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Major depressive disorder (MDD) is one of the most serious diseases and now
becomes a major public health problem in the world. The pathogenesis of depression
remains poorly understood. Fibroblast growth factors (FGFs) belong to a large family of
growth factors that are involved in brain development during early periods as well as
maintenance and repair throughout adulthood. In recent years, studies have found a
correlation between the members of the FGF system and depression. These signaling
molecules may be expected to be biomarkers for the diagnosis and prognosis of MDD,
and may provide new drug targets for the treatment of depression. Here, we reviewed
the correlation between some members of the FGF system and depression.

Keywords: major depressive disorder, depression, fibroblast growth factor, fibroblast growth factor receptor,
hippocampus

Major depressive disorder (MDD), a common chronic mental disorder, is mainly manifested by
changes in emotion, cognition, behavior, sleep and appetite, and it can result in impaired overall
social function. MDD is among the leading causes of suicide and disability. The prevalence of MDD
is high, with nearly one in four women or six men suffering from MDD (Kessler et al., 2010). In
addition, relapse is common in MDD. Approximately 60% of first-onset depressed patients will
suffer from a second episode (Monroe and Harkness, 2011). In sharp contrast to high prevalence
rate, the recognition rate of MDD is quite low. Among the existing MDD patients in China, only
a few have received relevant treatment, and a majority of patients can’t be diagnosed and treated
effectively and timely. The pathogenesis of MDD is very complex, and it has not been uniformly
determined. Fibroblast growth factors (FGFs) belong to a large family of growth factors that are
involved in brain development during early periods as well as maintenance and repair throughout
adulthood (Terwisscha van Scheltinga et al., 2013). Many studies show that some members of
FGF system are correlated with depression. We used “fibroblast growth factor” or “FGF” and
mood related words (e.g., “major depressive disorder,” “depression,” “mood disorder,” or “stress”)
to perform electronic searches of the English-language literatures in PubMed. References of the
retrieved articles were manually screened to identify other relevant publications. Here, we mainly
concentrated on the reported depression-related FGF system members, including FGFR1, FGF2,
FGF9, FGF21, and FGF22.

FIBROBLAST GROWTH FACTORS AND FIBROBLAST GROWTH
FACTOR RECEPTORS

The FGF system is composed of twenty-two ligands and five receptors at present in humans and
is distributed throughout the central nervous system (Turner et al., 2006). FGFs play a key role
in the function, development and metabolism of neuron. During development, FGFs control the
growth and morphology of several brain structures, and in the later stages of life, they continue
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to regulate neurogenesis, axon growth, neuroprotection,
and nervous tissue maintenance and repair (Terwisscha van
Scheltinga et al., 2010). Although structurally related, FGFs show
different action patterns, secretory mechanisms and biological
effects. Thereby they are divided into several subfamilies
(Table 1), and each subfamily has its genetic and functional
similarity (Itoh and Ornitz, 2004; Goldfarb, 2005; Beenken and
Mohammadi, 2009; Hui et al., 2018). Unlike other subfamilies,
FGF homologous factor (FHF) subfamily cannot activate FGF
receptors (Olsen et al., 2003).

Fibroblast growth factor receptor (FGFR), a member of
the receptor tyrosine kinase family, includes five kinds of
receptors, among which FGFR1∼FGFR4 have receptor activity
while FGFR5 doesn’t due to the absence of intracellular part
(Yeh et al., 2003; Itoh and Ornitz, 2011). Each receptor has a
unique affinity for FGFs, and this uniqueness depends on the
differential splicing of the third extracellular immunoglobulin-
like domain (Ig-III) of the receptor variant (Viollet and Doherty,
1997).

Interactions of FGFs with their receptors are modulated by
cofactors such as heparan sulfate (HS) and Klotho (Ornitz
and Itoh, 2015; Hui et al., 2018). After FGFs bind to
FGFRs, four key signaling pathways, including RAS-RAF-
MAPK, PI3K-AKT, STAT, and PLCγ, are activated to influence
gene transcription (Itoh and Ornitz, 2011; Turner et al.,
2012).

FGF RECEPTORS AND DEPRESSION

FGFR1
Fibroblast growth factor receptor 1 (FGFR1) is widely distributed
throughout the nervous system, contributing to hippocampal
nerve growth and long-term potentiation (Zhao et al., 2007;
Terwisscha van Scheltinga et al., 2010). The expression of FGFR1
is high in CA2 and CA3 regions of hippocampus, but low in
cortex. One study shows that the wide expression of FGFR1 in
embryonic neural progenitor cells plays a role in the formation of
the cortical plate and the structure of gyrus and sulcus (Shin et al.,
2004).

Turner C.A. et al. found that the mRNA expression of
FGFR1 was down-regulated in the hippocampus of acute social
defeat rats (Turner et al., 2008a). FGF2 microinjection (200 ng)
into the lateral ventricle of rats, which exerts antidepressant-
like effects, up-regulates the FGFR1 mRNA in the dentate
gyrus (Turner et al., 2008b). Later, Aurbach E.L. et al. found
that slow administration of exogenous FGF9 increased anxiety
and depression-like behaviors, and decreased the expression
of FGFR1 in the dentate gyrus (Aurbach et al., 2015).
These changes in FGFR1 caused by the administration of
exogenous FGF2/9 may result from an increase in FGF2/9
in animals or changes in depression status. These findings
provide evidence for the potential therapeutic value of FGFR1 in
depression.

TABLE 1 | FGF subfamilies and their members (Itoh and Ornitz, 2004; Goldfarb, 2005; Beenken and Mohammadi, 2009; Hui et al., 2018).

FGF subfamily Members Binding receptor Potential effects Secretory patterns

FGF1 subfamily FGF1
FGF2

all FGF receptors
FGFR1c,3c,2c,1b,4

FGF1 subfamily members have some therapeutic potential for
cardiovascular disorders, mood disorders, cancers, and are
widely used for wound healing.

Paracrine Subfamilies
(Cofactor: heparin)

FGF4 subfamily FGF4, FGF5, FGF6 FGFR1c,2c,3c,4 FGF4 subfamily members have wide-ranging functions in
development, including cardiac valve leaflet formation and
limb development.

FGF7 subfamily FGF3, FGF7,
FGF10, FGF22

FGFR2b,1b FGF7 and FGF10, also known as keratinocyte growth factors,
act as presynaptic organizers with roles in vesicle clustering
and neurite branching. Recombinant FGF7 is widely used for
wound healing.

FGF8 subfamily FGF8, FGF17,
FGF18

FGFR3c,4,2c,1c,3b FGF8 is involved in brain, limb, ear and eye development.

FGF9 subfamily FGF9, FGF16,
FGF20

FGFR3c,2c,1c,3b,4 FGF20 is a neurotrophic factor for rat midbrain dopaminergic
neurons, and may show promise in stem cell biology.

FGF19 subfamily FGF19, FGF21,
FGF23

FGFR1c,2c,3c,4 (Weak
activity)

Since Klotho expression is tissue-specific, the functions of
FGF19 subfamily members are mainly related to human
metabolic processes, such as regulating the balance of bile
acid, cholesterol, glucose, vitamin D, and phosphate.

Endocrine Subfamily
(Cofactor: Klotho)

FGF homologous
factor (FHF)
subfamily

FGF11 (FHF3),
FGF12 (FHF1),
FGF13 (FHF2),
FGF14 (FHF4)

FHFs have high sequence
identity with other FGF family
members, but do not activate
FGFR. FHFs bind to
intracellular domains of
voltage-gated sodium
channels (VGSCs) and to a
neuronal MAPK scaffold
protein.

FHF deficits induce neurological syndromes, such as impaired
central nervous system function.

/

FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; FHF, FGF homologous factor; MAPK, mitogen-activated protein kinase; VGSCs, voltage-gated
sodium channels.
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Although an early microassay study found that the FGFR1
expression did not change in the dorsolateral prefrontal lobe and
anterior cingulate gyrus of depressed subjects, a subsequent study
found that FGFR1 mRNA was increased in hippocampal CA1,
CA4 and dentate nuclei zone of non-psychotic depressed patients
compared with healthy controls (Evans et al., 2004; Gaughran
et al., 2006). Also, a significant increase in FGFR1 gene expression
was found in the prefrontal cortex of postmortem depressed
patients (Tochigi et al., 2008; Goswami et al., 2013). The
difference in these results may be due to the factors such as sample
pH, postmortem interval. Variation in anatomical distribution of
FGFR1 and differences in sample size and detection methods may
also affect the results.

Furthermore, FGFR1 can interact with other type of
receptors to play a role in depression. FGFR1–5-HT1A (5-
hydroxytryptamine receptor 1A) heteroreceptor complexes were
first observed in 2012, and combined FGF2 and 5-HT1A
agonist treatment increased the formation of the complexes and
enhanced the synergistic receptor-receptor interactions, which
was associated with the development of antidepressant effects
(Borroto-Escuela et al., 2012; Borroto-Escuela et al., 2016). The
results of these studies may combine the serotonin hypothesis and
the neurotrophic factor hypothesis of depression together.

FGFR2 and FGFR3
Fibroblast growth factor receptor 2 (FGFR2) and fibroblast
growth factor receptor 3 (FGFR3) are weakly expressed in
astrocytes of the hippocampus. The expression level of FGFR2
increases with age in the adult stage, while the expression level of
FGFR3 remains relatively unchanged in the early development
of the adult stage (Bansal et al., 2003). FGFR2 is mainly
expressed in diencephalon, telencephalon and mesencephalon,
and plays an important role in neurogenesis, neuroprotection,
nerve repair and hippocampal learning (Alzheimer and Werner,
2002; Umemori et al., 2004; Stevens et al., 2012), while FGFR3
is mainly expressed in diencephalic glial cells, and plays a role in
the development of the caudal telencephalon (Ford-Perriss et al.,
2001; Moldrich et al., 2011).

No change in the expression of FGFR2, FGFR3, and FGFR4
was found in the prefrontal cortex of postmortem depressed
patients (Goswami et al., 2013). However, another study found
decreased expression of FGFR2 and FGFR3 in the dorsolateral
prefrontal cortex (DLPFC) and the anterior cingulate cortex
(AnCg) after autopsy on patients with depression (Evans et al.,
2004). Decreased expression of FGFR2 and FGFR3 was also
found in the hippocampus of postmortem depressed patients
(Aurbach et al., 2015).

FGFs AND DEPRESSION

Currently, among the twenty-two identified FGFs, FGF2, FGF9,
FGF21, and FGF22 have been found to be associated with
depression.

FGF2
FGF2, widely expressed throughout the central nervous system,
is one of the main neurotrophic factors. FGF2 can regulate

hippocampal neurogenesis, synaptic formation and growth, and
thereby affects learning, memory, long-term potentiation and
response to injury (Flores et al., 2002; Ganat et al., 2002; Rai
et al., 2007). FGF2 is mainly expressed in neurons and glial cells
during puberty and adulthood, and the hippocampus expresses
the highest level of FGF2 and its receptors in the brain (Ford-
Perriss et al., 2001).

Several experiments demonstrated that the mRNA expression
of FGF2 was down-regulated in acute social defeat rats and
post-stroke depressed rats (Turner et al., 2008a; Ji et al.,
2014). Interestingly, FGF2 levels were up-regulated after
antidepressant administration. Maragnoli et al. found that
FGF2 mRNA levels in the prefrontal cortex of rats were
up-regulated after short-term or long-term combination of
fluoxetine and olanzapine (Maragnoli et al., 2004). Similarly,
after continuous injection of desipramine or fluoxetine on
adult rats for 2 weeks, immunoreactivity of FGF2 was
increased in neurons of the cerebral cortex and in astrocytes
of the hippocampus (Bachis et al., 2008). One of the
underlying mechanisms that how antidepressants up-regulate
the levels of FGF2 involves extracellular signal-regulated
kinase (ERK)-dependent early growth response 1 (EGR1)
signaling pathway in astrocytes. Amitriptyline may activate
FGFR and epidermal growth factor receptor (EGFR), which
induces the phosphorylation of ERK1/2. Then it increases the
expression of EGR1, which in turn, increases FGF2 expression
(Kajitani et al., 2015). A number of animal studies have
placed their focus on the effects of FGF2 administration.
FGF2 microinjection into the lateral ventricle of depressed
rats was reported to have antidepressant effects (Turner
et al., 2008b). Moreover, FGF2 treatment could diminish
neuronal death in olfactory bulbectomy (OBX) rats, improve
OBX induced reduction in hippocampal neurogenesis and
reverse OBX induced depression-like behavior (Jarosik et al.,
2011). Furthermore, the researchers found that FGF2, rather
than amitriptyline, could reverse the behavior alterations in
FGF2 knockout mice, indicating FGF2 as a mediator in the
antidepressant effects of amitriptyline. Similarly, slow infusion
of FGF2 showed antidepressant effects in chronic unpredictable
stress (CUS) rats, and the treatment of antidepressants failed
to improve depression-like behaviors after the administration of
FGFR inhibitors (Elsayed et al., 2012). Though the pathogenesis
of depression and how FGFs exert antidepressant effects are
unclear, researchers still get some clues from experiments. In
chronic unpredictable mild stress (CUMS) mice, FGF2 increased
the phosphorylation of ERK and AKT via binding to FGFR1,
which up-regulated the expression of Bcl-2, leading to decreased
caspase-3 levels. These changes mediated neuroprotective effects
and in turn exerted antidepressant effects (Wang et al., 2018).
By activating ERK/MAPK pathway, FGF2 could also increase
the expression of glucocorticoid receptor and might reduce
the likelihood of depression (Numakawa et al., 2018). FGF2-
ERK signaling pathway was also reported to be involved
in the neuroinflammation induced model of depression. In
this model, exogenous FGF2 alleviated inflammation-induced
impairment in hippocampal neurogenesis by phosphorylating
ERK1/2, and reversed depressive-like behavior (Tang et al., 2017).
Meanwhile, exogenous FGF2 could modulate depressive-like
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behavior by affecting the levels of pro-inflammatory cytokines
(including interlukin-1β, interlukin-6, and tumor necrosis factor-
α), anti-inflammatory cytokine (interlukin-10) and CX3CL1
(Tang et al., 2018). In brief, the antidepressant effects of
FGF2 may be mediated by several signaling pathways and
then achieved by neuronal remodeling (including neurogenesis,
alterations of synaptic connections and plasticity) and regulation
of monoamine neurotransmitter system.

Postmortem studies concerning FGF2 levels in depressive
patients were inconsistent. Evans et al. found that the levels
of FGF2 in the DLPFC and the AnCg of postmortem
depressed patients were significantly lower than those of
healthy controls (Evans et al., 2004). Gaughran F. et al.
observed decreased FGF2 mRNA in the hippocampal CA4
region of postmortem non-psychotic major depressive patients
(Gaughran et al., 2006). However, no change in FGF2 gene
expression was found in the prefrontal cortex of postmortem
depressive patients (Goswami et al., 2013). Further studies are
needed to discover the changes of FGF2 in different brain
regions.

There were discrepant results of clinical studies on the
relationship between FGF2 and depression. In an early report,
no significant difference in plasma FGF2 levels was found
between depressive patients and healthy controls (Takebayashi
et al., 2010). But in this study, patients with MDD were
under remission by being treated with antidepressants or
mood stabilizers. In another study, decreased serum FGF2
levels were found in depressive patients, and serum FGF2
levels decreased significantly but marginally after 8 weeks of
treatment (He et al., 2014). In contrast, Kahl et al. found
that serum FGF2 concentrations were increased in depressed
patients with borderline personality disorder (Kahl et al.,
2009). A similar result was found that the FGF2 levels in
the peripheral blood of MDD patients with childhood trauma
exposure were significantly higher than those of healthy controls
(Lu et al., 2013). In a latest meta-analysis, peripheral FGF2
levels of depressive patients were significantly higher than
those of healthy controls, while no significant difference of
FGF2 levels in the central nervous system was found (Wu
et al., 2016). One of the reasons for the inconsistent in
these results is that some depressed patients had been treated
when they were enrolled in studies, while other patients
were drug free. Another reason is that some patients had
comorbidities or special personal histories other than MDD.
Different observation time or different ages may also affect the
results.

FGF9
FGF9, mainly expressed by neurons in the cortex, hippocampus,
thalamus, cerebellum and spinal cord, can promote cell survival
and inhibit the differentiation of astrocytes (Tagashira et al., 1995;
Nakamura et al., 1997; Todo et al., 1998; Garces et al., 2000;
Kanda et al., 2000; Huang et al., 2009; Lin et al., 2009; Lum
et al., 2009). FGF9 not only activates IIIc splice variant of FGFR3,
but also activates IIIb splice variant of FGFR3. This binding
specificity makes FGF9 relatively special to other subfamily
members (Ornitz et al., 1996; Santos-Ocampo et al., 1996).

The mRNA expression of FGF9 in the CA1, CA2, CA3
and dentate gyrus of hippocampus was up-regulated in social
defeat stress rats (Aurbach et al., 2015). Further experiments
found that administrating exogenous FGF9 increased anxiety-
and depression-like behaviors, while knocking down endogenous
FGF9 expression in the dentate gyrus by lentiviral vector showed
decreased anxiety-like behavior in rats (Aurbach et al., 2015). It
is well to be reminded that, FGF2 and FGF9 were found to have
the opposite effect through chronic administration of FGFs, that
is, FGF2 reduced anxiety- and depression-like behaviors, while
FGF9 increased anxiety- and depression-like behaviors (Turner
et al., 2008b; Perez et al., 2009). These animal studies indicate
that FGF9 has an anxiogenic and prodepressant role in the
rodent brain. The balance between FGF factors may be crucial
to emotional regulation.

Several human studies provide evidence that FGF9 expression
was increased in certain brain areas of depressed patients, such
as hippocampus, frontal cortex and locus coeruleus (Evans
et al., 2004; Bernard et al., 2011; Aurbach et al., 2015). Another
study found no change in the expression of FGF9 gene in the
prefrontal cortex of postmortem depressive patients (Goswami
et al., 2013). These results suggest that high levels of FGF9 in the
brain may exert an important role in the development of mood
disorders.

FGF21
FGF21, an important endogenous regulator of glucose and
lipid metabolism, has been proposed as a therapeutic target
for diabetes and obesity (Inagaki et al., 2007). It also has
a strong neuroprotective effect and acts as a mediator of
some mood stabilizers (Leng et al., 2015). Liver is the main
organ that produces FGF21 (Kharitonenkov and Larsen, 2011).
Peripheral FGF21 could reach the brain and play a beneficial
role in central nervous system (Sarruf et al., 2010). FGF21
can also be detected in human cerebrospinal fluid (Tan et al.,
2011, 2013). FGF21 contains 181 amino acid residues and
has a molecular weight of about 20 kDa, which is derived
from the mature protein of 209 amino acid residues encoded
by the FGF21 gene on chromosome 19 (Nishimura et al.,
2000).

In a recent study, the FGF21 levels in cerebrospinal fluid
were found negatively related to the score of Beck Depression
Inventory (BDI) in male subjects. The lower the FGF21 levels
were, the more severe the depression was. However, no significant
correlation was found in female subjects (Liu et al., 2017). The
gender difference of the results may be related to estrogen or
oxytocin.

FGF22
As a member of FGF family, FGF22 has been found to be
significantly associated with the occurrence of epilepsy, cancer,
depression and other diseases as well as embryonic brain
development (Jarosz et al., 2012; Singh et al., 2012; Lee and
Umemori, 2013; Miyake and Itoh, 2013). An animal experiment
confirmed that FGF22 was involved in the formation of excitatory
synapses in hippocampal neurons (Williams et al., 2016). FGF22
is mainly expressed in the brain and skin, and its receptor is
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FGFR2 (Nakatake et al., 2001; Evans et al., 2004; Beenken and
Mohammadi, 2009).

FGF22 knockout mice models display depression-like
behaviors (including despair and anhedonia) in forced swim
test, tail suspension test and sucrose preference test (Williams
et al., 2016). The loss of excitatory synapses in the hippocampus
induced by the absence of FGF22 and FGFR2 interaction may
partly explain the depressive behavior of FGF22 knockout
mice.

In a controlled study of 90 first-onset depressive patients
and 90 healthy volunteers, decreased serum FGF22 levels were
found in depressive patients, and these levels were negatively
correlated with the patients’ scores of Hamilton Depression Scale.
After treatment, FGF22 levels increased along with the relief of
depressive symptoms (Xu et al., 2017).

Other FGFs
Evans et al. performed autopsies on depressive patients, and
found decreased expression of FGF1 in the DLPFC and AnCg,
and increased expression of FGF12 in the AnCg (Evans et al.,
2004). Major information of postmortem studies and clinical
researches included in this review is listed in Tables 2 and 3,
respectively.

Studies on Genetic Variation in FGF
Genes
Many efforts have been made at the genetic level to explore
the relations between FGFs and depression. Genetic variation
of FGF2 can influence the therapeutic effect of antidepressant
drugs. For example, several single-nucleotide polymorphisms
(SNPs) in FGF2 gene were found to be associated with altered
responsiveness to antidepressant treatment in individuals with
MDD (Kato et al., 2009, 2015). On the contrary, no SNPs of
FGFR2 gene was associated with depression (Wang et al., 2012).
At the transcriptional level, the enrichment of FGF pathways
is found both in depressed patients and rat models by gene
expression analysis (Carboni et al., 2018).

Role of FGFs in Depression
Fibroblast growth factor signaling has functional effects through
different mechanisms. FGF2 increases the number or the survival
of neurons in the hippocampus (Perez et al., 2009; Turner
et al., 2011), and controls the development and size of the
hippocampus (Ohkubo et al., 2004). Moreover, FGFR1 has
been shown to directly interact with neurotransmitter receptors
(adenosine 2A receptor and 5-HT1A receptor), and modulate
neurochemistry (Flajolet et al., 2008; Borroto-Escuela et al.,
2012). Interestingly, the FGF system may be able to compensate
for the brain-derived neurotrophic factor (BDNF) system in
the mesolimbic system of BDNF knockdown mice (Berton
et al., 2006). Briefly, FGF ligands interact with FGF membrane
receptors on the surface of neurons and glial cells or with voltage-
gated sodium channels intracellularly. In addition, FGF receptors
have partners such as neural cell adhesion molecules (NCAM)
and 5-HT1A receptor (a G-protein coupled receptor). These
events trigger a host of signaling pathways mentioned before
(AKT, MAPK, PLCγ), and regulate neurogenesis, neuroplasticity
or influence signal transduction. Furthermore, they regulate
ongoing behavior including stress response, anxiety, motivated
and affective behavior or episode of depression (Turner et al.,
2012).

FGFs in Other Mood Disorders
Besides depression, FGFs are associated with other mood
disorders. The correlation between FGF2 and anxiety is most
often elucidated. High-anxiety rats have lower levels of FGF2
mRNA in hippocampus compared with low-anxiety ones (Perez
et al., 2009). The FGF2 knockdown in the hippocampus of
rats by short-hairpin RNA silencing increases anxiety behavior
(Eren-Kocak et al., 2011). Similarly, the FGF2 knockout was
reported to increase hypothalamic-pituitary-adrenal axis (HPA)
activity and anxiety behavior in mice (Salmaso et al., 2016).
Moreover, peripheral FGF2 administration both in early-life
and in adulthood of rats significantly reduces anxiety behavior
(Perez et al., 2009; Turner et al., 2011). And the anxiolytic

TABLE 2 | Postmortem studies concerning the correlation between FGFs and depression.

Study Samples Comparison Numbers FGF Main results

Evans et al.
(2004)

DLPFC, AnCg MDD
HC

4
6

FGF2
FGF9
FGF1
FGF12

FGF2 levels were lower in the AnCg of MDD patients.
FGF9 expression in the DLPFC was increased in MDD patients.
FGF1 levels were decreased in the DLPFC and AnCg of depressive patients.
Increased FGF12 was observed in the AnCg of depressive patients.

Gaughran et al.
(2006)

Hippocampus MDD
HC

9
12

FGF2 Decreased FGF2 mRNA was found in the hippocampal CA4 region.

Goswami et al.
(2013)

Prefrontal cortex MDD
HC

16
16

FGF2 No change in FGF2 gene expression was found in the prefrontal cortex of
postmortem depressive patients.

Bernard et al.
(2011)

locus coeruleus MDD
HC

12
8

FGF9 FGF9 expression was increased in depressed patients.

Goswami et al.
(2013)

Prefrontal cortex MDD
HC

16
16

FGF9 No change was found in the expression of FGF9 gene in the prefrontal cortex of
postmortem depressive patients.

Aurbach et al.
(2015)

Hippocampus MDD
HC

36
56

FGF9 FGF9 expression was increased in depressed patients.

AnCg, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; FGF, fibroblast growth factor; HC, healthy control; MDD, major depressive disorder.
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TABLE 3 | Main information of clinical researches studying the correlation between FGFs and depression

Study Samples Depression scale used Comorbidity with
anxiety

Main results Limitations

Takebayashi
et al. (2010)

16 patients in remission from
major depressive disorders,
16 healthy controls

DSM-IV Not examined No significant difference in
plasma FGF2 levels was found
between the MDD patients and
the matched control subjects.

Limited sample size;
Various medications

He et al. (2014) 28 pre- and post-treatment
MDD patients (10 first
episode and 18 recurrent
episode), 30 healthy controls

DSM-IV, 24-item
Hamilton Depression
Rating Scale (HDRS-24)

Not examined Serum FGF2 levels in MDD
patients were significantly lower
than those in healthy controls
(p = 0.005), and the serum
FGF2 levels decreased
significantly but marginally
following treatment for 8 weeks
(p = 0.005).

Limited sample size;
Different types of
antidepressants

Kahl et al.
(2009)

12 medication-free female
patients with a major
depressive episode in the
context of borderline
personality disorder
(MDD/BPD), 12 healthy
women

DSM-IV, German version
of the Symptom
Checklist (SCL-90-R),
German version of the
Beck Depression
Inventory (BDI)

Not examined Increased concentrations of
FGF2 were found in MDD/BPD
patients compared to the
healthy group.

Limited sample size; No
comparative group with
current MDD and without
BPD

Lu et al. (2013) 22 MDD patients with
childhood trauma exposure
(CTE), 21 MDD patients
without CTE, and 22 healthy
controls without CTE

DSM-IV, Zung’s
Self-rating Depression
Scale (SDS), 24-item
Hamilton Depression
Scale (HAMD)

Not examined FGF2 was overexpressed in
MDD patients with CTE only but
not as much expressed in MDD
patients without CTE.

Limited sample size; Biases
caused by using
questionnaires to assess
histories of childhood
trauma; Absence of a
control group with CTE
alone

Xu et al. (2017) 90 depressive patients (first
episode and without drug
treatment), 90 controls

Chinese classification of
mental disorders- third
Edition (CCMD-3),
HDRS-24

Not examined The patients presented
significantly lower serum FGF22
levels, and the levels increased
after 8 weeks of treatment.

The loose inclusion criteria
(HDRS-24 = 8); No
correlation analysis
between FGF 22 levels and
HDRS scores

Liu et al. (2017) 67 volunteers Beck Depression
Inventory (BDI),
Self-Rating Anxiety Scale
(SAS)

No correlation was
found between
FGF21 levels and
SAS scores

A significant association was
found between CSF FGF21
levels and BDI scores in male
subjects, but not in female
subjects.

No control group

BDI, Beck Depression Inventory; BPD, borderline personality disorder; CCMD-3, Chinese Classification of Mental Disorders, Third Edition; CSF, Cerebrospinal fluid; CTE,
childhood trauma exposure; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders IV; FGF, fibroblast growth factor; HAMD, 24-item Hamilton Depression Scale;
HDRS-24, 24-item Hamilton Depression Rating Scale; MDD, major depressive disorder; SAS, Self-Rating Anxiety Scale; SCL-90-R, Symptom Checklist-90-Revised; SDS,
Self-rating depression scale.

effect of fluoxetine must be mediated by FGF2 through the
study of FGF2 knockout mice (Simard et al., 2018). In addition,
FGF8 and FGF21 can also affect anxiety behavior, and they
exert their influence in opposite directions. FGF8-deficient
mice display increased anxiety-like behavior, while FGF21
administration in rats induces anxiogenic behavior (Brooks et al.,
2014; Chiavaroli et al., 2017). As for bipolar disorder, serum
levels of FGF2 are higher in patients with manic episode than
those in healthy controls (Liu et al., 2014). FGF2 is related
to bipolar disorder at the genetic level of humans (Xie et al.,
2017). Similarly, FGFR2 is found to be associated with bipolar
disorder through SNPs genotyping in humans (Wang et al.,
2012).

DISCUSSION

Through reviewing existing studies, we found that the expression
levels of some members of the FGF family were disordered in

patients with depression, which indicates that a certain link exists
between the FGF family and depression. But researches on the
relation between FGF family and depression are not enough at
present and the results of animal, postmortem and clinical studies
have not been completely agreed.

Fibroblast growth factors and their roles in development,
diseases, and therapies have been studied extensively. However,
the study of FGFs in psychopathology, especially in depression, is
an emerging field. To our best knowledge, it is the first review that
focused on the neuromodulation effect of FGFs in depression.
So far, there are limited studies showing the association between
FGFs and depression, and the research methods are diverse
and lack of homogeneity. Different experimental conditions,
such as brain region, sample pH, and postmortem interval as
we mentioned before, may lead to difference in the results of
postmortem studies. Moreover, sample size, inclusion criteria,
gender, therapeutic status of patients may play a role in the
heterogeneity of results in clinical trials. In addition, previous
studies only focused on the relations between FGF levels and
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depression, but seldom mentioned the deep connections between
them and other depression-related disorders like anxiety. More
attention should be paid on the signaling pathway and genetic
variation of FGFs in depression, which may help to enrich the
existing theories about the pathogenesis of depression.
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