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Although the concept of “seed and soil” was  
proposed over 100 years ago (Paget, 1889), in-
vestigators have only recently revealed the fun-
damental importance of the tumor-associated 
stoma in cancer development. Fibroblasts are 
essential in tissue homeostasis and wound 
healing, and consistent with the hypothesis 
that “a tumor is a wound that never heals” 
(Dvorak, 1986), an emerging body of evi-
dence demonstrates that the �broblasts in  
tumors, often referred to as cancer-associated 
�broblasts (CAFs), are key players in the pro-
cess of tumorigenesis (Hanahan and Weinberg, 
2011). Indeed, recent studies have shown that 
many of the cancer-promoting and therapy-
resisting properties of the stroma can be at-
tributed to the activity of �broblasts. It is 
necessary to acknowledge that CAFs can de-
rive from multiple origins and make up a het-
erogeneous population of cells but nevertheless 
are united by their capacity to alter the tumor 
microenvironment and to change the fate of 
neoplastic cells.

To be able to fully understand the role of �-
broblasts in cancer, it is important to consider the 
function of this cell type in normal tissues. Fibro-
blasts are elongated cells of mesodermal origin, 
showing a fusiform or spindle-like shape, and ex-
press �broblast-speci�c protein 1 (FSP-1; Strutz 
et al., 1995). Beyond FSP-1, they show a complex 
expression pattern of protein markers, re�ecting 
an inherent diversity within a population of  
�broblasts (Anderberg and Pietras, 2009).

Fibroblasts are found embedded within the 
extracellular matrix (ECM) and are the most 
abundant cell type in connective tissue. The ECM 
is composed of �brillar collagens, �bronectins, 

hyaluronic acid, and proteoglycans, providing a 
structural framework for all tissues. The ECM 
also acts as a reservoir for cytokines and growth 
factors, and as a sca�old for cell migration. In 
fact, �broblasts are the major producers of the 
ECM and thereby participate in tissue homeo-
stasis, and the regulation of interstitial �uid vol-
ume and pressure. Fibroblasts are also highly 
involved in regulating tissue remodeling and 
repair. Upon tissue damage, �broblasts proliferate 
and di�erentiate into myo�broblasts, a process 
characterized by de novo expression of –smooth 
muscle actin (-SMA), contractile stress �bers, 
and splice variants of �bronectin (Serini et al., 
1998; Tomasek et al., 2002). The synthesis of 
ECM and ECM remodeling proteases is up-
regulated, resulting in deposition of a reactive 
stroma, often referred to as a desmoplastic reaction 
or desmoplastic stroma. The induced expression 
of –SMA alters cytoskeletal organization, 
which increases the contractile ability of myo-
�broblasts (Rønnov-Jessen and Petersen, 1996; 
Hinz et al., 2001). Myo�broblasts contract the 
ECM to bring the borders of the wound to-
gether, and secrete matrix proteins that repair 
the remaining tissue defects and attract epithe-
lial cells to complete the healing process. Upon 
completion of wound healing, activated �bro-
blasts undergo apoptosis (Desmoulière et al., 
1995) or a particular type of programmed cell 
death termed nemosis (programmed necrosis; 
Bizik et al., 2004).
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protease �broblast-activation protein  (FAP) is another 
common marker for CAFs in many carcinomas including 
breast, lung, ovarian, and pancreatic (Garin-Chesa et al., 
1990). However, FAP is also not speci�c to CAFs, as it is 
highly expressed in quiescent mesodermal cells in multiple 
tissue types (Roberts et al., 2013), and activated �broblasts 
during wound healing and collagen vascular disease (Wang 
et al., 2005). Another well-studied marker is FSP-1 (also 
known as S100A4), which seems to play a distinctive and 
somewhat dual role in cancer, as evident by a protective 
role of FSP-1–positive cells against carcinogen-mediated 
malignancy (Zhang et al., 2013a). Yet FSP-1 is also not re-
stricted to CAFs and is also expressed by epithelial cells 
undergoing EMT (Okada et al., 1997) and bone marrow–
derived cells, including macrophages, that respond to tissue 
injury (Österreicher et al., 2011; Cheng et al., 2012). Additional 
proteins expressed in some CAFs include NG2 (Neuron- 
glial Antigen-2, also known as Chondroitin sulfate proteogly-
can), platelet-derived growth factor receptor– (PDGFR-),  
�broblast-associated antigen, and Prolyl 4-hydroxylase 
(Orimo and Weinberg, 2007). However, these markers are 
also not unique to CAFs. For example, NG2 is a neural 
marker that is expressed in the nervous system (Polito and 
Reynolds, 2005), and PDGFR- expression is also com-
mon to vascular smooth muscles, skeletal muscles, and 
myocardium (Cuttler et al., 2011). PDGFR- was recently 
reported to be expressed by invasive pancreatic cancer cells 
(Weissmueller et al., 2014) and thus may also represent a new 
EMT marker.

It is therefore important to keep in mind that there is cur-
rently no marker that completely and exclusively de�nes 
CAFs, and this should be taken into account when interpret-
ing results from di�erent models. Moreover, apart from FSP-1,  
which identi�es a unique CAF population, these proteins are 
often expressed or coexpressed heterogeneously among CAFs, 
possibly re�ecting di�erent stages of activation and sources of 
CAFs (Fig. 1; Sugimoto et al., 2006).

The origin of CAFs
Several tissues contribute to the population of CAFs found  
in an individual tumor (Fig. 2; Xing et al., 2010; Cirri and 
Chiarugi, 2011). Indeed, numerous cell types have been re-
ported to transdi�erentiate to CAFs. The most direct source 
of CAFs derives from resident tissue �broblasts and mesen-
chymal stem cells (MSCs; Rønnov-Jessen and Petersen, 
1993; Kojima et al., 2010; Paunescu et al., 2011; Quante  
et al., 2011; Vicent et al., 2012). The stellate cell is a distinct 
cell type that shares many of the same functions as �bro-
blasts. In its quiescent state it is a vitamin A–storing and 
lipid droplet–containing cell that can be found in the liver, 
pancreas, kidney, intestine, lung, spleen, uterus, and skin 
(Kordes et al., 2009). Similar to �broblasts, stellate cells acti-
vate -SMA expression upon stimulation and acquire a 
myo�broblast-like phenotype. Stellate cells are responsible 
for the majority of the desmoplastic reaction seen in chronic 
pancreatitis and pancreatic cancer (Bachem et al., 1998), as 

De�nition and markers of CAFs
CAFs are found in almost all solid tumors; however, their 
abundance varies between di�erent types of cancers. For 
example, breast, prostate, and pancreatic cancers contain high 
numbers of CAFs, whereas brain, renal, and ovarian cancers 
demonstrate fewer (Neesse et al., 2011; Smith et al., 2013). 
They are de�ned as all the �broblastic, nonneoplastic, non-
vascular, nonepithelial, and nonin�ammatory cells found in 
a tumor (Fig. 1). However, there is no consensus on their 
molecular de�nition (Kalluri and Zeisberg, 2006; Orimo 
and Weinberg, 2007; Pietras and Ostman, 2010; Xing et al., 
2010). CAFs can be distinguished from neoplastic cells that 
have undergone epithelial-mesenchymal transition and 
show a �broblast-like morphology by their stable karyo-
type and the lack of genetic alterations. Although p53 mu-
tations in CAFs have been reported (Kurose et al., 2002; 
Hill et al., 2005; Patocs et al., 2007), these studies have 
been criticized for using methods highly prone to generat-
ing experimental artifacts (Campbell et al., 2009). More-
over, recent studies have con�rmed the lack of frequent 
mutations in CAFs (Qiu et al., 2008; Walter et al., 2008; 
Hosein et al., 2010).

The molecular de�nition of CAFs is still a debated 
issue, and emerging data demonstrate that CAFs make up a 
complex and heterogeneous population of cells. Several 
markers have been suggested in the past to de�ne CAFs, 
but it is now being appreciated that these markers do not 
mark all CAFs and that most of them are not even unique 
to CAFs or to the �broblasts lineage. –SMA is a robust 
CAF marker, which usually identi�es CAFs with myo�-
broblast morphology (Desmoulière et al., 2004). Nonethe-
less, –SMA is also expressed by normal �broblasts 
(Hawinkels et al., 2014), and in some cases, normal �bro-
blasts show comparable or even more –SMA expression 
compared with CAFs (Madar et al., 2009; Berdiel-Acer et al., 
2014). –SMA expression is detected in other cell types as 
well, such as pericytes and smooth muscle cells surround-
ing vasculature, visceral smooth muscle cells, and cardio-
myocytes (Wendling et al., 2009). The cell-surface serine 

Figure 1. Molecular de�nition of cancer-associated �broblasts. 
CAFs are composed of two morphologically distinctive populations: �bro-
blasts and myo�broblasts. Indicated are common molecular markers that 
de�ne CAFs.
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Figure 2. CAFs promote tumorigenesis: a schematic illustration representing all the fronts in which CAFs boost cancer. By secreting soluble 
factors and lipid-based particles, transformed epithelium drives recruitment (1) and reprogramming (2) of several types of cells into CAFs, including resi-
dent �broblasts (NAFs) that are naturally tumor-suppressive. CAFs are then activated to promote tumor initiation (3), cancer cell stemness (4), and to 
change tumor metabolism (5) by intensive cross talk of ligands/receptors, cell–cell contact, and remodeling the ECM (6). Concomitantly, CAFs prevent 
immune surveillance of tumor cells (7) while balancing in�ammation and angiogenesis (8). Finally, CAFs stimulate invasion and metastasis by facilitating 
tumor cell dissemination, intra- and extravasation, and metastatic colonization (9).
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Löhr et al., 2001). TGF- binds to the type-2 TGF- recep-
tor (TGFBR2) on the cell surface of �broblasts, inducing re-
cruitment and phosphorylation of TGFBR1 and expression 
of factors involved in paracrine signaling and ECM produc-
tion and remodeling (Pickup et al., 2013a). Platelet-derived 
growth factor (PDGF) is also highly expressed in most neo-
plastic cells, which rarely express PDGF receptors (PDGFRs) 
themselves. Instead, other cell types, such as CAFs and endo-
thelial cells, express PDGFR (Bronzert et al., 1987; Forsberg 
et al., 1993), and PDGF has been shown to stimulate pro-
liferation of CAFs and to be an important initiator of the  
desmoplastic reaction in tumors (Shao et al., 2000). Basic �-
broblast growth factor (bFGF) is another mitogen secreted 
by neoplastic cells that stimulates the proliferation and di�er-
entiation of �broblasts to CAFs (Armelin, 1973; Strutz et al., 
2000; Kwabi-Addo et al., 2004). Cytokines produced by 
neoplastic cells, including IL-6, also stimulate the production 
of CAFs (Giannoni et al., 2010). In addition, phospholipid 
derivates, such as lysophosphatidic acid (LPA), can be secreted 
from neoplastic cells to stimulate di�erentiation of human 
MSCs into myo�broblast-like CAFs (Jeon et al., 2008).

Besides growth factors and cytokines, other mechanisms 
of CAF activation have been reported. For example, exosomes 
can transfer protein, RNA, and microRNA (miR) from one 
cell to another, and cancer-derived exosomes have been shown 
to contribute to the recruitment and activation of �broblasts 
and MSCs within tumors (Webber et al., 2010; Cho et al., 
2012; Gu et al., 2012; Kahlert and Kalluri, 2013). In addition, 
hypoxia and reactive oxygen species (ROS) promote activa-
tion of CAFs. ROS have been shown to support conversion 
of �broblasts into myo�broblasts through the accumulation of 
the hypoxia-inducible factor (HIF)-1, whereas antioxidants 
have been found to reduce HIF-1 levels, inhibiting numer-
ous myo�broblast features (Toullec et al., 2010).

CAFs modulate the tumor microenvironment
Upon reprogramming, many transcriptional changes occur 
that distinguish CAFs from their normal counterparts (Allinen 
et al., 2004; Nakagawa et al., 2004; Hu et al., 2005). Repro-
gramming cells into CAFs also involves changes in miR expres-
sion, a�ecting target genes posttranscriptionally (Aprelikova 
et al., 2010, 2013; Musumeci et al., 2011; Bronisz et al., 2012; 
Mitra et al., 2012; Masamune et al., 2014). Furthermore, epi-
genetic changes, such as global DNA hypomethylation fre-
quently seen in neoplastic cells, have also been observed in 
CAFs (Jiang et al., 2008). Together, all these gene regulatory 
changes induce a shift in the metabolome and secretome, 
which maintain the di�erentiated state of myo�broblasts in  
an autocrine manner (Kojima et al., 2010) but also stimulate 
neoplastic cells in a paracrine manner (Fig. 2). In the follow-
ing sections, we will discuss principle strategies used by acti-
vated CAFs to communicate these protumorigenic e�ects.

CAFs secrete soluble factors. CAFs orchestrate key patho-
physiological processes in cancer development through para-
crine interactions involving the secretion of multiple soluble 

well as in liver �brosis (Yin et al., 2013), and are categorized 
as CAFs when seen in cancer tissue. In addition to these 
local sources of CAFs, bone marrow–derived cells termed 
�brocytes can be recruited to the tumor and di�erentiate 
into myo�broblasts and �broblasts (Ishii et al., 2003; Direkze  
et al., 2004; Mishra et al., 2008; Kidd et al., 2012). –SMA–
expressing myo�broblasts have also been shown to originate 
from neighboring adipose tissue (Kidd et al., 2012). Endo-
thelial-mesenchymal transition (EndMT), a process where 
endothelial cells down-regulate their CD31 expression and 
induce expression of FSP-1, is another potential source of 
CAFs (Zeisberg et al., 2007). FSP-1–positive fibroblasts can 
also be derived from local epithelial-mesenchymal transition 
(EMT), indicating that nontransformed epithelial cells may 
be an additional source of CAFs by undergoing EMT in re-
sponse to stimuli from surrounding cells (Iwano et al., 2002). 
Therefore, CAFs may be derived from multiple tissue types, 
re�ecting local and distant cues that are sensed during tu-
morigenesis, and thus cannot be referred to as one popula-
tion of cells. The relative contribution of each source of 
CAFs is highly dependent on the experimental conditions 
used and less certain in actual human cancers.

Neoplastic cells recruit and activate CAFs
Early work of Stoker et al. (1966) demonstrated that nor-
mal quiescent �broblasts inhibit the growth of polyoma-
transformed cells by direct contact between the two cell types. 
It has later been shown that normal tissue-associated �bro-
blasts (NAFs) isolated from di�erent organs can inhibit the 
growth of neoplastic cells (Flaberg et al., 2011), presumably 
due to the ability of �broblasts to maintain epithelial homeo-
stasis and proliferative quiescence (Trimboli et al., 2009). In-
deed, this has been proposed as one reason why certain tumors 
found in autopsy studies appear dormant and nonprogressing 
(Bissell and Hines, 2011). Given these properties of NAFs, 
neoplastic cells must evolve to both recruit �broblasts (from 
the di�erent potential sources mentioned above) and to re-
program them into CAFs, thereby converting the �broblast 
from being tumor suppressive to tumor supportive. Interest-
ingly, once reprogrammed, the CAF phenotype can persist in 
cell culture even in the absence of continued exposure to in-
tratumoral stimuli (Orimo et al., 2005). Several studies have 
shown that NAFs are functionally distinct from CAFs. Pros-
tate CAFs are more proliferative and less prone to contact in-
hibition than their NAF counterparts (Madar et al., 2009). 
Furthermore, colonic CAFs more potently induce the prolif-
eration and migration of neoplastic cells compared with NAFs 
(Berdiel-Acer et al., 2014).

Oncogenic signaling within neoplastic cells frequently 
drives the recruitment and activation of �broblasts by secret-
ing �broblast-activating factors (Yang et al., 2006), thereby 
mimicking the normal wound healing process where these 
factors are normally secreted from injured epithelial cells and 
macrophages (Fig. 2). TGF- is a major regulator of �brosis 
and is one of the most important and well-studied cancer cell–
derived factors a�ecting CAF activation (Lieubeau et al., 1994; 
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(Lemons et al., 2010), but when transformed into CAFs they 
change their metabolic pro�le and show increased autophagy 
(Chaudhri et al., 2013). As an example, phosphoglycerate  
kinase-1 (PGK1), a part of the glycolytic pathway, is highly 
up-regulated in CAFs compared with normal �broblasts. Upon 
overexpression of PGK1, normal �broblasts gain a myo�bro-
blastic phenotype, which promotes tumor cell growth when 
coimplanted with neoplastic cells in vivo (Wang et al., 2010).

Interestingly, CAFs have been reported to use aerobic gly-
colysis as a source of energy. In some tumors, CAFs express 
glycolytic enzymes related to the Warburg e�ect, such as the 
M2 isoform of pyruvate kinase and lactate dehydrogenase, 
whereas adjacent neoplastic cells do not (Pavlides et al., 2009). 
A switch to aerobic glycolysis in CAFs is hypothesized to 
generate lactate and ketones, which are secreted into the intra-
cellular space and act as paracrine onco-metabolites that fuel 
oxidative mitochondrial metabolism in neoplastic cells. This 
phenomenon is referred to as the “reverse Warburg e�ect” 
(Pavlides et al., 2009). To further support the signi�cance of 
this phenomenon, high stromal MTC4 expression (a functional 
marker of hypoxia, oxidative stress, aerobic glycolysis, and lac-
tate e�ux) was shown to be correlated with decreased overall 
survival in triple-negative breast cancer, whereas expression of 
MTC4 in neoplastic cells had no prognostic value (Witkiewicz 
et al., 2012). In ex vivo co-culture systems containing breast 
cancer cells and �broblasts, glucose uptake was increased  
and mitochondria activity was decreased in �broblasts and  
the opposite e�ect was observed in neoplastic cells (Martinez-
Outschoorn et al., 2011). Mechanistically, neoplastic cells have 
been shown to secrete H2O2, which initiates an oxidative stress 
in the tumor stroma, switching CAFs to aerobic glycolysis 
(Martinez-Outschoorn et al., 2011). Furthermore, the TGF- 
pathway in CAFs induces a metabolic reprogramming that 
promotes mitochondrial activity in adjacent neoplastic cells 
(Guido et al., 2012). In contrast, other tumors are characterized 
by the conventional Warburg phenotype in which the neoplas-
tic cells are driven by anaerobic metabolism, and CAFs have 
been reported to express lactate transporters (MCT1/MCT2) 
while reducing the expression of glucose transporters (GLUT1; 
Koukourakis et al., 2006), suggesting a role of CAFs in bu�er-
ing and recycling the products derived from anaerobic metabo-
lism in neoplastic cell.

There is a great diversity in metabolic phenotype among 
di�erent tumors. In an attempt to map the metabolic hetero-
geneity in breast cancer, tumors were classi�ed as having  
Warburg type (glycolysis in neoplastic cells, nonglycolysis in 
stroma), reverse Warburg type (nonglycolysis in neoplastic 
cells, glycolysis in stroma), mixed type (glycolysis in both 
stroma and neoplastic cells), and null type (nonglycolysis in 
both stroma and neoplastic cells; Choi et al., 2013). The results 
indicate a correlation between di�erent metabolic pheno-
types and di�erent tumor subtypes (Luminal A, B, triple- 
negative, etc.).

Collectively, CAFs participate in a dynamic metabolic in-
terplay with the neoplastic cells and can adapt to the metabolic 
needs of the tumor. This is important to keep in mind when 

factors. Growth factors such as hepatocyte growth factor 
(HGF), connective tissue growth factor (CTGF), epidermal 
growth factor (EGF), insulin-like growth factor (IGF), nerve 
growth factor (NGF), basic �broblast growth factor (bFGF), 
and members of the Wnt family (Orimo et al., 2001, 2005; 
Allinen et al., 2004; Bhowmick et al., 2004; Kalluri and Zeisberg, 
2006; Erez et al., 2010; Räsänen and Vaheri, 2010; Cha�er and 
Weinberg, 2011; Cirri and Chiarugi, 2011), as well as many 
cytokines, such as CCL7 and CXCL12 (Orimo et al., 2005; 
Jung et al., 2010), have all been reported to be involved in this 
paracrine cross talk. The CAF secretome also regulates angio-
genesis. Vascular endothelial growth factor A (VEGF-A) is  
induced in CAFs by neoplastic cells (Guo et al., 2008), as well 
as CXCL12, CXCL14, and CTGF (Orimo et al., 2005; Yang 
et al., 2005; Augsten et al., 2009). The three most studied 
CAF-secreted factors will hereafter be discussed in detail.

CXCL12 is highly overexpressed in CAFs (Allinen et al., 
2004) and several in vitro and in vivo models have revealed a 
key role of CXCL12 and its receptor CXCR4 in tumor–stroma 
interactions. CXCL12 provides stimulatory input to CXCR4-
expressing neoplastic cells, resulting in proliferation and mi-
gration (Domanska et al., 2012). In pancreatic cancer cells, 
CXCL12/CXCR4 signaling triggers invasion and EMT 
through noncanonical Hedgehog pathway (Li et al., 2012c) and 
further contributes to cancer progression by activation of the 
canonical Wnt pathway (Wang et al., 2008). CTGF has a key 
role in �brosis (Gao and Brigstock, 2005) and is also highly up-
regulated in numerous cancers (Jacobson and Cunningham, 
2012), including pancreatic ductal adenocarcinoma (Charrier 
and Brigstock, 2013). CTGF expression is induced by TGF- 
(Pickup et al., 2013a) and hypoxia (Eguchi et al., 2013) in both 
activated pancreatic stellate cells and neoplastic cells (Hartel  
et al., 2004) and causes increased invasiveness of neoplastic cells, 
which can be inhibited through CTGF depletion (Eguchi  
et al., 2013). In head and neck squamous cancer cells, CTGF 
enhanced stem-like properties and increased expression of 
multiple pluripotency genes (Chang et al., 2013). HGF was 
originally identi�ed as a mitogen for hepatocytes but also plays 
an important role in wound healing and tissue repair. Normally, 
HGF is sequestered in the ECM in a latent form. Proteolysis of 
the latent form of HGF enables binding to and signaling by the 
c-Met tyrosine kinase (Benvenuti and Comoglio, 2007). The 
c-Met signaling pathway is often a�ected in cancer, either by 
mutations in neoplastic cells leading to constant oncogenic  
c-Met signaling (Peruzzi and Bottaro, 2006) or by overexpres-
sion of HGF in CAFs, leading to increased proliferation of 
neoplastic cells. Furthermore, in a three-dimensional model 
of ductal carcinoma in situ, co-cultures with HGF-secreting 
�broblasts were found to increase the invasive outgrowth by 
enhancing the ability of these preneoplastic cells to degrade 
the ECM (Jedeszko et al., 2009).

CAFs modify tumor metabolism. Metabolic alterations  
are not only restricted to cancer cells; CAFs also show impor-
tant metabolic changes that promote tumorigenesis. Fibro-
blasts are metabolically active already in their quiescent state 
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By using in vitro co-culture and in vivo transplantation 
experiments, Olumi et al. (1999) showed that human pros-
tatic CAFs induced the proliferation and the ability to initiate 
tumors from immortalized nontumorigenic human prostatic 
epithelial cells. This e�ect was not manifested by normal �-
broblasts and CAFs did not a�ect growth of normal human 
prostatic epithelial cells under identical conditions (Olumi et al., 
1999). In a similar study, senescent human �broblasts were 
shown to stimulate premalignant and malignant, but not normal, 
epithelial cells to proliferate in culture and develop tumors 
when engrafted in mice (Krtolica et al., 2001). This elegantly 
demonstrates how �broblasts can initiate tumor formation in 
premalignant cells that have not acquired su�cient genetic 
alterations for complete transformation. Interestingly, when 
regrafted into secondary mice in the absence of CAFs, the 
epithelial cells sustain their tumorigenic potential, showing 
that the CAF-mediated transformation of epithelial cells is 
long-lasting (Hayward et al., 2001).

Secreted factors from CAFs are believed to be responsible 
for this tumor-initiating potential. Although TGF- signaling 
helps maintain the CAF phenotype, ablating TGFBR in �bro-
blasts resulted in spontaneous neoplasia in the prostate, illus-
trating a tumor-suppressive function of TGF- signaling in 
early tumor development (Bhowmick et al., 2004). Notably, 
HGF can compensate for TGF- loss, making HGF a candi-
date for mediating the tumor-initiating e�ect of CAFs. Indeed, 
overexpression of HGF in �broblasts induced hyperprolifera-
tion of normal epithelium in a xenograft model (Kuperwasser  
et al., 2004), which further supports an initiating role of HGF. 
In addition to tumor initiation, CAFs also participate in tumor 
maintenance and progression. For example, co-implantation of 
breast cancer cells with CAFs was shown to increase xenograft 
tumor growth (Orimo et al., 2005).

Further evidence for the role of CAFs in tumor progres-
sion comes from studies in which activated CAFs were 
inactivated or in which key proteins were reduced in CAFs 
through genetic ablation. Activated stellate cells in pancreatic 
cancer could be driven back into a quiescent state by reti-
noic acid, resulting in reduced paracrine cross talk, such as 
Wnt/-catenin signaling. In a three-dimensional co-culture 
system, these quiescent stellate cells slowed tumor progres-
sion by reducing neoplastic cell proliferation and migra-
tion (Froeling et al., 2011). Mice de�cient for the CAF 
marker FSP-1 also showed reduced engraftment of neo-
plastic cells and delayed tumor growth (Grum-Schwensen  
et al., 2005).

CAFs regulate cancer stemness
There is accumulating evidence for the acquisition of stem-
like plasticity in a subset of the cancer cells, usually referred to 
as cancer stem cells (CSCs). In�ammatory mediators and cyto-
kines are the most common cues reported to induce stemness 
of neoplastic cells. Many factors secreted by CAFs, such as IL-6, 
IL-17A, CXCL7, PGE2, and HGF, were shown to trigger the 
Wnt–-catenin pathway in neoplastic cells and augment the 
CSC population (Giannoni et al., 2010, 2011; Vermeulen et al., 

targeting metabolic pathways, and it also indicates that PET 
imaging may be speci�cally detecting glucose uptake in the tumor 
stroma rather than in the neoplastic cells in certain tumors.

CAFs remodel the ECM. One characteristic feature of acti-
vated CAFs is their ability to synthesize and remodel the ECM 
in the desmoplastic stroma. Severe desmoplasia is correlated 
with poor prognosis in lung, pancreas, breast, and colorectal 
tumors (Cardone et al., 1997; Maeshima et al., 2002; Tsujino 
et al., 2007; Erkan et al., 2008; Kawase et al., 2008). Changes in 
the composition and cross-linking of the ECM in�uence the 
sti�ness of the tissue, which has a pivotal role in tumorigenesis 
(Erler and Weaver, 2009; Cukierman and Bassi, 2010). By regu-
lating the remodeling of the ECM, CAFs drive the recruitment 
of other cells into the tumor, promote migration, and facilitate 
a metastatic phenotype of neoplastic cells.

Hyaluronic acid is a major component of the ECM and 
CAFs contribute to its production. Apart from serving as a 
structural component, hyaluronic acid possesses biological 
functions, such as macrophage recruitment (Kobayashi et al., 
2010). Furthermore, CAFs express Lysyl oxidase (LOX), an en-
zyme responsible for cross-linking collagen I (Pickup et al., 
2013b). In breast cancer, tumorigenesis is accompanied by 
changes in collagen cross-linking, and reduced LOX-mediated 
collagen cross-linking diminished tumor tissue sti�ness and 
decreased tumor incidence in a xenograft mouse model (Levental 
et al., 2009).

In contrast, CAFs also regulate the degradation of the ECM. 
By expressing members of the matrix metalloproteinase (MMP)  
family, CAFs can facilitate tumor growth, invasion, and metas-
tasis (Poulsom et al., 1992; Stetler-Stevenson et al., 1993; 
Sternlicht et al., 1999; Vosseler et al., 2009; Zigrino et al., 2009). 
MMP-mediated ECM remodeling is essential for cancer an-
giogenesis, and MMP13 expressed from CAFs plays a key role 
in promoting angiogenesis by releasing VEGF that is bound 
and sequestered in the ECM (Lederle et al., 2010). In addition, 
MMPs stimulate protease-activated receptors (PARs) on the 
surface of neoplastic cells, thereby promoting growth and inva-
sion (Boire et al., 2005). Other proteases are also involved in 
ECM degradation. For instance, urokinase-type plasminogen 
activator (uPA) activates the serine protease Plasmin and has 
thereby been shown to increase proliferation, migration, and 
invasion (Danø et al., 2005; Noskova et al., 2009). Finally, the 
CAF marker FAP is a membrane-bound glycoprotein with 
both collagenase and dipeptidyl peptidase (DPP) activities that 
are important for degrading the ECM (Scanlan et al., 1994) and 
stimulating tumor growth (Cheng et al., 2005).

CAFs trigger tumor initiation and progression
Many studies have highlighted the importance of CAFs in initia-
tion and progression of cancer mediated by the ability of the 
CAFs to alter important functions in neoplastic cells, such as cell 
cycle regulation, migration, and death (Shimoda et al., 2010). 
Interestingly, neoplastic cells of di�erent origins di�er in their 
responses upon stimulation from CAFs (Kadaba et al., 2013), 
illustrating a unique relationship with CAFs across tumor types.
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CAFs increased expression of COX2, and a selective COX2 
inhibitor abrogated migration of these cells (Sato et al., 2004).

Genetically altered neoplastic cells often generate neo-
antigens that can potentially be recognized and destroyed by 
the immune system. However, most tumors evade immune 
surveillance despite the abundance of an in�ammatory mi-
lieu. Accumulating evidence shows that the tumor stroma and 
CAFs actively participate in modulating the immune response 
to help neoplastic cells escape detection, thereby supporting 
tumor progression (Singh et al., 1992; Liao et al., 2009; Iijima 
et al., 2011). CAFs have been shown to protect pancreatic  
tumors and lung carcinoma cells from the cytotoxic e�ect of 
T cells via di�erent mechanisms. FAP-positive CAFs were 
shown to produce CXCL12, which mediated the exclusion 
of T cells from neoplastic cells (Feig et al., 2013). CAFs also 
opposed the TNF- and IFN-–mediated necrosis of neoplastic 
cells by T cells (Kraman et al., 2010). Depletion of FAP-
positive cells restored immunological detection and destruc-
tion of the tumor, indicating that FAP-positive cells are 
immune-suppressive cells in the tumor microenvironment 
(Kraman et al., 2010; Feig et al., 2013). Additionally, pancre-
atic stellate cells induce the di�erentiation of peripheral blood 
mononuclear cells into immune-suppressive myeloid-derived 
suppressor cells, contributing to T cell inhibition (Mace et al., 
2013). Finally, CAFs derived from hepatocellular carcinoma 
impair NK cell cytotoxic activity by reducing cytotoxic re-
ceptors on their cell surface and interfering with their cyto-
kine production (Li et al., 2012b). This was mediated through 
the secretion of prostaglandin E2 (PGE2) from CAFs, which 
also interfered with NK cell functions in melanoma (Balsamo 
et al., 2009). In summary, CAFs possess the ability to manipu-
late the immune system, both by excluding and opposing  
T and NK cell functions and by maintaining an aberrant in-
�ammatory pro-tumorigenic environment.

CAFs promote cancer cell migration and metastasis
Neoplastic cell metastasis leads to the demise of most patients, 
and CAFs participate in this process. Neoplastic cells undergo 
epigenetic and genetic changes resulting in a metastatic phe-
notype, and CAFs coevolve with the neoplastic cells during 
tumor progression by acquiring a proin�ammatory gene ex-
pression pattern (Saadi et al., 2010). Furthermore, gene signa-
tures characterizing active CAFs are often correlated with poor 
clinical outcomes (Herrera et al., 2013).

The close proximity between neoplastic cells and CAFs 
yields an e�ective cross talk, which ultimately supports inva-
sion and metastasis. TGF- response in CAFs led to secretion 
of IL-11, which in turn can induce GP130/STAT3 signaling 
in neoplastic cells to support tumor initiation and accelerate 
metastasis (Calon et al., 2012). Breast cancer cells also create a 
paracrine loop by reprogramming their surrounding MSCs 
into CAFs that secrete CCL5. The cancer cells then responded 
to CCL5 through the CCR5 receptor, resulting in augmented 
metastatic capacity (Karnoub et al., 2007). The noncanonical 
Wnt–planar cell polarity (PCP) pathway also promotes the 
dissemination of breast cancer to distant sites in the body. The 

2010; Liu et al., 2011; Li et al., 2012a; Malanchi et al., 2012; 
Lotti et al., 2013). CD44, a prominent CSC marker and recep-
tor for hyaluronic acid, is up-regulated in breast, prostate, and 
colorectal cancers by di�erent cytokines produced by CAFs 
and contributes to maintaining CSC self-renewal features and 
general stemness capacity (Giannoni et al., 2010; Liu et al., 2011;  
Lotti et al., 2013). Interestingly, CD44 is also expressed on 
CAFs, where it is indispensable for the existence of the neigh-
boring CSC population. In response to hypoxia or reduced 
nutrient conditions, CAFs elevate CD44 and maintain stem 
cell properties of neoplastic cells (Kinugasa et al., 2014).

CAFs also induce expression of other CSC markers, such 
as ALDH1 and Nestin, in many tumor types (Liu et al., 2011; 
Hamada et al., 2012; Matsuda et al., 2012). Expression of these 
stem cell markers and the elevation of the CSC population 
are correlated with aggressive tumors, which exhibit en-
hanced invasiveness and metastatic capacities (Giannoni et al., 
2011; Li et al., 2012a; Malanchi et al., 2012). Together, these 
data show that CAFs maintain stemness in neoplastic cells to 
support further tumor progression.

CAFs modulate the immune response
An in�ammatory environment is known to promote error-
prone, high-rate proliferation, thereby facilitating tumorigen-
esis (Grivennikov et al., 2010). Indeed, chronic in�ammation 
is a prominent risk factor for many cancers, including hepato-
cellular carcinoma, gastric cancer, and pancreatic ductal ade-
nocarcinoma (Pikarsky et al., 2004; Peek and Crabtree, 2006; 
Guerra et al., 2007). CAFs mediate tumor-enhancing in�am-
mation by expressing a proin�ammatory gene signature, which 
creates a microenvironment that attracts myeloid cells and 
supports tumor growth and angiogenesis (Erez et al., 2010; 
Torres et al., 2013). This signature, identi�ed early in dysplastic 
lesions and maintained throughout tumorigenesis, is mediated 
via NF-B-dependent signaling and initiated by IL-1 in skin 
cancer. Most importantly, normal �broblasts can be induced 
by carcinoma cells to turn on this proin�ammatory gene sig-
nature (Erez et al., 2010). A similar NF-B–dependent in�am-
matory signature was activated by CAFs to support prostate 
cancer stemness and invasion (Giannoni et al., 2011).

Cyclooxygenase 2 (COX2), an NF-B target involved in 
mediating in�ammation and a part of the proin�ammatory 
gene signature, is expressed by CAFs and neoplastic cells  
(Nakagawa et al., 2004; Erez et al., 2010), and has been shown 
to function as a mediator of tumor progression. Indeed, the 
implantation of lung carcinoma cells in COX2-de�cient mice 
or treatment with COX2 inhibitors reduced tumor growth 
and vascular density (Williams et al., 2000). In a xenograft 
model of ductal carcinoma in situ, �broblasts were shown to 
induce the expression of COX2 in neoplastic cells, a�ecting 
tumor growth and progression. As a consequence of increased 
COX2, MMP14 and VEGF expression were increased, causing 
a more invasive phenotype. Administration of a selective COX2 
inhibitor, Celecoxib, impeded this invasion (Hu et al., 2009). 
Likewise, in vitro coculturing of pancreatic cancer cells with 
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pathways that change the therapeutic outcome, driving the 
neoplastic cell to a more drug-resistant phenotype.

Conversely, a limited number of studies report that CAFs 
can also increase the anti-neoplastic potency of certain drugs. 
The mechanism for this unexpected sensitization may include 
the alteration of signaling pathways in neoplastic cells that are 
induced by CAFs (McMillin et al., 2013). Although we will not 
discuss this topic further, it highlights the need to consider the 
tumor microenvironment during therapeutic development.

Environment-mediated drug resistance. Although acquired 
drug resistance of neoplastic cells is considered to be a cell 
autonomous process that leads to adaptive biochemical, epi-
genetic, or genetic changes, the microenvironment can also 
participate in this process by providing extrinsic cues that pro-
mote cell survival and thereby impede drug toxicity. The im-
pact of the tumor microenvironment on drug resistance was 
shown previously when mammary cancer cells that were re-
fractory in vivo to cytotoxic drugs became sensitive upon 
transfer to an in vitro setting where the microenvironment 
was excluded (Teicher et al., 1990). The importance of the 
“soil” was further demonstrated in an experiment where colon 
carcinoma cells were injected at di�erent sites, and showed 
varying responses to chemotherapy merely based on their lo-
cation (Fidler et al., 1994). Compared with cell autonomous 
drug resistance, which develops over a long period of time,  
environment-mediated resistance can develop rapidly. Thus,  
environment-mediated resistance may protect neoplastic cells 
from apoptosis while they acquire the mutations needed for 
cell-intrinsic protection of chemotherapy (Meads et al., 2009).

Environment-mediated drug resistance can be further 
categorized into two major groups: soluble factor–mediated 
drug resistance and cell adhesion–mediated drug resistance 
(Meads et al., 2009). Soluble factor-mediated drug resis-
tance is induced by cytokines and growth factors secreted 
from CAFs and other cell types in the stroma. By binding to 
neoplastic cell receptors, these factors cause transcriptional 
changes and also activate nontranscriptional mechanisms in-
cluding degradation or redistribution of activators of apopto-
sis, and increased stability of suppressors of apoptosis and cell 
cycle regulators. Resistance due to secreted factors from stro-
mal cells is common, particularly to targeted agents (Straussman 
et al., 2012). Many cancers have been shown to harbor driv-
ing mutations in receptor tyrosine kinase (RTK) pathways, 
constitutively activating these pathways and making the  
neoplastic cell “kinase-addicted.” Inhibiting these pathways 
has shown promising results in vitro but many times failed  
in vivo, where neoplastic cells soon develop resistance to such 
drugs. Wilson et al. (2012) made it clear that because of re-
dundancy and overlap in many RTK signaling pathways, oth-
erwise kinase-addicted neoplastic cells that respond to certain 
RTK inhibitors can be rescued from drug sensitivity simply 
by adding one or more RTK ligands. As CAFs are a major 
source of secreted RTK ligands, this gives a mechanistic ex-
planation to how CAFs mediate resistance toward targeted 
therapy. Additional evidence was provided by Wang et al.  

PCP pathway controls convergent-extension movements dur-
ing embryogenesis and regulates cell motility by changing cell 
morphology and inducing protrusions. Interestingly, exo-
somes secreted from CAFs triggered Wnt-11 autocrine induc-
tion of the PCP pathway in neoplastic cells, enhancing breast 
cancer metastatic potential (Luga et al., 2012).

Another important consequence of CAF-mediated sig-
naling on neoplastic cells is EMT, which is considered a critical 
process in the extravasation of tumors (Guarino et al., 2007). 
For example, pancreatic stellate cells in pancreatic tumors 
were shown to trigger EMT in co-cultured neoplastic cells, 
correlating with increased metastasis (Kikuta et al., 2010). 
Notch and COX2/NF-B signaling have also been shown to 
be involved in acquiring and maintaining the EMT pheno-
type (Wang et al., 2009b; Li et al., 2012a). Indeed, CAF- 
secreted MMPs triggered the COX2–NF-B cascade in 
prostate cancer cells to promote ROS accumulation and pros-
tate cancer invasion (Giannoni et al., 2011).

Interestingly, CAFs can promote metastasis in the absence 
of EMT. CAFs use Rho-dependent signaling pathways to 
create force-dependent movements by which they migrate 
and form tracks in the matrix for the neighboring neoplastic 
cells to follow (Gaggioli et al., 2007; Goetz et al., 2011;  
Sanz-Moreno et al., 2011). Rho-dependent cytoskeletal re-
modeling in CAFs was shown to be activated by Palladin, 
Cav-1, or JAK signaling cascades, and led to Actomyosin con-
tractility and enhanced invasion (Hooper et al., 2010; Goetz 
et al., 2011; Sanz-Moreno et al., 2011; Brentnall et al., 2012). 
Mesenchymal-derived Cav-1 also conferred microenviron-
ment remodeling to favor the migration of neoplastic cells. 
CAFs further facilitated intra- and extravasation and were 
shown to accompany neoplastic cells to their metastatic site 
(Duda et al., 2010; Xu et al., 2010). Clusters of cells composed 
of neoplastic cells and �broblasts have been shown to be more 
viable than single neoplastic cells in the blood stream and have 
a survival advantage when seeding in metastatic sites (Duda  
et al., 2010). By these means, neoplastic cells can sustain their 
epithelial features while relying on CAFs for invasion.

CAFs have also been reported to increase the rate of suc-
cessful colonization by selecting for neoplastic clones bearing a 
speci�c metastatic advantage while still residing in the primary 
lesion. This e�ect is mediated through the secretion of CXCL12 
and IGF (Zhang et al., 2013b). Successful colonization has also 
been shown to be dependent on proangiogenic factors secreted 
from FSP-1–positive cells (O’Connell et al., 2011).

CAFs alter therapeutic responses
The protumorigenic e�ects of CAFs can also promote thera-
peutic resistance. Evidence for the clinical relevance of CAFs 
came from a study by Farmer et al. (2009), who found that 
breast cancer patients responded poorly to neoadjuvant che-
motherapy if their tumors had increased expression of stromal 
genes. The stroma can interfere with therapeutic agents by 
two major mechanisms. First, it can simply function as an in-
terstitial barrier that prevents e�cient drug delivery (Jain, 1990). 
The second mechanism involves the activation of signaling 
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canonical Wnt signaling in prostate cancer cells, promoting 
cancer cell survival and disease progression (Sun et al., 2012). 
Moreover, when breast cancer cells were injected into the ir-
radiated fat pads of mice, increased neoplastic potential was 
observed compared with the same cells injected into non-
irradiated fat pads (Barcellos-Ho� and Ravani, 2000). Along 
these lines, irradiated �broblasts increased invasiveness in 
pancreatic cancer cells, an e�ect which could be inhibited 
with an HGF antagonist (Ohuchida et al., 2004). In addition, 
Lotti et al. (2013) compared colorectal tumors before and 
after cytotoxic treatment and found more CAFs in the post-
treated tissue. These chemotherapy-treated CAFs, when iso-
lated and co-cultured with CSCs, increased self-renewal, 
chemoresistance, and tumor growth of CSCs via IL-17A se-
cretion. Collectively, these data illustrate how CAFs can gain 
new features upon exposure to chemo- or radiotherapy, 
which not only enables them to reverse or attenuate the e�ect 
of anti-cancer drugs but also contributes to a more aggressive 
cancer phenotype (Barcellos-Ho� et al., 2005).

Targeting the CAF-induced protumorigenic effects
The broad range of mechanisms used by CAFs to stimulate 
tumorigenesis and drug resistance (Fig. 2) provides multiple 
avenues to pursue therapeutic development. Indeed, four 
general strategies have been suggested to target CAFs and 
thereby achieve therapeutic bene�ts: (1) targeting the bio-
physical stromal barrier to increase drug delivery; (2) seques-
tering or inhibiting CAF-secreted factors that stimulate 
neoplastic cell behavior and drug resistance; (3) depleting  
or blocking the ECM components to reduce adhesion-
mediated signaling; and (4) targeting the CAFs themselves to 
disable their downstream e�ects (Fig. 3).

Many informative experiments testing these strategies 
have been performed in combination with conventional che-
motherapeutic or targeted drugs. The following section will 
brie�y summarize some of the experiments that have pro-
vided additional insights to CAF/ECM targeting.

1. Targeting the stromal barrier. The tumor stroma can be 
considered a barrier that needs to be lowered so that drugs 
can be optimally delivered. A variety of strategies have been 
tested to increase drug delivery by overcoming the stromal 
barrier. Targeting the production of the ECM or degrading 
the ECM are both feasible strategies to loosen the stroma, re-
sulting in a change in the interstitial pressure of the tumor 
and the consequent reexpansion of blood vessels. Hyaluronic 
acid, TGF-, and the Hedgehog pathway have all been tested 
as targets in this context.

High interstitial �uid pressure is evident in solid tumors, 
especially those rich in ECM, resulting in vascular collapse 
and e�ectively limiting perfusion and di�usion (Provenzano 
et al., 2012). Hyaluronic acid compresses vessels in collagen-
rich tumors, and both collagen and hyaluronic acid are critical 
targets for decompressing tumor vessels. Enzymatic degrada-
tion of hyaluronic acid using hyaluronidase normalized the 
interstitial �uid pressure and expanded the microvasculature, 

(2009a), who showed that CAFs recruited to lung tumors  
induced resistance to tyrosine kinase inhibitors against the 
EGF receptor (EGFR-TKIs). Interestingly, if HGF was in-
hibited, the resistance to EGFR-TKIs was eliminated, both  
in vivo and in vitro. This shows the striking impact that a sin-
gle CAF-secreted growth factor can have on drug resistance.

Moreover, CAFs also play a role in targeted anti-angiogenesis 
treatments. Crawford et al. (2009) found that the expression 
of PDGF is up-regulated in CAFs from tumors that are resis-
tant to anti-VEGF therapy and that a PDGF-neutralizing  
antibody impaired the observed anti-VEGF resistance, sug-
gesting a crucial role for CAFs in mediating resistance to anti-
angiogenesis therapy.

Soluble factor-mediated drug resistance is also directed 
against conventional chemotherapies. The CXCL12–CXCR4 
signaling axis has been shown to mediate chemotherapy resistance 
(Singh et al., 2010; Domanska et al., 2012), and furthermore, 
pancreatic stellate cells drive resistance to chemotherapy- 
induced apoptosis and radiation-induced apoptosis via a 
mechanism involving activation of the AKT pathway (Hwang 
et al., 2008). As mentioned earlier, CAFs also secrete factors 
that stimulate neoplastic cells to undergo EMT and this pro-
cess has also been shown to augment resistance to chemo-
therapy (Wang et al., 2009b).

Cell adhesion–mediated drug resistance occurs when  
neoplastic cells either adhere to the ECM or make direct cell-
to-cell contact with stromal cells. Early observations revealed 
enhanced tumorigenicity and drug resistance when small cell 
lung cancer (SCLC) cells were grown on a basement mem-
brane (Fridman et al., 1990). Furthermore, if the integrin- 
mediated contact with the ECM was blocked, the tumor load 
decreased in vivo (Fridman et al., 1990). Adhesion of SCLC 
cells to the ECM was later shown to enhance tumorigenicity 
and confer resistance to chemotherapeutic agents as a result of 
1 integrin–stimulated tyrosine kinase activation, suppressing 
chemotherapy-induced apoptosis (Sethi et al., 1999). These re-
sults provide a mechanistic explanation behind cell adhesion–
mediated drug resistance. Similar e�ects have been reported in 
ovarian cancer (Sherman-Baust et al., 2003) and pancreatic 
ductal adenocarcinoma cells (Miyamoto et al., 2004). Further-
more, resistance to radiotherapy can also be induced by cell 
adhesion, and 1-integrin–mediated adhesion to �bronectin 
and collagens has been shown to be essential for cell survival 
after radiation-induced injury (Cordes et al., 2006).

Finally, cell adhesion can mediate resistance to targeted 
therapies using the same principles as described for soluble 
factor–mediated resistance. For example, PI3K/mTOR inhibi-
tors caused cell death in matrix-deprived ovarian cancer 
spheroids, whereas matrix-attached cells were resistant (Muranen  
et al., 2012).

Therapy-induced responses in CAFs. Cancer therapies tar-
get all cells in vivo, including CAFs, which have been shown 
to undergo a DNA damage response that paradoxically results 
in the secretion of proteins that drive tumorigenesis. For ex-
ample, after exposure to therapeutic agents, CAFs activate 
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both involved in a pathway that regulates vessel stability, inhib-
iting this pathway may increase delivery e�cacy by increasing 
perfusion of the tumor (Sounni et al., 2010).

Angiotensin receptor blockers (ARBs) were originally 
developed for the treatment of hypertension but also inhibit 
TGF- signaling (Diop-Frimpong et al., 2011), although the 
exact mechanism for this is unclear. Nevertheless, the Angio-
tensin signaling pathway is activated in stellate cells and con-
tributes to the desmoplastic reaction (Sakurai et al., 2011). 
ARBs have been shown to inhibit the production of collagen I  
by CAFs (Diop-Frimpong et al., 2011), and in a subcutaneous 
xenograft mouse model, ARB reduced expression of -SMA  
in the tumor, resulting in reduced ECM and tumor inhibition 
(Masamune et al., 2013). By reducing collagen and hyaluronic 
acid production, ARBs can increase vascular perfusion and 
drug delivery (Chauhan et al., 2013). A retrospective study 
further suggested the role of the Angiotensin pathway in  
cancer by showing that pancreatic cancer patients that under-
went gemcitabine monotherapy and at the same time re-
ceived hypertension treatment with ARB had a signi�cantly 
better survival than patients without ARB treatment (Nakai 
et al., 2010).

Hedgehog (Hh) signaling mediates tumorigenesis in many 
types of cancer (Thayer et al., 2003; Bailey et al., 2009). Inter-
estingly, despite ligand production in neoplastic cells, Hh sig-
naling is not activated in these cells. Instead, CAFs have been 

leading to increased intratumoral delivery of chemothera-
peutic agents (Provenzano et al., 2012; Jacobetz et al., 2013).  
Accordingly, the combination of hyaluronidase and conven-
tional chemotherapy inhibited tumor growth and prolonged 
survival relative to monotherapy in mouse models of pan-
creatic cancer (Provenzano et al., 2012; Jacobetz et al., 2013). 
This concept is now being tested in clinical trials.

Inhibitors of TGF- were shown to decrease collagen I 
content and increase the fraction of perfused vessels in a mouse 
breast cancer orthotopic model, leading to preclinical bene�t. 
Furthermore, the normalization of the tumor stroma improved 
intratumoral delivery of conventional chemotherapeutic drugs, 
leading to better drug response (Liu et al., 2012). TGF- inhibi-
tors are also capable of inhibiting cancer progression in animal 
models (Akhurst and Hata, 2012), but this pathway is highly 
context-dependent and complicated to target. Indeed, TGF- 
signaling exhibits a seemingly biphasic action during tumori-
genesis, being tumor-suppressive early in tumorigenesis and 
becoming tumor-promoting in later stages. Indirectly targeting 
MMPs by inhibiting the TGF- pathway is an alternative 
mechanism by which the stromal barrier may be attenuated. 
Low doses of the TGF-type I receptor inhibitor have been 
shown to increase the delivery of anti-cancer nanocarriers, 
thereby potentiating their tumor-inhibitory e�ect without al-
tering either TGF signaling in neoplastic cells or the amount of 
�brosis (Kano et al., 2007). Given that TGF- and MMP14 are 

Figure 3. Principle strategies for targeting CAF-induced pro-tumorigenic effects. Presented are four general approaches to control and diminish 
CAFs and their activity toward tumorigenesis and drug resistance. Examples of targets that have been hypothesized and/or empirically tested are indicated.
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specimens of patients who were treated with nAb-Paclitaxel 
and gemcitabine that demonstrated loss of neoplastic cells 
and a de�cient stroma (Alvarez et al., 2013). However, direct 
experiments in genetic mouse models did not corroborate 
stromal loss as the primary mode of action for nAb-paclitaxel 
but rather implicated drug–drug interactions leading to in-
creased neoplastic cell death as an important aspect of its  
activity (Frese et al., 2012). Furthermore, mice harboring 
pancreatic tumors and lacking SPARC responded to nAb-
Paclitaxel in an indistinguishable manner compared with 
mice that expressed SPARC (Neesse et al., 2014). To recon-
cile these seemingly contradictory �ndings, it is logical that 
the loss of neoplastic cells will lead to secondary decreases in 
stromal abundance.

2. Targeting CAF-secreted factors. CAFs secrete a variety of 
mitogens, chemokines, and matricellular proteins that promote 
tumor progression and drug resistance. Neesse et al. (2013) 
showed that targeting the stroma in a mouse pancreatic cancer 
model with a CTGF antibody yielded a synergistic e�ect with 
gemcitabine without increasing the intratumoral gemcitabine 
concentration. Mechanistic analysis revealed that CTGF de-
regulates the expression of the apoptosis modulating protein 
XIAP, highlighting the impact that secreted factors from CAFs 
have on neoplastic cells in terms of response to therapy. This 
modality is currently undergoing clinical investigation.

The HGF–Met pathway has been interrogated in many 
preclinical studies, either as monotherapy or in combination 
with other drugs. For example, a competitive antagonist of  
c-Met (NK4) has been shown to reduce liver metastasis and 
prolong survival in a mouse model of colon cancer (Wen  
et al., 2004). Furthermore, stromal �broblast-secreted HGF 
is involved in mediating therapy resistance in melanoma. 
BRAF mutant melanomas are highly dependent on consti-
tutive BRAF kinase activity, and inhibition of BRAF im-
proves survival in patients (Bollag et al., 2010; Flaherty et al., 
2010; Chapman et al., 2011; Sosman et al., 2012). However, 
CAF-derived HGF and subsequent activation of the HGF 
receptor c-Met have been shown to mediate resistance to 
targeted RAF inhibition. Interestingly, targeting both RAF 
and c-Met reversed the observed resistance (Straussman et al., 
2012), illustrating how microenvironment-derived media-
tors of drug resistance can serve as promising targets to over-
come the resistance problem with targeted therapies seen in 
the clinic.

The CXCR4 antagonist AMD3100 was shown to chemo-
sensitize prostate cancer cells to the chemotherapeutic agent 
docetaxel in a synergistic manner (Domanska et al., 2012). As 
discussed previously, CXCL12 secreted from FAP-positive 
cells was shown to be important for immune suppression in 
pancreatic cancer, providing a conceivable explanation as to 
why immunological checkpoint antagonists, such as anti-PDL1, 
have failed in pancreatic cancer (Royal et al., 2010). Notably, in 
a mouse model of pancreas cancer, CXCR4 inhibition pro-
moted T cell accumulation in the tumor site and synergized 
potently with anti-PDL1 (Feig et al., 2013).

demonstrated to respond to Hh stimulation by increasing the 
production of ECM (Yauch et al., 2008), indirectly support-
ing tumor growth. An inhibitor of Hh signaling, IPI-926,  
resulted in stromal depletion in a mouse model of pancreatic 
cancer. In combination with gemcitabine, IPI-926 increased 
the intratumoral vascular density, perfusion, and intratumoral 
concentration of chemotherapy, correlating with transient 
growth inhibition (Olive et al., 2009). Importantly, this study 
and the aforementioned studies targeting hyaluronan showed 
that by depleting the stroma barrier, drug delivery is increased, 
resulting in transiently improved survival. Although the com-
bination of IPI-926 and chemotherapy was promising in a 
Phase I trial, this approach failed in a randomized phase II clini-
cal trial. To address these con�icting data, a follow-up study was 
recently conducted, where Hh was genetically ablated in the 
epithelial compartment of a pancreatic cancer mouse model. 
Interestingly, despite a decreased number of stromal cells and an 
increased vascularization, these tumors were more aggressive 
and tended to be much less di�erentiated, subsequently leading 
to reduced survival of these mice (Rhim et al., 2014). Similar 
results were obtained in another study, where depletion of  
cancer-associated myo�broblasts in a pancreatic cancer model 
led to more aggressive and less di�erentiated tumors (Özdemir 
et al., 2014). Thus, the protective role of certain stromal ele-
ments should be kept in mind, although further interrogation 
of this phenomenon in other settings is required to evaluate the 
physiological role of the stroma in restraining cancer.

MMP inhibitors are another example that illustrates the 
complexity of the tumor stroma. These inhibitors were devel-
oped to block the degradation of the ECM, a process which was 
predicted to facilitate tumor progression. Early preclinical studies 
with MMP inhibitors were promising; however, randomized 
clinical trials were not positive (Dufour and Overall, 2013). An 
explanation for this may lie in the fact that MMPs have many 
di�erent substrates, and besides ECM structures, they also a�ect 
chemokines and cell surface receptors that might have tumor 
suppressive e�ects (Dufour and Overall, 2013). Unfortunately, 
side e�ects limited the dosing of the MMP inhibitor, and there-
fore the results of this trial may be misleading.

It is also possible to use the tumor ECM as a homing 
signal for drugs, limiting reactivity to normal tissues. By 
conjugating drugs to antibodies or small molecules that 
recognize stromal epitopes, drugs can be accumulated in the 
tumor, limiting the area of cytotoxicity. For instance, the 
plasminogen activator inhibitor type 2 (PAI2) has high a�n-
ity to plasminogen activator (uPA), which is highly expressed 
in the stroma of pancreatic cancer. By conjugating a radio-
isotope onto PAI2, radioactivity was concentrated in the tumor 
and caused complete inhibition of tumor growth in a xeno-
graft model (Qu et al., 2005). Additionally, nAb-Paclitaxel, an 
albumin-formulated Paclitaxel, was hypothesized to bind to 
the matricellular protein Osteonectin/SPARC that is pres-
ent in many tumor types and thereby cause stromal deple-
tion. This hypothesis was supported by data from patient- 
derived pancreatic cancer xenografts that demonstrated stromal 
loss after treatment (Von Ho� et al., 2011), and from resected 
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result in a “hypomethylation crisis” by causing further demethy-
lation in the already hypomethylated CAF genomes (Gonda 
et al., 2010), resulting in growth arrest.

Finally, FAP has been proposed as a potential therapeutic 
target (Brennen et al., 2012). This serine protease is expressed 
on most CAFs. Blocking FAP was found to inhibit tumor 
growth, and to decrease myo�broblast content and blood ves-
sel density in lung and colon tumors (Santos et al., 2009). 
Furthermore, a phase I trial showed that FAP can be tar-
geted without apparent side e�ects (Scott et al., 2003). How-
ever, no signi�cant e�cacy was shown for the treatment of 
metastatic colorectal cancer (Hofheinz et al., 2003).

FAP can also be used to deliver cytotoxic drugs to the 
CAFs. An anti-FAP antibody conjugated to an anti-mitotic 
agent induced long-lasting inhibition of tumor growth in xe-
nograft models (Ostermann et al., 2008). Investigators have 
also used the proteolytic activity of FAP to target CAFs. By 
delivering an inert pro-drug that contains the FAP cleavage 
site, FAP-positive cells in the tumor stroma can cleave and 
activate the drug, a method which has been tested both  
in vitro (Huang et al., 2011) and in xenograft models (LeBeau  
et al., 2009), resulting in a signi�cant growth inhibition.

In addition, FAP is a target selected for immunotherapy 
experiments. Cancer mouse models have been immunized 
against FAP-positive cells, resulting in tumor growth inhibi-
tion (Lee et al., 2005). Also, an oral DNA vaccine directed 
against FAP-positive cells caused CD8+ T cell–mediated 
killing of CAFs and suppression of primary tumor growth 
and metastasis, accompanied by a greater intratumoral uptake 
of chemotherapeutic drugs and improved drug response 
(Loe�er et al., 2006). In spite of the successful preclinical re-
sults, no FAP-directed agents are currently in clinical prac-
tice (Brennen et al., 2012).

Concluding remarks
Based on the body of evidence now available, it is clear that 
the tumor microenvironment is involved in all stages of tu-
morigenesis, shaping how neoplastic cells respond to targeted 
therapies, chemotherapies, or radiotherapy. Thus, the tumor 
microenvironment has signi�cant impact on clinical outcome. 
Unfortunately, preclinical drug testing has been largely re-
stricted to two dimensional cell culture systems or subcutane-
ous xenograft murine models, without fully incorporating a 
relevant tumor microenvironment. This lack of tumor stroma 
in cancer models may re�ect the lack of e�cacy seen in later 
clinical trials of many drugs. Therefore, it is of high priority to 
transfer preclinical drug development to platforms that take 
stromal interactions into account.

CAFs are tempting drug targets for many reasons. They 
are genetically more stable then neoplastic cells, making them 
less prone to develop resistance phenotypes as a result of high 
mutation rates and clonal selection. Additionally, CAFs show 
epigenetic changes that distinguish them from normal stro-
mal cells, and furthermore, the composition of the cancer- 
associated stroma is distinct from normal stroma. This presents 

3. Targeting ECM interactions. Neoplastic cells interact with 
the ECM using a variety of cell surface receptors, of which inte-
grins are the most studied. In a three-dimensional culture system 
of breast cancer, a 1-integrin inhibitor induced apoptosis and 
inhibited growth of breast cancer cells, highlighting the thera-
peutic potential of blocking integrin interactions with the ECM 
(Park et al., 2006). Furthermore, 1-integrin inhibitors syner-
gized with radiation therapy to increase apoptosis and inhibit 
tumor growth in a mouse xenograft model (Park et al., 2008). 
Integrin antagonists have therefore been tested in clinical trials 
(Mullamitha et al., 2007; Reardon et al., 2008), and although 
they were well tolerated, clinical bene�ts have not yet been 
demonstrated. CD44 expressed by neoplastic cells allows an ad-
ditional interacting point with the ECM. It binds to collagen 
and hyaluronic acid, and certain isoforms of CD44 provide sur-
vival signals in neoplastic cells (Bourguignon et al., 2003; Götte 
and Yip, 2006). Abrogating CD44–ECM interactions has been 
shown to inhibit tumor growth in xenograft models (Ahrens  
et al., 2001); however, this awaits clinical con�rmation.

Soluble factors secreted from CAFs can also indirectly regu-
late adhesion of neoplastic cells. For example, CXCL12-induced 
integrin activation was found to increase adhesion of SCLC cells 
to �bronectin and collagen and thereby protects SCLC cells 
from chemotherapy-induced apoptosis (Hartmann et al., 2005).

4. Targeting the CAFs. Normalization of CAF behavior to 
change their properties to a more “non-myo�broblastic” phe-
notype can be achieved by multiple mechanisms. One way is 
by targeting epigenetic changes unique for CAFs. Many groups 
have recently shown that therapies aimed at reconstituting 
miR expression might be a successful strategy to deactivate 
CAFs (Musumeci et al., 2011; Bronisz et al., 2012; Mitra et al., 
2012; Aprelikova et al., 2013). Inhibition of PDGF signaling, an 
important pathway in the activation of CAFs, can reverse CAFs 
to normal �broblasts (Haubeiss et al., 2010). Using a clinically 
approved PDGFR kinase inhibitor (Imatinib) in a mouse 
model of cervical carcinogenesis, tumor proliferation was re-
duced and angiogenesis was inhibited. Furthermore, the pro-
gression of premalignant cervical lesions was attenuated and 
the growth of preexisting invasive carcinomas was impaired  
(Pietras et al., 2008). Because CAFs undergo changes in their 
metabolic activity, normalization of the metabolic phenotype 
and inhibition of metabolic pathways have also been suggested 
as a plausible way to target tumors (Witkiewicz et al., 2012; 
Doherty and Cleveland, 2013).

Another approach to target the CAFs would be to dedif-
ferentiate them into a quiescent state. Hepatic stellate cells 
play a crucial role in liver �brosis and in the desmoplastic re-
action in liver cancer and are known to express several nu-
clear hormone receptors including the vitamin D receptor 
(VDR). Ding et al. (2013) demonstrated that VDR ligands 
promoted the dedi�erentiation of stellate cells and abrogated 
�brosis, stressing the potential use of VDR ligands to target 
CAFs. Taking advantage of existing epigenetic changes has 
also been suggested as a means to induce CAF arrest. Treatment 
of CAFs with hypomethylating drugs is hypothesized to  
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increased tumor growth when applied to patients. It also raises 
the idea that the targets within the stroma must be speci�c and 
cannot cause a general and unselective depletion of the stroma 
or the CAFs. Another pitfall is that researchers often study a 
speci�c subpopulation of CAFs, based on one or a few ex-
pressed markers, but interpret the data as true for all populations 
of CAFs. The term “cancer-associated �broblast” is therefore 
somewhat misleading, as it groups cells of di�erent origin 
merely based on their location despite their heterogeneity and 
diverse roles in tumorigenesis. It is important to keep in mind 
that the only feature that unites the CAFs are their ability to 
alter the microenvironment and the behavior of neoplastic 
cells, but this can result in either a pro- or anti-tumorigenic ef-
fect. E�orts must therefore be put into resolving the complex-
ity of the tumor stroma and understanding the unique roles of 
the di�erent subpopulations of CAFs.

Traditionally, cancer is viewed as a result of clonal expansion, 
where neoplastic cells constantly undergo selection and the clones 
that constitute late-stage tumors are the ones most �t to avoid the 
host response and given therapies. However, when an initiating 
preneoplastic cell emerges, it does so in the context of its micro-
environment, which then coevolves during the whole process of 
tumorigenesis such that both entities develop a symbiotic rela-
tionship that promotes tumor growth. Thus, what is seen in pa-
tients is a selected population of CAFs and neoplastic cells that 
collectively survives and thrives. It is vital for a neoplastic cell to 
achieve the ability to reprogram normal stromal cells into CAFs 
and by this in�uence to modulate the microenvironment. This 
process represents a fundamental and crucial hallmark of cancer. 
Neoplastic cells that fail to develop this capacity will not pass criti-
cal barriers in tumorigenesis and will remain dormant. Therefore, 
understanding the interplay between neoplastic cells and their 
microenvironment is critical, especially in the initiation of cancer. 
Further insights in this process have the potential to reveal rele-
vant discoveries with subsequent clinical implications.
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