FGFRs. Binding of FGFs to the receptors forces
the dimerization of a ternary complex consisting of FGF, FGFR
and heparan sulfate (Figures 1 and 2).

FGF signalling

The dimerization event triggers the activation of the FGFRs by
bringing the intracellular kinases into close proximity, enabling
them to transphosphorylate each other. Seven phosphorylation
sites have been identified in FGFR1 (Tyr463, Tyr583, Tyr585, Tyr653,
Tyr654, Tyr730 and Tyr766) [26,27]. Some of these phosphotyrosine
groups acts as docking sites for downstream signalling molecules
containing SH2 (Src homology 2) domains.

One prominent example is PLCγ (phospholipase Cγ ), which
binds to a phosphotyrosine in the C-terminal tail of the activated
receptors (Tyr766 in FGFR1, Figure 2) [27]. PLCγ hydrolyses
PIP2 (phosphatidylinositol 4,5-bisphosphate) to produce DAG
(diacylglycerol) and IP3 (inositol 1,4,5-triphosphate) which
triggers the release of calcium and subsequent activation of PKC
(protein kinase C).

The adaptor protein FRS2 (FGFR substrate 2) acts as a
hub linking several signalling pathways to the activated FGFRs
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Figure 1 Complex formation between FGF, FGFR and HSPG initiates signalling

The basic structure of an FGFR is shown on the left-hand side. FGFRs are single-pass transmembrane RTKs with an extracellular part composed of three Ig-like domains (I–III), and an intracellular
part containing a split tyrosine kinase domain. The complex formed by two FGFs, two heparan sulfate chains and two FGFRs causes dimerization and transphosphorylation by the kinases on several
tyrosine residues in the intracellular part of the FGFRs, causing activation of downstream signalling cascades. After activation, the complex is internalized by endocytosis and transported to lysosomes
for degradation. See the text for more details. An animated version of the Figure is available at http://www.BiochemJ.org/bj/437/0199/bj4370199add.htm.

[28]. FRS2 binds to the juxtamembrane region of the FGFR,
and upon activation of the receptor it becomes phosphorylated
on several tyrosine residues, creating docking sites for
additional adaptor proteins. By binding to phosphorylated FRS2,
the adaptor GRB2 (growth-factor-receptor-bound protein 2) re-
cruits the Ras/MAPK (mitogen-activated protein kinase) pathway
through the Ras guanine-nucleotide-exchange factor SOS (Son
of sevenless) and the PI3K (phosphoinositide 3-kinase)/Akt
pathway through GAB1 (GRB2-associated-binding protein 1)
(Figure 2).

Many other signalling molecules have been reported to be
activated by FGFRs, including RSK2 (p90 ribosomal protein
S6 kinase 2), STATs (signal transducers and activators of
transcription) and the non-RTK Src [12,22].

Modulation of FGF signalling

A number of regulators are implicated in modulating the signalling
output from activated FGFRs. The Sprouty proteins, for example,
are important negative regulators that are induced by FGF
signalling [29–31]. Sprouty proteins seem to inhibit signalling by
several mechanisms. They inhibit signalling by binding to GRB2
and thereby decouple downstream signalling (Figure 2) [32].

Other proteins induced by FGF signalling, such as MKP3
(MAPK phosphatase 3), and SEF (similar expression to FGF),
also act to attenuate the MAPK signalling pathway (Figure 2)
[22,33–35]. In addition, the MAPKs themselves phosphorylate
FRS2 on serine and threonine residues, thereby inhibiting the
recruitment of GRB2 and creating a negative-feedback loop [36].

Positive regulators of FGF signalling also exist. The transmem-
brane protein FLRT3 (fibronectin-leucine-rich transmembrane
protein 3) was first identified in Xenopus laevis to accentuate

MAPK signalling initiated by FGFRs [37]. Further studies in
mammals have also implicated other members of the family
(FLRT1 and FLRT2) to be positive regulators of FGF signalling
[38].

The signal from the activated FGF–FGFR complex is efficiently
terminated by internalization and degradation in lysosomes
(Figure 1). The ubiquitin ligase Cbl can bind to activated FRS2
and mediate FGFR ubiquitination that acts as a signal for receptor
degradation [39]. In the case of FGFRs, ubiquitination does not
seem to be required for endocytosis [40]. Instead, the endocytic
adaptor protein extended-synaptotagmin binds directly to FGFRs
and recruits them to undergo clathrin-mediated endocytosis via
adaptin-2 [41].

After endocytosis, the ubiquitinated receptors are sorted into
multivesicular bodies by the ESCRT (endosomal sorting complex
required for transport) machinery and are then further transported
to lysosomes where they are degraded [42,43]. The four FGFRs
are ubiquitinated to different extents and this seems to dictate
whether they are efficiently degraded or transported back to the
plasma membrane via recycling endosomes. FGFR1 is heavily
ubiquitinated and is transported to lysosomes, whereas FGFR4
is only lightly ubiquitinated, inefficiently degraded and rather
recycled to the cell surface, resulting in prolonged signalling
from FGFR4 compared with FGFR1 [40,42]. In addition to the
ESCRT proteins, a Sprouty-related protein, SPRED2 (Sprouty-
related enabled/vasodilator-stimulated phosphoprotein homology
1 domain-containing protein), was also shown to direct FGFRs to
lysosomes by interacting with the late endosomal protein NBR1
[neighbour of BRCA1 (breast cancer early-onset 1)]. SPRED2
thereby attenuates FGF signalling by causing degradation of the
receptors in lysosomes [44].

Differential ligand binding can also dictate the routing of
FGFRs as shown for FGFR2b [KGFR (keratinocyte growth
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Figure 2 Intracellular signalling pathways downstream of FGFRs

After ligand-induced FGFR activation, several downstream signalling cascades are initiated. Two central players, FRS2 and PLCγ (in blue) bind directly to the receptors. FRS2 is constitutively
associated with the receptor, and upon activation of the receptor kinase, it is phosphorylated on several tyrosine residues which, in turn, recruit two important signalling pathways, the Ras/MAPK and
PI3K/Akt pathways. PLCγ binds to a phosphotyrosine in the C-terminal tail of FGFRs. PLCγ recruitment culminates in the activation of PKC. Several negative regulators are also associated with
FGF signalling (in red). Soluble heparin (in orange), a highly sulfated polysaccharide, can take the place of HSPG in the FGF complex and is often used experimentally to increase FGF signalling.
See the text for more details.

factor receptor)]. The binding of FGF7 to FGFR2b causes
efficient ubiquitination, resulting in degradation of the complex
in lysosomes. Another FGFR2b ligand, FGF10, however,
does not induce receptor ubiquitination, and the complex is
transported to recycling endosomes causing prolonged signalling
[45].

Yet another interesting example of differential trafficking of
FGFRs is the re-routing of FGFR1 after binding to NCAM (neural
cell-adhesion molecule). The interaction of FGFR1 with NCAM
causes recycling and sustained signalling, which is important for
the stimulation of cell migration [46].

Biological responses

FGF signalling pathways are implicated in a multitude of
biological processes. They stimulate proliferation, act as pro-
survival/anti-apoptotic signals and stimulate cell migration in
many cell types [12]. Proliferation signals are mainly transmitted
through the MAPK signalling cascade and anti-apoptotic
signals are through the PI3K/Akt pathway. However, there is
considerable cross-talk between the signalling pathways, for
example, during FGF-induced cell migration, both MAPK and
PI3K seem to be required.

FGFs are crucial during development where they have been
shown to be key molecules in organogenesis [22,47]. FGF
signalling is implicated in the formation of the heart, the lungs,
the limbs and the nervous system, and also plays an important
role in mammary and prostate gland development. During early
development, induction of the mesoderm is orchestrated through
FGF-dependent epithelial–mesenchymal communication.

In addition, FGF signalling plays a role in the formation of
new blood vessels, the process of angiogenesis, by influencing
other key signalling molecules such as HGF and VEGF [48].
Interestingly, FGFs, and in particular FGF2, have been shown
to support the undifferentiated self-renewal of human embryonic

stem cells and are routinely used to cultivate such cells in the
laboratory [49].

It is evident that FGFs and FGFRs constitute a robust signalling
system orchestrating many important signalling pathways and
biological responses, and efficient negative regulation is crucial.
We will in the next sections see how out of control FGF signalling
can cause disease.

MECHANISMS FOR DEREGULATION OF FGF SIGNALLING
IN CANCER

As discussed above, FGFs and FGFRs constitute a highly complex
signalling system, and since signals from these receptors regulate
many key processes, they must be kept tightly regulated. However,
FGF signalling is often subverted to cause constitutive signalling
without proper regulation in cancer [14,50–56]. There are several
ways by which the FGF signalling network can be deregulated
in human cancers, and we will in the following sections discuss
common ways that lead to aberrant signalling from FGFs and
FGFRs (Figure 3).

Mutations

FGF signalling is crucial during development, and mutated
FGFRs have been found to be the cause of several developmental
syndromes [28,57]. Prominent examples include the germline
gain-of-function mutations often found in human skeletal
dysplasia. For instance, in achondroplasia, a mutation in the
transmembrane helix of FGFR3 (G380R) promotes dimerization
and subsequent activation of the tyrosine kinase domain [58].
In the lethal skeletal disorder thanatophoric dysplasia, single
mutations generating a new cysteine residue (S249C or Y373C)
in the extracellular part of the receptors cause the formation of
a disulfide bond, linking two individual receptors [59]. Thus an
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Figure 3 Possible mechanisms for deregulated FGF signalling

The FGFR can be activated independently of ligand stimulation by several mechanisms. Some point mutations (in red) can lead to increased receptor dimerization, whereas other mutations in
the kinase domain can result in constitutively active kinases. FGFR overexpression leading to excessive signalling may be caused by gene amplification or aberrant transcriptional regulation.
Chromosomal translocation can result in fusion of the kinase domain of an FGFR to a dimerization domain from another protein leading to constitutive kinase activation. In other cases, aberrant
signalling can be caused by autocrine loops when the same cell produces both a ligand and a corresponding FGFR, or paracrine loops if the cell produces FGFRs with altered ligand specificity
towards FGFs (in blue) secreted by surrounding cells. See the text for more details.

intermolecular bond forces dimerization in the absence of ligand,
resulting in ligand-independent constitutive signalling.

Interestingly, the same mutations discovered to be the cause
of many developmental disorders are also found mutated in
tumour cells (Table 1). The mutations found in achondroplasia
and thanatophoric dysplasia, which cause dimerization and
thereby constitutive activation of FGFR3, are also frequently
found in bladder cancer [60]. Yet other mutations in FGFR2
that cause dimer formation are implicated in craniosynostosis
syndromes and have also been found in endometrial cancers
[55,61].

A mutation that promotes dimerization is just one mechanism
that can increase ligand-independent signalling from FGFRs.
Other mutations located to the kinase domain of FGFRs can
change the conformation of the domain to cause permanently
active kinases. Mutations in the kinase domain of FGFR4 have
been found in the childhood sarcoma RMS (Rhabdomyosarcoma),
and these mutations were shown to cause autophosphorylation and
constitutive signalling [50].

Some mutations in FGFRs identified in human cancer have also
been shown to cause loss-of-function suggesting that, in certain
circumstances, FGFRs can act as tumour suppressors [62].

The majority of FGF ligand mutations described in human
disease are germline loss-of-function mutations. Examples
include the FGF3 mutation that causes deafness, mutations in
FGF8 that result in Kallmann syndrome and FGF10 mutations that
have been described in LADD (Lacrimo-Auriculo-Dento-Digital)

syndrome. In cancer, however, the prevalence of mutations in
FGF ligands is rare and the consequences of such mutations are
not clear. The only mutations described in cancer are, to our
knowledge, the somatic mutations in FGF9 found in colorectal and
endometrial cancers [63]. The mutations were predicted to result
in loss-of-function and it is not known whether these mutations
participate in tumour formation.

SNPs (single-nucleotide polymorphisms)

Certain germline SNPs have been identified in FGFRs and are
believed to modulate the malignant phenotype in some cancer
types. The FGFR4 G388R SNP has been shown to confer a
more aggressive behaviour and increased metastatic potential
in several forms of cancer (e.g. breast, lung, skin, colon and
prostate cancers) [64–68]. The molecular mechanism by which
FGFR4 G388R promotes tumour progression and metastasis is
not fully understood, but it has been reported that FGFR4 G388R
exhibits sustained signalling compared with wild-type FGFR4
due to impaired lysosomal degradation [69]. Recently, it was
also shown that FGFR4 G388R forms a complex with MT1-
MMP (membrane-type 1 matrix metalloproteinase) and thereby
decreases MT1-MMP lysosomal degradation leading to increased
invasion [70].

Several SNPs within intron 2 in FGFR2 have been shown
to be associated with an increased risk of breast cancer. It
has been proposed that these SNPs alter binding affinity for
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Table 1 FGFR aberrations identified in human cancer

The Table lists FGFR mutations, amplifications and translocations that have been associated with altered kinase activity. Included in the Table are only the aberrations identified in human tumour
samples. For references and a more complete list, see Supplementary Tables S1–S3 (at http://www.BiochemJ.org/bj/437/bj4370199add.htm). The FGFR3 IIIb isoform is two amino acids longer
than FGFR3 IIIc, and in order to avoid confusion, numberings according to both the FGFR3 IIIb and IIIc isoforms are indicated. FGFR1 IIIc (GenBank® accession number NM_023110), FGFR2 IIIc
(GenBank® accession number NP_000132), FGFR3 IIIc (GenBank® accession number NP_000133), FGFR4 (GenBank® accession number X57205). ACH, achondroplasia; amp, amplification;
AN, acanthosis nigricans; AS, Apert syndrome; CR, craniosynostosis; CS, Crouzon syndrome; HCH, hypochondroplasia; PS, Pfeiffer syndrome; SADDAN, severe achondroplasia with developmental
delay and acanthosis nigricans; TDI/II, Thanatophoric Dysplasia I/II; trans, translocation.

Cancer Receptor Abberation Association with other syndromes Molecular consequence

Breast FGFR1 8p11-12 amp Not known Amplification of FGFR1
Bladder FGFR3 R248C TDI Enhanced kinase activity

FGFR3 S249C TDI Enhanced kinase activity
FGFR3 G370/372C TDI Enhanced kinase activity
FGFR3 S371/373C TDI Enhanced kinase activity
FGFR3 Y373/375C TDI Enhanced kinase activity
FGFR3 G380/382R ACH Enhanced kinase activity
FGFR3 A391/393E CS Enhanced kinase activity
FGFR3 K650/652E/Q/M/T TDI, TDII, HCH, SADDAN, AN Enhanced kinase activity

Prostate FGFR3 S249C TDI Enhanced kinase activity
FGFR3 A391E CS Enhanced kinase activity

Endometrial FGFR2 S252W AS Alter ligand specificity
FGFR2 P253R AS Alter ligand specificity
FGFR2 N549K Not known Enhanced kinase activity
FGFR2 K659N CR Enhanced kinase activity

Lung FGFR1 8p12 amp Not known Amplification of FGFR1
FGFR2 W290C PS Not known*

RMS FGFR4 N535K Not known Enhanced kinase activity
FGFR4 V550E Not known Enhanced kinase activity

MM FGFR3 t(4:14) trans Not known Overexpression of FGFR3
FGFR3 R248C TDI Enhanced kinase activity
FGFR3 K650/652M TDI, SADDAN Enhanced kinase activity

Brain FGFR1 N546K Not known Enhanced kinase activity
FGFR1 K656E Not known Enhanced kinase activity

Head and neck FGFR3 R248C TDI Enhanced kinase activity
FGFR3 S249C TDI Enhanced kinase activity
FGFR3 G697C Not known Enhanced kinase activity

Melanoma FGFR2 I642V Not known Reduced kinase activity
EMS FGFR1 8p11-12 trans Not known Constitutively active FGFR1-fusion proteins

*FGFR2 W290G forms ligand-independent dimers

transcription factors causing an increase in FGFR2 expression
[71,72].

Fusion proteins

Potent aberrant FGF signalling can be the result of chromosomal
translocations in which protein domains causing dimerization
are fused to the kinase domain of an FGFR (Figure 3).
These intracellularly localized fusion proteins are permanently
dimerized in the absence of ligand, resulting in continuous
signalling. As these fusion proteins are not expressed at the
cell surface, but rather reside in the cytosol, they escape
the normal down-regulation routes operating for wild-type
receptors. They are neither degraded in lysosomes nor inhibited
by some of the feedback inhibitors, giving rise to constitutively
active receptor kinases with little negative regulation. They
are therefore particularly potent oncogenes that can drive
proliferation of cancer cells. Most FGFR-fusion proteins have
been found in EMS (8p11 myeloproliferative syndrome), also
called SCLL (stem cell leukaemia lymphoma syndrome), where
the kinase domain of FGFR1 is fused to one of several
different N-terminal dimerization domains [e.g. ZNF198, BCR
(breakpoint cluster region), FOP2] (Supplementary Table S3 at
http://www.BiochemJ.org/bj/437/bj4370199add.htm) [73].

Differential expression

Ligand-independent signalling can also occur from overexpressed
FGFRs. When overexpressed, individual FGFRs can interact and
phosphorylate each other, probably because of the local crowding
of receptors at the cell surface (Figure 3). Overexpression is often
caused by amplification of distinct pieces of the chromosome
resulting in multiple copies of the gene. In human breast cancer,
∼10% of the patients harbour the 8p11-12 amplicon that contains
FGFR1 and, in most cases, results in overexpression of FGFR1
[74–76]. Aberrant transcriptional regulation can also lead to
increased levels of the receptors.

It should also be noted that, in some tumours, FGFR expression
has been found to be down-regulated, indicating that in certain
cases they may act as tumour suppressors [22]. Expression of
FGFs or FGFRs out-of-context can lead to autocrine or paracrine
signalling loops (Figure 3). For instance, if an FGFR-expressing
cell also overexpresses its matching ligand, an autocrine loop
can be established and the cancer cell becomes self-sufficient in
growth signals [22].

If the cancer cells overexpress an FGFR with altered ligand-
binding specificity, FGFs secreted from neighbouring cells can
stimulate the cancer cells, creating a paracrine loop. For instance,
alternative splicing of the third Ig-like domain in FGFR1–3 can
switch the binding affinity of the receptor towards FGFs found in
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the surrounding milieu, creating an aberrant paracrine signalling
loop (Figure 3).

Impaired down-regulation of FGF signalling

Increased levels of FGFRs on the cell surface can also be the
result of impaired down-regulation. After binding, the ligand–
receptor complex is normally endocytosed and transported to
lysosomes for degradation (Figure 1). Defective internalization
will result in higher levels of receptor on the cell surface and
prolonged signalling. Mutations in any protein involved in the
internalization of FGFRs could thus potentially increase FGF
signalling. Alterations in proteins involved in the endocytic
machinery have been found in many cancers [15]. For example,
Cbl, the ubiquitin ligase responsible for the proper down-
regulation of many RTKs, has been found mutated in AML (acute
myeloid leukaemia), causing an accumulation of the RTK FLT3
(FMS-like tyrosine kinase 3). It would be interesting to investigate
whether similar mechanisms operate for FGFRs in certain
cancers.

There is also the possibility that alterations in the FGFRs
themselves can prevent efficient internalization and degradation
of the receptors. For instance, the FGFR3 G380R mutation found
in achondroplasia and bladder cancer promotes dimerization,
but in addition also increases recycling of the receptor, thereby
avoiding efficient receptor degradation and resulting in prolonged
signalling [77].

A splice variant of FGFR2 found in several cancer cell lines
results in a shortened C-terminus [78]. The deleted C-terminal
tail contains an endocytic motif, and it was shown that the
transforming capacity of the FGFR2 variant was partly due to
inefficient down-regulation, causing increased receptor levels at
the cell surface and thus enhanced signalling capacity [78].

Deregulation of negative regulators of FGF signalling has also
been suggested to be involved in oncogenicity [22]. For instance,
the expression of SEF and Sprouty is decreased in prostate cancer
and could cause excessive signalling by relieving an inhibitory
brake [79,80].

We will now give an overview of the most common types of
human cancer in which FGF and FGFR alterations have been
found and how they may contribute to cancer progression.

THE ROLES OF FGFS AND FGFRS IN CANCER

Breast cancer

FGFRs and several of the FGFs play a critical role in regulating
normal mammary gland development and tissue homoeostasis.
In particular, FGFR2 IIIb and FGF10 are required for embryonic
mammary gland development, and for survival and proliferation
of epithelial cells during postnatal development [81–83]. Ectopic
expression of a number of FGF/FGFR family members has
been reported in human breast cancer. The most common
alteration involves amplification of FGFR1. As mentioned
previously, amplification of the chromosomal region 8p11-12,
where FGFR1 is located, appears in approximately 10% of human
breast cancers and is associated with poor prognosis (Table 1)
[74–76]. Studies from breast cancer cell lines and mouse models
support a role for FGFR1 signalling in mammary carcinogenesis.
Activation of FGFR1 in mouse or human mammary cell lines
resulted in increased cell proliferation, survival and invasion
[84,85], confirming the potential oncogenic nature of FGFR1
signalling. Moreover, expression and constitutive activation of

FGFR1 in the mouse mammary epithelium induced proliferation
and invasive lesions [86]. Recently it was also reported that
FGFR1 amplification drives resistance to endocrine therapy [53].
Taken together, there is strong evidence that FGFR1 amplification
plays a role in breast carcinogenesis. It is, however, worth
mentioning that FGFR1 is not always overexpressed when the
8p11-12 region is amplified, and genes other than FGFR1 in
the 8p11-12 amplicon are also likely to contribute to
carcinogenesis [87–89].

FGFR2 has also been implicated in some cases of breast
cancer. Amplification of FGFR2 has been described in a subgroup
of triple-negative breast tumours, which are aggressive breast
tumours negative for the oestrogen receptor, progesterone receptor
and HER2 (human EGFR 2)/ErbB2 [90]. Cell lines derived from
these tumours showed constitutive activation of FGFR2, and were
sensitive to FGFR2 inhibition using a specific FGFR inhibitor
(PD173074) and to RNAi silencing. Triple-negative breast cancers
are not efficiently treated with current targeted therapies [91],
and FGFR2 might therefore be a novel therapeutic target in the
subset of triple-negative breast tumours harbouring FGFR2 gene
amplification.

Ectopic expression of FGFR4 has also been reported in
human breast cancer [92] and has been associated with
resistance to chemotherapy in breast cancer cell lines [93]. In
an experimental approach to identify signalling pathways that
define chemoresistance in cancer, a breast cancer cell line
was treated with doxorubicin and gene expression levels of
surviving cells were analysed. Isolated clones of surviving
cells showed up-regulated expression of FGFR4, and interfering
with FGFR4 (using an antagonistic FGFR4 antibody) enhanced
chemosensitivity in FGFR4-expressing breast cancer cells [93].
These findings implicate FGFR4 as an important factor in breast-
cancer-cell resistance during chemotherapy, and FGFR4 may be
a potential therapeutic target in these cells.

High expression of FGFs has been reported in human breast
cancer. Amplification of FGF3 occurs in approximately 15–20 %
of human breast cancers [94–96] and was shown to correlate
with increased invasiveness in node-negative breast carcinoma.
FGF8 is highly expressed in human breast cancer as opposed to
normal breast tissue [97], and overexpression of FGF8b in breast
cancer cells increased cell growth in culture and led to tumour
formation and neovascularisation when injected into nude mice
[98]. Moreover, a neutralizing antibody against FGF8 displays
potent anti-tumour activity against mammary mouse tumours
[99]. Also, FGF10 is highly expressed in a subset of human breast
carcinomas [100]. It has been shown that subcutaneous injection
of FGF10-expressing breast cancer cells into mice resulted in
malignant tumours, indicating a role for FGF10 in mammary
tumourigenesis [100].

Taken together, there is good evidence supporting a role for
several FGF/FGFR family members in human breast cancer.

Bladder cancer

The most common form of bladder cancer, UCC (urothelial cell
carcinoma), begins in the urothelial lining of the bladder wall
[101] and arises and progresses along two distinct pathways [102].
One pathway, accounting for 70–80% of UCC, is characterized
by low-grade and non-invasive tumours. These tumours harbour
frequent mutations in FGFR3 (approximately 70%), indicating
a crucial role of FGFR3 in this tumorigenic pathway [60]. The
other pathway, accounting for 20–30% of UCC, is characterized
by high-grade invasive tumours and has frequent defects in the
p53 gene. Approximately 70 % of the low-grade non-invasive
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tumours will recur, but only approximately 15% will proceed
into invasive tumours [101].

Many of the FGFR3 mutations that have been identified
in human UCC result in an amino acid substitution in the
extracellular, transmembrane and/or cytoplasmic domain, and are
identical with activating mutations associated with human skeletal
disorders [60,103,104]. The most common FGFR3 mutations
in UCC (R248C, S249C, G370/372C and Y373/375C) lead to
ligand-independent dimerization (Table 1). Several mutations in
the kinase domain of FGFR3, leading to enhanced kinase activity,
are also found in bladder cancer [103,105,106].

The presence of FGFR3 mutations in a substantial group of
UCC suggests FGFR3 as a potential therapeutic target in low-
grade non-invasive tumours. Several studies indicate an oncogenic
role for mutationally activated FGFR3 in UCC. Knockdown
of mutated FGFR3 or inhibition of FGFR3 using antibody-
based targeting or specific FGFR inhibitors, such as SU5402 or
PD173074 in UCC cell lines reduced their tumour properties
[107–110]. Moreover, inhibition of mutated FGFR3 (using a
specific FGFR inhibitor, PD173074, or a monoclonal antibody
targeting FGFR3, R3Mab) in mouse xenografts decreased tumour
growth [108,109,111]. These studies indicate that FGFR3 plays
an important role in bladder cancer growth and thus could be
considered an attractive candidate for targeted therapy.

The high recurrence rate (60–80%) of low-grade non-invasive
UCC requires long-term expensive patient monitoring [112].
New urinary tumour markers may increase the accuracy of
predicting tumour recurrence and lower the cost of long-term
patient monitoring. Recent data suggest that detection of FGFR3
mutations in voided urine from patients with a low-grade
FGFR3 mutant primary tumour indicates recurrence [113,114].
Thus identification of FGFR3 mutations is not only a potential
biomarker for bladder cancer diagnosis and prognosis, but could
also indicate tumour recurrence.

Elevated levels of FGF/FGFR family members in bladder
cancer have been reported for FGFR3, as well as for FGFR1,
FGFR2 and FGF2 [106,115,116]. Decreased levels of FGFR2
have also been reported in a subset of human UCC [117], and a role
for FGFR2 in human bladder cancer is unclear. An experimental
study in urothelial cell lines has suggested a role for FGFR1 in
human bladder cancer [116]. Tomlinson et al. [116] reported that
expression of FGFR1 in normal urothelial cells induced increased
cell proliferation and survival, and that subcutaneous injection of
FGFR1-knockdown cells into nude mice led to reduced tumour
growth compared with control cells. These data indicate that
FGFR1 displays tumourigenic properties when overexpressed in
urothelial cells and may represent a potential therapeutic target
in some cases of urothelial carcinoma.

Prostate cancer

The interplay between mesenchymal/stromal cells and epithelial
cells in the prostate gland play important roles during prostate
gland development, but also help to maintain tissue homoeostasis
in the adult. Stromal–epithelial cross-talk is also integral to
prostate cancer progression and metastasis [118]. Normal prostate
stromal cells produce several FGFs, including FGF2, FGF7 and
FGF9, whereas epithelial cells express corresponding FGFRs,
and FGF/FGFR family members act as mediators of
communication between the epithelium and the stroma [119].

In prostate cancer several FGFs, including FGF1, FGF2, FGF6,
FGF7, FGF8 and FGF9, are up-regulated [119,120]. Stromal up-
regulation and release of FGF2 has a tumour-promoting effect
on neighbouring epithelial cells [121]. Overexpression of FGF10

in the stromal compartment of the murine prostate resulted in
epithelial transformation and the formation of well-differentiated
prostate carcinomas [122]. These data indicate an important role
for FGFs produced in the tumour microenvironment in cancer
progression.

Ectopic expression of FGFs in epithelial cells might also disturb
the stromal–epithelial cross-talk by initiating autocrine signalling
in the epithelium which can eventually lead to tumorigenesis. High
expression of FGF8 in malignant prostate epithelium has been
associated with decreased patient survival [123], and transgenic
mice overexpressing FGF8 in prostate epithelial cells developed
PINs (prostatic intraepithelial neoplasias) [124,125]. In a murine
model for bone metastasis, intratibial inoculations of prostate cells
expressing FGF8 increased tumour growth [126]. This indicates
a role for FGF8 in prostate cancer metastasis. Interestingly, a
neutralizing antibody against FGF8 displays potent anti-tumour
activity against prostate tumours in mouse models [127] and might
be considered as a candidate for therapeutic treatment of cancers
that are dependent on FGF8 signalling for growth and survival.
Previously it was also suggested that FGF9 is involved in bone
metastasis in prostate cancer [128].

Overexpression of FGFRs in the prostate epithelium can also
lead to autocrine signalling and disturb the stromal–epithelial
communication. FGFR1 is frequently overexpressed in prostate
cancer [129,130], and conditional activation of FGFR1 in prostate
epithelial cells in a mouse model led to EMT and induction
of adenocarcinomas [131]. Moreover, deactivation of FGFR1
during early stages of cancer progression led to regression,
indicating that FGFR1 is necessary for both maintenance and
progression of PINs. On the other hand, inhibition of FGFR1
later in cancer progression, reduced proliferation and progression
of adenocarcinoma, but did not lead to regression. The differences
in responsiveness to FGFR1 inhibition seem to depend on tumour
stage and indicate a ‘susceptibility window’ for targeting FGFR1
in prostate cancer.

Although not entirely clear, taken together, the data indicate a
potential role for FGF signalling in prostate cancer development.

Endometrial cancer

Previously, mutations in FGFR2 have been identified in
approximately 10% of human endometrial carcinomas (Table 1)
[55,61,132]. Many of the mutations identified were identical
with the germline-activating mutations in FGFR2 and FGFR3
that cause skeletal disorders and can result in enhanced
activation through both ligand-dependent and ligand-independent
mechanisms.

The importance of the mutations of FGFR2 identified in
endometrial cancer has been investigated in endometrial cancer
cell lines. In endometrial cell lines bearing N549K or K659N
mutations, treatment with an FGFR inhibitor (PD173074) or
knockdown of FGFR2 blocked cell proliferation and survival
[55,133]. These data suggest that activation of FGFR2 plays a role
in endometrial carcinogenesis and implicate FGFR2 as a potential
therapeutic molecular target in the treatment of endometrial
cancer.

Lung cancer

The two main types of lung cancer are SCLC (small cell lung
carcinoma) and NSCLC (non-small cell lung carcinoma). A
role for FGF/FGFR family members has been indicated in both
types of lung cancer.
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Paracrine signalling between epithelial cells expressing FGFR2
IIIb and mesenchymal cells expressing its ligands, FGF7 and
FGF10, is critical to normal lung development and tissue
homoeostasis [134,135]. Gene expression array data obtained
from a panel of NSCLC cell lines demonstrated frequent co-
expression of distinct FGFs and FGFRs, suggesting that an
FGFR-dependent autocrine signalling pathway may operate in
a significant fraction of NSCLCs [136]. Moreover, studies
employing silencing of FGF2 and a pharmacological tyrosine
kinase inhibitor (RO4383596) which also targets FGFR, indicated
a functional role for an FGFR autocrine signalling pathway in
NSCLC cell lines [136].

Recently, frequent amplification of FGFR1 was identified in
human squamous cell lung cancer, the most common type of
NSCLC [56]. Treatment of FGFR1-amplified lung cancer cell
lines with the specific inhibitor (PD173074) resulted in growth
inhibition and apoptosis. The PD173074-mediated cytotoxic
effect could be rescued by ectopic expression of a PD173074-
resistant FGFR1 mutant. Moreover, treatment with PD173074
resulted in tumour shrinkage in mice engrafted with FGFR1-
amplified cells. These data suggest that FGFR1 may be a potential
therapeutic option in this group of patients [137].

High copy number gain of the FGFR1 gene has also been
identified in SCLC [138]. Also, FGF2 has been suggested to
play an important role in SCLC, in which high levels of serum
FGF2 are associated with a poor prognosis [139]. Moreover,
FGF2 induces proliferation and chemoresistance in SCLC cells
[140,141]. Both of these effects could be blocked by using a
specific FGFR inhibitor (PD173074) [142]. It has been shown
that FGF2 up-regulates expression of anti-apoptotic proteins and
thereby mediates a cytoprotective effect in SCLC [141,143,144].
Oral administration of the FGFR inhibitor in SCLC xenograft
mouse models impaired tumour growth, reduced intra-tumour
proliferation and increased apoptosis [142]. The data imply
FGF/FGFR family members as potential therapeutic targets in
SCLC.

In addition, somatic mutations in FGFR1, FGFR2 and FGFR4
have been identified in lung carcinomas [14,52,145]. One of the
mutations identified in FGFR2 (W290C) may confer gain-of-
function and is also associated with Pfeiffer syndrome, a skeletal
disorder resulting in premature fusion of the sutures of the skull
and deformity of the skull [146]. A similar mutation (FGFR2
W290G) has been demonstrated to result in ligand-independent
receptor dimerization and constitutive kinase activity (Table 1)
[147]. In a large screen aimed to identify somatic mutations in lung
adenocarcinoma, FGFR4 was identified as one of the genes that
is mutated at significantly high frequency and might be involved
in carcinogenesis [52]. Taken together, the above data suggest
that deregulated FGF/FGFR signalling may contribute to lung
carcinogenesis.

RMS

RMS is a cancer originating from skeletal muscle and is the most
frequent soft tissue sarcoma in children [148]. Recently, several
mutations in FGFR4 were identified in 7–8% of RMS tumours
[50]. Many of these are clustered in the kinase domain of the
receptor and at least two of them, N535K and V550E, increased
autophosphorylation of the receptor (Table 1) [50]. The mutants
promoted proliferation and metastatic potential when expressed
in an RMS cell line [50].

High expression of FGFR4 has also been associated with
advanced stage and poor survival in RMS [50,149,150].
Chromosomal translocation is common in alveolar RMS, a

subtype of RMS. One of the most common translocations leads
to expression of the fusion protein PAX3 (paired box 3)–FKHR
(forkhead in RMS). Recently it was reported that PAX3–FKHR
acts as a strong FGFR4 expression enhancer [151]. Knockdown
of FGFR4 in RMS cell lines overexpressing FGFR4 reduced
cell proliferation [50]. Moreover, FGFR4 knockdown in a human
RMS cell line transplanted into mice gave rise to reduced tumour
growth and metastasis [50]. Taken together, these data indicate a
role for FGFR4 in RMS tumorigenesis. Also, FGFR1 and FGFR2
have been reported to be overexpressed in RMS [152–154], and it
has also been reported that FGFR3-positive RMS cells are more
tumorigenic than FGFR3-negative cells [155].

MM (multiple myeloma)

MM is a plasma cell malignancy that is characterized by
accumulation of clonal plasma cells in bones and bone marrow
where they cause bone lesions and interfere with the production
of normal blood cells. Approximately 15–20 % of patients
suffering from MM overexpress FGFR3 as a consequence of
the t(4;14)(p16.3;q32) translocation (Table 1) [156–158]. The
chromosomal translocation brings FGFR3 under the influence of
a strong IgH enhancer region leading to FGFR3 overexpression.
It should be noted that the t(4;14) translocon in MM also results in
ectopic expression of MMSET (MM SET domain) and, although
ectopic expression of MMSET is found in all (t4;14) MM patients,
approximately 75% of the t(4;14)-positive patients overexpress
FGFR3 [158]. Moreover, carrying the t(4;14) translocation has
been associated with poor prognosis irrespective of FGFR3
expression [159]. Therefore the role for FGFR3 in MM is not
entirely clear.

However, experiments in MM cell lines and MM mouse
models have demonstrated an oncogenic potential of FGFR3.
Overexpression of FGFR3 enhanced MM cell proliferation and
survival [160]. Also, inhibition of FGFR3, using highly specific
antibody-targeting of FGFR3, reduced tumour growth in t(4;14)-
positive MM mouse models [108,161]. A fraction of MM patients
also harbour activating mutations in FGFR3, identical with those
found in skeletal disorders and bladder cancer [162–164]. The
activating mutations include R248C, Y373/375C, G380/G382R,
G382/384D and K650/652E (Table 1 and Supplementary Table
S2 at http://www.BiochemJ.org/bj/437/bj4370199add.htm).

Since FGFR3 is frequently overexpressed and/or mutated
in MM and has been recognized as a potent oncogene, it
is an attractive target for novel drug development. Several
new FGFR3-targeting inhibitors/antibodies have been developed
[108,161,165,166] and might prove useful for FGFR3 inhibition
alone or in combination with other inhibitors in the subset of MM
patients with t(4;14) FGFR3 overexpression.

EMS

EMS/SCLL is a rare but aggressive neoplasm with a high rate
of progression into acute leukaemia [73]. At the molecular
level, the disorder is associated with chromosomal translocations
involving the FGFR1 gene on chromosome 8p11-12, resulting in
constitutively active FGFR kinase-fusion proteins (Figure 3 and
Table 1, and Supplementary Table S3). The first translocation
identified, and the most common, is a disruption and
recombination of the ZNF198 gene with the FGFR1 gene. This
translocation creates a chimaeric protein composed of the proline-
rich zinc-finger motif of ZNF198 and the tyrosine kinase domain
of FGFR1, resulting in constitutive dimerization and activation of
the FGFR1 tyrosine kinase [167]. Other FGFR1-fusion partners
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include FOP (FGFR1OP1), CEP110 (centriolin), BCR, TRIM24
(Tripartite motif-containing 24), FGFR1OP2, LRRFIP1 (leucine-
rich repeat flightless-interacting protein 1), MYO18A (myosin-
XVIIIa), CPSF6 (cleavage and polyadenylation specificity factor
subunit 6), HERV-K (human endogenous retrovirus K) and CUX1
(cut-like homoeobox 1) [73,168].

Some of the FGFR1 kinase-fusion proteins can transform cell
lines and induce SCLL or chronic myelogenous leukaemia-like
diseases in mice [169–173]. Moreover, in a murine model of
ZNF198–FGFR1-induced myeloproliferative disorder, treatment
with a multi-tyrosine kinase inhibitor (PKC412) resulted in
prolonged survival [171], and administration of the tyrosine
kinase inhibitor to a patient with SCLL was beneficial, although
not sufficient [171]. It has also been reported that growth
of ZNF198–FGFR1-, FGFR1OP2–FGFR1- or BCR–FGFR1-
expressing cell lines is blocked by FGFR inhibition, and treatment
of FGFR1OP2–FGFR1-positive cells with multi-targeted tyrosine
kinase inhibitors or siRNA (small interfering RNA) against
FGFR1 resulted in apoptosis [171,173–176]. Although activation
of FGFR1 appears to be the critical event in oncogenesis of EMS,
it has also been suggested that the fusion partners of FGFR1 might
play a role [177].

Other types of cancer

Several additional examples of aberrant FGFR signalling in
human cancers are described in the literature. Elevated levels
of FGF/FGFR family members have been described in many
human cancers, such as brain cancer, head and neck cancer,
gastric cancer and ovarian cancer, as well as in osteosarcoma
[150,178–181]. Mutated forms of FGFRs have been identified
in malignancies such as brain cancer, head and neck cancer,
stomach cancer and colon cancer [182–184]. Interestingly, loss-
of-function mutations have been identified in FGFR2 in melanoma
(Table 1) [62]. In an attempt to collect a complete up-to-
date list of the reported alterations in FGFR expression in
human cancers, an extensive literature search was performed
and is provided with references in Supplementary Tables S1–S3
(at http://www.BiochemJ.org/bj/437/bj4370199add.htm). Some
of the alterations found to date are frequently reported, whereas
others are more rarely reported. Moreover, some reports are
based on large comprehensive studies with a large number
of patient samples and/or cell lines analysed, whereas others
are more restricted. Alterations that are frequently reported
and/or described in large studies are often regarded as the most
significant. However, less frequently reported and less studied
alterations might still be of significance. Note that the studies
included in the Supplementary Tables are not filtered for quality
or validity, and are meant as a work of reference.

STRATEGIES FOR THERAPY

On the basis of the involvement of FGF/FGFR family members in
multiple steps of cancer development and their deregulation in a
variety of human cancers as described above, several therapeutic
strategies aiming at interfering with FGFs or FGFR activity are
being developed, including (i) small-molecule tyrosine kinase
inhibitors, (ii) monoclonal antibodies and (iii) FGF ligand traps.

Small-molecule tyrosine kinase inhibitors targeting FGFRs

Small-molecule tyrosine kinase inhibitors inhibit the receptor
kinase activity by targeting the ATP-binding site of the

intracellular tyrosine kinase domain [185]. Such inhibitors have
been successfully used for therapy to target a number of different
RTKs in cancer [11,13]. In the case of FGFRs, tyrosine kinase
inhibitors would be relevant therapeutics for the treatment of
subsets of cancers overexpressing FGFRs (e.g. breast cancer
and MM), displaying activating FGFR mutations (e.g. bladder
or endometrial cancers), or expressing chimaeric fusion proteins
of dimerization domains fused to FGFR kinase domains (e.g.
EMS) (see discussion above). Small-molecule tyrosine kinase
inhibitors targeting FGFRs are currently in early phases of
clinical trials (e.g. TKI258, E3810, E7080, BIBF1120, Masitinib)
(http://ClinicalTrials.gov) [12,22,186]. Most of these inhibitors
show broad specificity and target not only FGFRs, but also
PDGFRs and/or VEGFRs due to high structural similarity of their
kinase domains [12,22,186]. Although inhibition of several RTKs
may increase the effectiveness of the treatment by interference
with redundant pathways for particular cancer types, simultaneous
targeting of several kinases may be associated with increased
side effects. Efforts to develop more specific FGFR inhibitors are
underway.

FGFR-specific tyrosine kinase inhibitors have shown promising
results in interfering with FGFRs in cancer cells and mouse
models. Widely used in the laboratory are the two specific FGFR
kinase inhibitors SU5402 and PD173074. It should be noted
that although PD173074 is widely accepted as a specific FGFR
inhibitor, the use of slightly higher concentrations will also lead to
VEGFR kinase inhibition [187,188]. Both inhibitors show potent
anti-tumour activity in cancer cell lines and mouse models with
FGFR alterations (see above), thus suggesting a potential use
of small-molecule tyrosine kinase inhibitors to target FGFRs
in cancer therapy. Despite their specificity against FGFRs and
promising results in the laboratory, neither of these compounds
has a high probability to be successfully used in the clinic owing to
toxicity issues [186]. Other new specific FGFR kinase inhibitors
are under development. One example is AZD4547 that is going to
be tested in Phase II clinical trials for the treatment of breast
cancer with FGFR1 overexpression (http://ClinicalTrials.gov).
BGJ398, another example, is going to be tested in Phase I clinical
trials in patients with advanced solid malignancies with FGFR
amplifications or mutations (http://ClinicalTrials.gov).

The broad expression of FGFRs throughout the body and the
importance of the FGFRs in various physiological processes,
as well as the high degree of homology between the kinase
domains of FGFRs, have to be considered in the development
and application of FGFR tyrosine kinase inhibitors for cancer
treatment. Certain toxicity issues and side effects, such as, for
example, tissue calcification upon blockade of FGF23 signalling
[22], could possibly be circumvented using inhibitors targeting
particular FGFR subtypes.

Monoclonal antibodies against FGFs and FGFRs

Monoclonal antibodies targeting RTKs or their ligands can block
ligand binding and receptor dimerization, and may act to promote
tumour cell removal by the immune system [13,186,189]. This
strategy has been successfully used for treatment of various
types of cancer with deregulated RTKs [11,13,189]. Importantly,
monoclonal antibodies can be produced that very specifically
bind their targets due to high specificity in antibody–antigen
interactions [189]. This holds promise for the generation of highly
specific antibodies that target particular FGF or FGFR isoforms
[186]. Since monoclonal antibodies act extracellularly, they may
be relevant to use in cancers that overexpress FGFs or FGFRs, or
display activating FGFR mutations, but probably not in cancers

c© The Authors Journal compilation c© 2011 Biochemical Society

http://www.BiochemJ.org/bj/437/bj4370199add.htm
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


Deregulated FGF signalling in cancer 209

with cytoplasmic chimaeric proteins consisting of dimerization
domains fused to FGFR kinase domains.

Currently there are several ongoing efforts to generate mono-
clonal antibodies against FGFs or FGFRs [12,22,186]. Monoclo-
nal antibodies against FGFs have shown anti-tumour activity in
mouse models of, for example, breast and prostate cancer (FGF8),
as well as colon and hepatocellular cancer (FGF19) and melanoma
(FGF2) [99,127,190,191]. Also, monoclonal antibodies against
the FGFRs have shown anti-tumour effects in mouse models
and cancer cell lines. For example, R3Mab and PRO-001 that
inhibit ligand binding to and dimerization of FGFRs, exhibited
potent anti-tumour activity in mouse models of MM and
bladder cancer overexpressing FGFR3 [108,161]. Furthermore,
a monoclonal antibody (GP369) targeting the FGFR2 IIIb
isoform has been shown to inhibit growth of human breast and
gastric cancer xenografts with activated FGFR2 signalling in
mice [192]. These studies indicate that monoclonal antibodies
targeting specific FGF or FGFR isoforms can be generated
and provide proof-of-principle that therapeutic antibodies against
FGFs/FGFRs may have the potential to be used in cancer therapy.
It remains to be determined whether monoclonal antibodies
targeting FGFs/FGFRs will show promising results in clinical
trials.

FGF ligand traps

Another strategy to interfere with FGFR signalling is represented
by so-called FGF ligand traps that sequester FGF ligands to
prevent their binding to FGFRs. FGF traps may be most useful in
cancers displaying FGF overexpression. The FGF trap FP-1039
(Five Prime Therapeutics) is a soluble fusion protein consisting
of the extracellular FGFR1 IIIc domain fused to the Fc portion of
IgG1. It prevents FGF1, FGF2 and FGF4 from binding to their
respective receptors, thereby inhibiting FGFR kinase activation
and therefore potentially blocking FGFR-induced proliferation
and angiogenesis. This FGF trap is going to be used in Phase
II clinical trials to test its activity and safety in advanced or
recurrent endometrial cancers with specific FGFR2 mutations
(http://ClinicalTrials.gov).

CONCLUDING REMARKS

In summary, deregulation of FGFs and FGFRs is detected
in a number of solid human tumours and haematological
malignancies, and may sustain several of the cancer hallmarks.
In particular, FGFs and FGFRs seem to act oncogenically to
stimulate several steps of cancer progression, including cancer cell
proliferation and survival, as well as EMT, invasion/metastasis
and angiogenesis. Targeting FGFs/FGFRs in cancer is relatively
new and it remains to be seen whether ongoing clinical
trials and future developments will appear promising in the
treatment of human cancer. Despite promising examples of the
use of molecular-targeted therapies against RTKs, a number of
challenges still exist, as shown in the case of the FGFR. Moreover,
an obstacle experienced with both small-molecule tyrosine kinase
inhibitors and monoclonal antibody therapies is the development
of resistance in patients owing to the emergence of mutations
that give rise to drug-resistant RTK variants or compensatory
signalling networks to overcome the need for the inhibited RTK
[11,13]. Moreover, since the responses to small-molecule tyrosine
kinase inhibitors and monoclonal antibodies are often low or
moderate, they usually need to be used in combination with
chemo- or radio-therapy to achieve enhanced responses [193].
Future challenges in targeting FGFs/FGFRs in cancer therapy

include increasing the knowledge about the effect of FGFRs
in progression of specific cancer types, the development of
FGFR therapeutics with few side effects, and the development
of diagnostic and prognostic biomarkers to enable appropriate
patient selection for cancer treatment.
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Table S1 Altered expression of FGFRs reported in human cancers

MPD, myeloproliferative disorders

Cancer type Receptor Up-regulated (references) Down-regulated (references) Other

Brain FGFR1 [1–5]
FGFR2 [6] [7,8]
FGFR4 [9]

Head and neck FGFR1 [10–17]
FGFR2 [16–21] [22]
FGFR3 [19,20,23,24]
FGFR4 [25]

Sarcoma FGFR1 [26,27] Chondrosarcoma
[28] Osteosarcoma

FGFR2 [28] Osteosarcoma
FGFR3 [28] Osteosarcoma

Soft tissue sarcoma FGFR1 [29,30] Rhabdomyosarcoma
[31] Cystosarcoma

FGFR2 [32] Kaposi’s sarcoma
[33] Rhabdomyosarcoma

FGFR3 [34] Rhabdomyosarcoma
FGFR4 [28,33,35–39] Rhabdomyosarcoma

Thyroid FGFR1 [40,41]
FGFR2 [42]
FGFR3 [40]
FGFR4 [40]

Lung FGFR1 [43–53]
FGFR2 [45–48,54–56]
FGFR3 [45,46,57,58]
FGFR4 [45] [59]

Breast FGFR1 [60–76]
FGFR2 [60,64,73,74,76–79]
FGFR3 [80]
FGFR4 [74,81,82]

Liver FGFR1 [83]
FGFR2 [84] [85]
FGFR3 [84,86]
FGFR4 [84,87,88]

Pancreas FGFR1 [89–93]
FGFR2 [94–96]
FGFR3 [92]
FGFR4 [92,97]

Stomach FGFR1 [98,99]
FGFR2 [98,100–110]
FGFR4 [98]

Bladder FGFR1 [111–115]
FGFR2 [111,112] [116]
FGFR3 [117–121]

Prostate FGFR1 [122–130]
FGFR2 [127–129] [131]
FGFR4 [122,123,132,133]

Testis FGFR1 [134]
Colon FGFR1 [135] [136]

FGFR3 [137]
Uterus FGFR1 [138,139]

FGFR2 [140–142]
Ovary FGFR1 [67,143,144]

FGFR2 [145]
FGFR4 [82]

Cervix FGFR2 [146–148]
Skin FGFR1 [149,150]

FGFR3 [151,152]
FGFR4 [153]

Multiple myeloma FGFR3 [154–171]
Leukaemia/MPD/lymphoma FGFR1 [172–177]

FGFR3 [178–181]
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Table S2 FGFR point mutations identified in human cancers

Mutated FGFRs for which functional experiments demonstrated loss-of-function mutations are underlined and gain-of-function mutations are indicated in bold. Normal lettering indicates mutations
for which the function has not been determined experimentally. MM, multiple myeloma, RMS, rhabdomyosarcoma, X, stop codon, PS, Pfeiffer syndrome, AS, Apert syndrome, CS, Crouzon
syndrome, BSS, Beare–Stevenson syndrome, LADD, Lacrimo-Auriculo-Dento-Digital syndrome, CR, nonsyndromic craniosynostosis, TD, Thanatophoric dysplasia, ACH, Achondroplasia, HCH,
Hypochondroplasia, SADDAN, Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans, AN, Acanthosis Nigricans. Note that in the literature some of the mutations are numbered
relative to the alternative IgIIIc or IIIb isoform whereas we here only number the mutations relative to the FGFR1 IIIc (GenBank® accession number NM_023110), FGFR2 IIIc (GenBank® accession
number NP_000132), FGFR3 IIIc (GenBank® accession number NP_000133) and FGFR4 (GenBank® accession number X57205).

Receptor Mutation Cancer type Consequence Syndrome

FGFR1 G70R [44,182] (SNP) Lung
R78H [183] Prostate
S125L [184,185] S125L [186] Breast, skin
T141R [182] (SNP) Lung
P252T [184,187] Lung P252R is associated with PS and results in altered ligand specificity [188]
P252S [183] Skin
A268S [183] Stomach, Colon
A429S [189] Colon
N546K [190] Brain Enhanced kinase activity [191]
R576W [190] Brain Predicted to result in enhanced activity [190]
P576H Lung
K656E [6] Brain Enhanced kinase activity [192]
V664L [184] Lung

FGFR2 S24F [193] Skin
M71T [183] Bladder, lymphoma
V77M [193] Skin
A97T [194] Cervix
D101Y [194] Endometrial
E160A [193] Skin Predicted to negatively affect interaction with HSPG [193]
R203C [184,185,195] Breast
N211I [194] Lung
Q212K [6] Brain
H213Y [193] Skin Predicted to negatively affect interaction with HSPG [193]
E219K [193] Skin Predicted to reduce receptor dimerization [193]
G227E [193] Skin Predicted to destabilize the IgII domain [193]
V248D [193] Skin Predicted to destabilize the IgII domain [193]
R251Q [193] Skin Loss of ligand binding [193]
S252W [194,196–198] Endometrial Alter ligand specificity [200] AS [201]
S252W [199] Ovary
P253R [194] Endometrial Alter ligand specificity [200] AS [201]
S267P [202] Stomach Ligand-independent dimerization [203] CS [201]
G271E [193] Skin Predicted to destabilize the IgIII domain [193]
G272V [184] Ovary
D283N [184,187] Lung
W290C [184,187,194] Lung W290G forms ligand-independent dimers [204] PS [205]
G305R [193] Skin
K310R [194,197,198] Endometrial
A314D [194] Endometrial PS [194]
A315T [197] Endometrial
Q361R∗ [206] Colon
T370R [193] Skin
S372C [198] Endometrial BSS [204]
Y375C [197,198] Endometrial BSS [204]
Y375C [199] Ovary
I380V Lung
C382R [194,197,198] Endometrial
A389T [194] Endometrial
M391R [197] Endometrial
G462E [206] Brain
W474X [193] Skin
E475K [193] Skin Enhanced kinase activity but less stable [193]
D530N [193] Skin Reduced kinase activity [193]
H544Q [182] (SNP) Lung
I547V [197,198] Endometrial
N549K [194,197,198] Endometrial Enhanced kinase activity [194]
E574K [193] Skin
P582L [206] Colon
R612T† [184,187] Lung
E636K [193] Skin
M640I [193] Skin Predicted to decrease kinase activity [193]
I642V [193] Skin Reduced kinase activity [193]
A648T [193] Skin Reduced kinase activity [193] LADD[207]
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Table S2 Continued

Receptor Mutation Cancer type Consequence Syndrome

K659M [194] Endometrial
K659N [194] Endometrial Enhanced kinase activity [208] CR [209]
K659E [197,198] Endometrial
S688F [193] Skin
G701S [193] Skin Predicted to decrease kinase activity [193]
P708S [193] Skin
R759X/Q [193] Skin
L770V [193] Skin Predicted to impair phosphorylation of Tyr769 [193]

FGFR3 T79S [184] Lung
G197S [171] (SNP) MM
C228R [184] Colon Mutation of analogous cysteine residue in FGFR2 causes PS [210]
Y241C [159] MM
R248C [121,211–227] Bladder Ligand-independent dimerization [229] TDI [229]
R248C [228] Head and neck
R248C [161,165] MM
S249C [226,230,231] Cervix Ligand-independent dimerization [229] TDI [229]
S249C [121,211–227,232–234] Bladder
S249C [235] Head and neck
S249C [236] Prostate
P250R [171] (SNP) MM
E322K [202] Colon
G370C [121,211–215,217–219,221–227,234] Bladder Ligand-independent dimerization [229,237] TDI [229,237]
S371C [121,211,213,214,217,220,227] Bladder Ligand-independent dimerization [229,237] TDI [229,237]
Y373C [121,211-224,227,232–234,238,239] Bladder Ligand-independent dimerization [229,237] TDI [229,237]
Y373C [169,170,240,241] MM
I376C [214] Bladder
G380R [121,211,213,214,242] Bladder Enhanced kinase activity [244] ACH [245]
G380R [243] MM
G382D [240] MM Enhanced kinase activity [240]
F384L [211,213,220] (SNP) Bladder
F384L [236] Prostate
F384L/C [171,241,246] MM
A391E [121,212,214,218,221,225] Bladder Stabilization of dimer [247] CS [248]
A391E [236] Prostate
S433C [171] MM
A441T [171] (SNP) MM
A452S [171] (SNP) MM
E466K [249] Brain
D617G [228] Head and neck
V630M [228] Head and neck
D646Y [250] Bladder
K650E [121,184,218–221,223,224,226,227,234,239] Bladder Enhanced kinase activity [252,253] TDII [253]
K650E [251] Testis
K650E [170,240,241] MM
K650Q [121,217,234] Bladder Enhanced kinase activity [253] HCH [253]
K650M [212,215,218,219,221–223,227,242] Bladder Enhanced kinase activity [253] TDI, SADDAN [253]
K650M [251] Testis
K650M [170,171,241] MM
K650N [251] Testis Enhanced kinase activity [253] HCH [253]
K650T [218,221,222,242] Bladder Enhanced kinase activity [253] AN [254]
K650T [251] Testis
E686K [228] Head and neck
G697C [255] Head and neck Enhanced kinase activity [255]
A717T [171] (SNP) MM
I726F [171] (SNP) MM

FGFR4 C56S [35] RMS
R72L [35] RMS
T122A [35] RMS
A175T [35] RMS
R183S [182] (SNP) Lung
S232I [182] (SNP) Lung
R234H [35] RMS
Y367C [183] Breast Constitutive activation [256]
G388R [257–259] (SNP) Lung A common SNP that occurs in approximately 50 % of the population [268]
G388R [87] Liver
G388R [25,183,260,261] Head and neck
G388R [35] RMS
G388R [262] Soft tissue sarcoma
G388R [183,263–267] Prostate
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Table S2 Continued

Receptor Mutation Cancer type Consequence Syndrome

G388R [268] Colon
G388R [183,265,268] Breast
G388R [183] Brain
G388R [153,183] Skin
G388R [269] Stomach
N535D RMS
N535K [35] RMS Enhanced kinase activity [35]
V550E [35] RMS Enhanced kinase activity [35]
V550L [35] RMS
V550M‡ [184,185] Breast
A554V [35] RMS
G576D [35] RMS
R616G [182] (SNP) Lung
E681K [182,270] (SNP) Lung
P712T‡ [184,187] Lung
P716R [193] Skin
A729G [182] (SNP) Lung
S772N‡ [184] Lung

*Glu361 is only present in FGFR2 IIIb
†FGFR2 R612T is referred to as R496T in the literature due to a numbering relative to FGFR2 isoform 7 precursor which lacks two exons compared with transcript variant 1.
‡FGFR4 V550M, P712T and S772N are referred to as V510M, P672T and S732N (respectively) in the literature and in COSMIC due to a numbering relative to FGFR4 transcript variant 2, which

lacks 40 amino acids (including the transmembrane domain) compared with X57205.

Table S3 FGFR fusion proteins identified in human cancer

Fusion proteins reported to display oncogenic properties in cell lines and mouse models are indicated in bold. L/EMS/L, Leukaemia/8p11 myeloproliferative disorder/Lymphoma; TKD, tyrosine
kinase domain; RRM, RNA recognition motif; HLH, helix-loop-helix; LRR, leucine-rich repeat; CC, coiled coil; PDZ, PSD-95/Dlg/ZO-1.

Receptor Fusion partner Cancer/Disease Oligomerization domain Oncogenic potential

FGFR1 ZNF198/RAMP/FIM/ZMYM2 [271–277] L/EMS/L Zinc finger Yes [278–282]
FOP/FGFR1OP1 [283–286] L/EMS/L, lung LRR Yes [287,288]
CEP110/CEP1 [286,289–292] L/EMS/L Leucine zipper Yes[290]
BCR [278,293–296] L/EMS/L CC Yes [278,281]
LRRFIP1 [297] L/EMS/L CC ND
FGFR1OP2 [298,299] L/EMS/L CC Yes [298]
TRIM24/TIF1 [300] L/EMS/L CC ND
MYO18A [301] L/EMS/L PDZ? CC? ND
CPSF6 [302] L/EMS/L RRM? ND
HERV-K [303] L/EMS/L ND
PLAG1 [304] Head and neck ND (fusion does not include TKD of FGFR)
CUX1 [305] L/EMS/L Yes [305]

FGFR3 TEL/ETV6 [306] L/EMS/L HLH Yes [307]
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