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Atrial fibrosis with enhanced turnover and deposition of matrix proteins leads to inhomo-
geneous atrial electrical conduction and gives rise to electrical reentry circuits resulting in
atrial fibrillation. The multifactorial pathogenesis of atrial fibrosis involves resident cardiac
cells as well as infiltrating leukocytes, both generating and sequestering matrix metallo-
proteinases (MMPs), a key enzyme family involved in fibrosis. A growing body of evidence
points toward an important role of reactive oxygen species (ROS) in the release and acti-
vation of pro-MMPs and the stimulation of pro-fibrotic cascades. Myeloperoxidase (MPO),
a bactericidal enzyme released from activated polymorphonuclear neutrophils (PMN) is
not only associated with a variety of cardiovascular diseases, but has also been shown
to be mechanistically linked to atrial fibrosis and fibrillation. MPO catalyzes the generation
of reactive species like hypochlorous acid, which affect intracellular signaling cascades in
various cells and advance activation of pro-MMPs and deposition of atrial collagen resulting
in atrial arrhythmias. Thus, inflammatory mechanisms effectively promote atrial structural
remodeling and importantly contribute to the initiation and perpetuation of atrial fibrillation.
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INTRODUCTION
Atrial fibrillation (AF) remains the most prevalent rhythm disor-
der affecting 1–1.5% of the population in western industrialized
countries and its prevalence is supposed to double within the next
50 years (Go et al., 2001; Savelieva and Camm, 2008). With throm-
boembolic events as one of the most hazardous complications of
this disease, AF emerges as a substantial contributor to morbidity
and mortality (Kannel et al., 1982; Tsang et al., 2003; Wang et al.,
2003).

AF may be triggered by spontaneous premature depolariza-
tions of myocytes originating, e.g., from the pulmonary veins,
alternatively by rapid electrical activity in the form of pulmonary
vein tachycardia. Once apparent, AF causes alterations of electri-
cal properties of the atria such as reduction of refractory period,
which further propagate the perpetuation of AF (Haïssaguerre
et al., 1998).

Consequently, electrical isolation of the pulmonary veins is
often an important and effective therapeutic strategy especially in
patients with paroxysmal AF or in patients without cardiovascular
comorbidities (“lone atrial fibrillation”). But a significant num-
ber of patients particularly with persistent or chronic AF remains
refractory to this approach, pointing toward involvement of atrial
tissue as a substrate in those types of AF (Allessie, 1998; Calkins
et al., 2012). In particular cardiovascular diseases such as arter-
ial hypertension, heart failure, coronary artery disease, valvular,
or inflammatory disease are independent risk factors to AF. In

fact, these disorders are believed to be mechanistically involved,
since they participate in electrical, contractile, and structural
remodeling of atrial tissue (Kannel et al., 1982).

Still, intercellular and subcellular mechanisms underlying AF
remain incompletely understood: besides electrical abnormalities
mainly based on ion channel dysfunction and contractile remodel-
ing yielding atrial hypocontractility and atrial dilatation, structural
remodeling owing to atrial fibrosis has emerged as one of the key
aspects in the pathophysiology of AF (Goette et al., 1996; Iwasaki
et al., 2011).

Accumulating evidence now advocates for a critical mechanistic
role of inflammatory processes in the pathogenesis of atrial fibro-
sis. This review intends to summarize the role of reactive species
in the development of atrial fibrosis and to elucidate the impact of
the leukocyte-derived enzyme myeloperoxidase (MPO) herein.

FIBROSIS IN ATRIAL FIBRILLATION
FIBROSIS – A SUBSTRATE FOR ATRIAL FIBRILLATION
Apart from electrical remodeling and contractile dysfunction,
alterations in atrial tissue structure, namely atrial fibrosis, have
been shown to increase the susceptibility to AF and may serve as a
critical substrate in the formation of the arrhythmia. Additionally,
atrial fibrosis is hard to reverse and has therefore been consid-
ered as a major contributor in the progression from paroxysmal
to persistent or permanent AF (Xu et al., 2004). However, those
structural abnormalities must not solely be related to AF but may
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also be present in patients with underlying or coexisting cardio-
vascular disease without necessarily increasing the vulnerability to
AF.

Fibrosis has been observed in atrial tissue of patients with AF
(Kostin et al., 2002; Boldt et al., 2004; Saito et al., 2007). Addi-
tionally, a correlation of the degree of atrial fibrosis with the
persistence of AF in patients was demonstrated. Furthermore, in
patients undergoing cardiovascular surgery, the degree of atrial
fibrosis correlated with the risk for postoperative AF (Xu et al.,
2004).

Of note, experimental and clinical investigations revealed, that
prevention of atrial fibrosis attenuates AF stability, as anti-fibrotic
therapeutic strategies (statins, ACE inhibitors, and AT1-receptor
blocker) effectively limit AF substrate formation (Li et al., 2001;
Kumagai et al., 2004; Sakabe et al., 2004; Milliez et al., 2005; Lee
et al., 2006).

Mechanistically, experimental studies have demonstrated fibro-
sis to account for decreased velocity and increased heterogeneity of
electrical conduction (Li et al., 1999; Ausma et al., 2003; Verheule
et al., 2003, 2004; Lee et al., 2006; Rudolph et al., 2010).

Fibrosis-driven AF implies the disturbance of electrical conduc-
tance due to disruptions of intercellular communication of atrial
myocytes. Collagen fibers represent electrical barriers, which can
cause asynchronous propagation of electrical activation (de Jong
et al., 2011b). The electrical barriers establish adjacent regions
of diverging refractory periods (Spach and Boineau, 1997; Lin
and Pan, 2008; Goudis et al., 2012). This morphological atrial
compartmentalization facilitates the formation of micro- and
macro-reentry circuits resulting in a higher susceptibility to AF.

Furthermore, the uncoupling of cardiomyocytes by collagen
facilitates ectopic activity to arise in atrial tissue. Physiologic
impulse conduction depends on a balance of energy for current
conduction between a depolarized region (“source”of the current)
and an adjacent repolarized region (“sink”; Nattel et al., 2008). A
mismatch of this so called “source-to-sink” effect, which occurs
by virtue of impaired myocyte coupling, enables the propagation
of early or delayed after depolarizations (EADs or DADs). This
is due to the fact that in well-coupled myocardium surrounding
myocytes minimize voltage differences of neighboring cells and
thereby suppress EAD or DAD propagation, whereas a decrease of
the source-to-sink effect impairs this compensation (Nattel et al.,
2008; Xie et al., 2010).

Interestingly, apart from matrix deposition also direct
fibroblast-myocyte interactions contribute to electrophysiologi-
cal alterations. Activated fibroblasts modify conduction velocities
in cultured cardiomyocyte monolayers, and it was proven that
a direct heterocellular electrotonic communication between cells
can induce depolarization of the myocytes (Miragoli et al., 2007;
Vasquez et al., 2010).

These electrical and structural characteristics of fibrotic remod-
eling give rise to a strong arrhythmogenic potential of this
process.

EXTRACELLULAR MATRIX, MMPs, AND FIBROBLASTS
The myocardial extracellular matrix (ECM) consists of matrix
proteins such as collagens and fibronectin, proteoglycans, and
basement membrane proteins like laminins (Hagiwara, 2010).

It further comprises various proteases and signaling molecules
(Spinale, 2007). The predominant matrix proteins in myocar-
dial ECM are the collagens type I and III, which are deposited
in the myocardial interstitium in a fibrillar architecture to ensure
myocardial stability and organization (Spinale, 2007). These pro-
teins are arranged in a physiological balance of synthesis and
degradation – with a disturbed balance associating with cardiac
disease (Swynghedauw, 1999; de Jong et al., 2011a). Enhanced
synthesis and deposition of ECM proteins can occur either as
replacement fibrosis related to cell death or as reactive fibrosis.
In particular interstitial reactive fibrosis has been identified to be
highly pro-arrhythmic in the atrial myocardium (de Jong et al.,
2011b). Whereas the myocardial production of ECM proteins is
mainly carried out by fibroblasts and to a lesser extent by car-
diomyocytes and smooth muscle cells, their degradation occurs
primarily via matrix metalloproteinases (MMPs). MMPs com-
prise a family of proteolytic enzymes with a variety of different
substrates. They are produced as inactive pro-enzymes mostly by
fibroblasts, but also by cardiomyocytes and leukocytes, and can be
activated by cleavage of their pro-peptide. In turn, inhibition of
MMPs is due to tissue-inhibitors of MMPs (TIMPs). The inter-
relation of fibrotic remodeling and MMPs is complex and still
not yet fully elucidated. Although active MMPs degrade matrix
proteins, pro-fibrotic states are mostly accompanied by increased
instead of decreased MMP-activity (Li et al., 2000; Nattel et al.,
2005). Whether increased MMP expression and activity during
states of myocardial remodeling reflects cause or consequence still
remains to be fully determined. Pro-fibrotic molecules like TGF-
β1 and the plasmin system are known to activate MMPs (Jugdutt,
2003; de Jong et al., 2011a). Thus, MMP-activity might be merely
an epiphenomenon of the fibrotic process. However, accumulat-
ing evidence supports the notion of a causal role of MMPs in
fibrosis and their activity is regarded to result in enhanced instead
of reduced ECM deposition, which is particularly valid for the
gelatinases MMP-2 and -9 (de Jong et al., 2011a). This assump-
tion is supported by observations, that long-term inhibition of
MMPs suppresses fibrosis (Nattel et al., 2005; Moe et al., 2008).
This pro-fibrotic effect of MMPs might be due to the concomitant
release of matrix-embedded bioactive molecules like cytokines as
TNF-α and IL-1β (Flesch et al., 2003; Diwan et al., 2004), growth
factors like TGF-β1 and angiotensin II (ATII), and endothelin-1
(Dell’Italia et al., 1997; Wei et al., 1999; Ergul et al., 2000; Multani
et al., 2005), which further spur the fibrotic cascade. Furthermore,
fragments of matrix proteins themselves form bioactive molecules,
so called matrikines, which serve as ligands of leukocyte integrins
and other cell activating receptors and effectively stimulate con-
nective tissue formation (Li et al., 2000; Mott and Werb, 2004).
Importantly, protein composition, organization, and cross-links
rather than just the extent of deposition is considered relevant for
the matrix pro-arrhythmic potential (Li et al., 2000; Pellman et al.,
2010). It is known that MMP-degraded physiological collagens
are replaced by fibrous interstitial deposits of various unorganized
ECM proteins.

Collectively, enhanced matrix turnover affects signaling cas-
cades of cardiomyocytes, fibroblasts, endothelial cells, and leuko-
cytes creating an inflammatory milieu, which results in increased
fibrotic remodeling (Figure 1).
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FIGURE 1 | Schematic overview of fibrotic remodeling triggered by
reactive species. Neutrophils infiltrating the myocardial interstitium release
MPO and ROS, which induce the activation of further neutrophils with
sequestration of MPO, ROS, and pro-MMPs. Resident and leukocyte-derived
pro-MMPs are converted by MPO and ROS to active MMPs, which degrade the
ECM resulting in a release of ECM-protein fragments and embedded cytokines,

growth factors, and MMPs. These molecules stimulate leukocytes to secrete
further ROS and MPO as well as fibroblasts to differentiate into myofibroblasts.
The latter produce cytokines, growth factors, pro-MMPs, and ECM proteins
building up a fibrotic matrix. Abbreviations: EC, endothelial cell; ECM,
extracellular matrix; MMP, matrix metalloproteinase; MPO, myeloperoxidase;
PMN, polymorphonuclear neutrophil; ROS, reactive oxygen species.
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The significance of ECM-turnover and MMPs for AF has clearly
been pointed out in a number of experimental and clinical studies
illustrating that MMP levels are associated with AF in patients
with cardiovascular disease (Xu et al., 2004; Gai et al., 2009),
demonstrating that MMP inhibition attenuates AF inducibility
and maintenance (Moe et al., 2008) and showing that AF recur-
rence after ablation therapy is associated with MMP serum levels
(Kato et al., 2009; Okumura et al., 2011).

Interestingly, the atrial myocardium is especially prone to
fibrotic remodeling. Verheule et al. (2003) for example demon-
strated that mice with cardiac overexpression of TGF-β1 developed
solely atrial but not ventricular fibrosis. Healthy atrial myocardium
not only contains more fibroblasts than ventricular myocardium
(Hinescu et al., 2006; Burstein et al., 2008), but also displays a
more pronounced response to pro-fibrotic stimuli. Atrial fibrob-
lasts exhibit a markedly different gene expression profile and a
profoundly increased disposition to proliferate and differenti-
ate in culture and in vivo as compared to ventricular fibroblasts
(Burstein et al., 2008). Upon differentiation the active fibroblast
phenotype is referred to as myofibroblast. Myofibroblasts differ
significantly from fibroblasts and are the principal cell type in the
myocardium to produce growth factors, cytokines, MMPs, and
ECM proteins (Yue et al., 2011). Moreover, they have a more pro-
nounced disposition to migrate and to proliferate (Vasquez et al.,
2011). Thus, the differentiation of fibroblasts to myofibroblasts
is a central and important pro-fibrotic event. Besides fibroblasts,
cardiac epithelial, and endothelial cells as well as circulating pre-
cursors can undergo the differentiation to myofibroblasts (Kis
et al., 2011). The differentiation is provoked by mechanical stress,
reactive oxygen species (ROS), cytokines, and growth factors. In
particular TGF-β1, but also PDGF, ATII, and catecholamines are
known to stimulate this process (Rohr, 2009). Apart from pro-
moting the fibrotic cascade myofibroblasts per se may exert highly
arrhythmogenic effects. It has been observed under cell-culture
conditions and in vivo, that myofibroblasts have distinct electro-
physiological properties. On the one hand, they can act as passive
electrical conduits, but promote rather slow and discontinuous
conduction, since electrical propagation is slower as compared to
myocytes (Rohr, 2009). On the other hand, myofibroblasts can
lead to ectopic activity by inducing myocyte depolarization. Elec-
trotonic interaction via heterocellular gap-junctional coupling of
myofibroblasts with cardiomyocytes has been described to dif-
fer significantly from that derived from non-activated fibroblasts
(Rohr, 2009; Vasquez et al., 2011; Yue et al., 2011). This fur-
ther underscores the potentially pro-arrhythmic significance of
myofibroblasts.

OXIDATIVE STRESS PROMOTES ATRIAL FIBROSIS
Oxidative stress denotes an unbalanced relation of reactive oxi-
dants and antioxidants and is a hallmark of inflammation. The
major sources of reactive species in cardiac cells are mitochon-
dria, xanthine oxidase, uncoupled NO-synthase and in particular
NADPH-oxidases (Murdoch et al., 2006). Apart from resident car-
diac cells, infiltrated leukocytes account for a large portion of ROS
and reactive nitrogen species (RNS) in myocardial tissue via pro-
duction of superoxide and release of pro-oxidant enzyme systems
like MPO.

IMPACT OF REACTIVE SPECIES ON MMPs AND CARDIAC CELLS
Reactive oxygen and nitrogen species exert direct effects on MMPs
both on a transcriptional and posttranslational level. The for-
mer implies primarily activation of mitogen-activated protein
kinases (MAPK) and the Jak/Stat kinase pathway in cardiac cells,
which leads to activation of transcription factors inducing MMP
release (Siwik and Colucci, 2004; Spinale, 2007). Several in vitro
studies demonstrate that hydrogen peroxide (H2O2) induces
an increase in MMP release from endothelial cells or cardiac
fibroblasts (Belkhiri et al., 1997; Siwik et al., 2001). Moreover,
cytokine-induced superoxide production in cardiomyocytes or
macrophages increased MMP transcription via MAPK activation
(Gurjar et al., 2001; Yoo et al., 2002; Spallarossa et al., 2006). Apart
from that, the impact of ROS and RNS on MMP transcription, in
particular on MMP-2 and -9, has been proven in vivo and ex vivo
in ischemia and reperfusion models or isolated perfused hearts
(Wang et al., 2002, 2005; Scholz et al., 2004; Wainwright, 2004).

Many studies have documented posttranslational effects of ROS
and RNS on MMPs (Rajagopalan et al., 1996; Fu et al., 2001; Gu
et al., 2002; Wang et al., 2002; Yoon et al., 2002; Zhang et al., 2002;
Spinale, 2007). Not only in vitro and in cell-culture, but also in vivo
and ex vivo the cleavage of the pro-peptide is known to be directly
mediated by reactive species. Activation of pro-MMP-2 and -9 has
been observed in the presence of H2O2 (Rajagopalan et al., 1996;
Siwik et al., 2001; Yoon et al., 2002), peroxynitrite (Rajagopalan
et al., 1996; Wang et al., 2002), and hypochlorous acid (HOCl; Fu
et al., 2001, 2003).

As mentioned above, ROS and RNS modulate the activation
state of cardiac cells, in particular by activating MAPKs and
other redox-sensitive signaling pathways. Apart from the release
of MMPs, further pro-fibrotic pathways are induced thereby:
H2O2 and the superoxide-generating system xanthine/xanthine
oxidase led to modulation of collagen synthesis in cardiac fibrob-
lasts (Siwik et al., 2001). Interestingly, a reduced production of
collagen was observed herein. However, in vivo studies proved
increased deposition of collagen in dependence on ROS, as it
was observed in rat hearts following ATII-dependent superoxide
production (Zhao et al., 2008). Here, treatment with antioxi-
dants simultaneously to ATII-application reduced the myocardial
collagen volume and prevented in part the expression of TGF-
β1 and the differentiation of fibroblasts to myofibroblasts. The
pro-fibrotic differentiation of fibroblasts to myofibroblasts – as
described above – is amongst others also provoked by ROS (Hecker
et al., 2009; Barnes and Gorin, 2011). Peroxynitrite for exam-
ple induced nuclear translocation of NFκ-B in fibroblasts, which
led to the differentiation to myofibroblasts with enhanced pro-
duction of TGF-β, fibronectin, and collagen I (Ichikawa et al.,
2008). Furthermore, it has been disclosed, that TGF-β1-induced
expression of the NADPH-oxidase isoform Nox4 is mainly respon-
sible for the TGF-β1-dependent differentiation of fibroblasts. In
fact, the released superoxide led to activation of the well-known
downstream target of TGF-β1, i.e., Smad 2/3 (Cucoranu et al.,
2005). Likewise, Nox2 was identified in different animal models
to mediate pro-fibrotic effects (Murdoch et al., 2006). Intersti-
tial fibrosis induced by ATII- or aldosterone-administration or
transaortic banding has been described to be markedly reduced in
Nox2-deficient mice, which was related to changes in expression
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of collagen and growth factors and activation of NF-κB (Ben-
dall et al., 2002; Sun et al., 2002; Grieve et al., 2006; Johar
et al., 2006). Moreover, the involvement of NADPH-oxidases in
the activation of pro-fibrotic cascades in cardiac cells has been
observed in mice with cardiac deficiency or overexpression of the
NADPH-oxidase subunit Rac-1 (Li et al., 2010; Reil et al., 2010;
Adam et al., 2011). Interestingly, ROS are described to provoke
the formation of an inflammasome – a cytosolic multiprotein
complex, which leads to the expression of IL-1β in cardiac fibrob-
lasts with subsequent enhancement of fibrosis (Kawaguchi et al.,
2011).

LEUKOCYTES IN ATRIAL FIBRILLATION
Leukocytes account for the major source of ROS at inflammatory
sites with polymorphonuclear neutrophils (PMN) being the first
cell type to infiltrate affected tissue.

Whereas the impact of signaling cascades and ROS-formation
within cardiac cells was solidified, the role of leukocytes for the
development of AF remained undefined. Recent observations
however now provide evidence for a causal role of these cells
in AF. Elevated atrial leukocyte infiltration is not only found
in patients with AF with an underlying structural heart disease
(Yamashita, 2007; Chen et al., 2008) as well as in patients with
lone AF (Frustaci et al., 1997), but also independently predicts
post-surgery AF (Lamm et al., 2006; Ramlawi et al., 2007). More-
over, leukocyte adhesion molecules like VCAM-1 are elevated in
animal models and in patients with AF (Goette et al., 2008). So
far, it remains unclear whether this is cause or consequence of the
atrial arrhythmia. However, the leukocytes’armament of cytokines
like IL-6 and TNF-α, proteases like MMP-8 and -9 and peroxi-
dases like MPO, all of which have been shown to be involved in
atrial remodeling (Han et al., 2001; Saba et al., 2005; Spinale, 2007;
Rudolph et al., 2010), advocates for an important role of leukocytes
in AF.

ROLE OF MYELOPEROXIDASE
MPO AND REACTIVE SPECIES
As stated above, cardiovascular disorders like hypertension, coro-
nary artery disease, and heart failure are important risk factors
for AF. Myeloperoxidase (MPO) is not only secreted in a variety
of these diseases and in AF itself, but has also been identified
to be mechanistically linked to these disorders (Nicholls and
Hazen, 2005; Lau and Baldus, 2006), which calls for a deeper
understanding of MPO’s contribution.

MPO is a heme peroxidase expressed in myeloid cells – in
particular in neutrophils MPO makes up to 5% of the protein
dry weight. It is stored in azurophilic granules, which secrete the
enzyme into the phagosome or extracellular environment upon
activation of the PMN. H2O2 is the essential substrate neces-
sary to convert MPO to an oxidized form (compound I). This
in turn reacts with various oxidizable molecules resulting in the
generation of ROS and RNS. Primarily (pseudo)halides serve as
substrates, with chloride being the most abundant one in physio-
logical environments leading to the formation of HOCl, which is
the strongest bactericidal oxidant produced by PMN (Figure 2).
However, deficiency of MPO in mice and humans is unexpectedly
hardly related to increased susceptibility for infections (Klebanoff,

FIGURE 2 | Halogenation and peroxidase cycle of MPO. MPO reacts
with H2O2 to form compound I, which oxidizes chloride to build the reactive
oxidant hypochlorous acid (HOCl). Alternatively, compound I reacts with
oxidizable molecules (RH) like ascorbate or tyrosine to form radical
intermediates (Rbullet) via compound II.

1970, 2005). Importantly, besides bacterial proteins, HOCl affects
various biological targets within the host, including intracellular
signaling proteins (Midwinter et al., 2001; Lane et al., 2010), heme
proteins, glycoproteins, and lipids (Rees et al., 2010; Szuchman-
Sapir et al., 2010; Maitra et al., 2011). In particular the chlo-
rination of tyrosine residues leading to the formation of 3- or
3-,5-(di)chlorotyrosine is considered a marker of MPO’s activity.
In addition, these posttranslational modifications also influence
structure and function of the affected molecules. For example,
MPO-derived oxidants were proven to alter MAPK signaling path-
ways in macrophages by oxidation of protein thiol residues (Lane
et al., 2010). Furthermore, thiol group oxidation by MPO inhib-
ited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity
and perturbed Ca2+ homeostasis in endothelial cells (Cook et al.,
2012).

Apart from the oxidation of halides MPO compound I also
reacts via compound II with various organic and inorganic sub-
strates like aromatic amino acids or ascorbate producing radical
intermediates (Eiserich et al., 2002; Figure 2). An important
finding in the field of cardiovascular disease is the prevalent
reaction of these radical intermediates with nitric oxide (NO;
Eiserich et al., 2002). This not only leads to the reduction of NO-
bioavailability, but also forms the reactive nitrating agent nitric
dioxide. In cardiomyocytes, MPO-dependent protein nitration
was shown to effectively promote apoptosis (Yan et al., 2010). As a
further consequence of NO-oxidation, impaired endothelial func-
tion became obvious in experimental ex vivo (Eiserich et al., 2002)
and in vivo studies and in human subjects (Rudolph et al., 2007,
2011).

Thus, chlorination, nitration, and other MPO-induced oxida-
tive modifications of host tissue disturb the physiological function
of endothelial and myocardial components. Apart from MPO’s
potency to generate reactive species, also its high affinity to bio-
logical structures, which is due to its cationic charge, reinforces the
pathophysiological significance of the enzyme.
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MPO PROMOTES FIBROSIS
As described above, ROS and RNS mediate fibrotic remodel-
ing via activation of MMPs and various intracellular signaling
cascades in cardiac cells. Of note, both of these mechanisms
also apply to MPO. Fu et al. (2001) described the activation
of MMP-7 by HOCl via oxidation of a cysteine residue in
the active site leading to autolytic cleavage of the pro-peptide.
MPO’s regulatory effect on MMP expression and activation
might furthermore be related to the consumption of NO, as a
decrease in myocardial NO-bioavailability has been shown to
induce MMP-2 release (Wang et al., 2005). In addition, oxida-
tion of a critical cysteine residue induced the inactivation of
TIMP-1 (Wang et al., 2007; Figure 3). In vivo, wild-type (WT)
mice treated with ATII displayed enhanced activity of MMP-2
and MMP-9 and elevated MMP-9 protein amount in atrial tis-
sue as compared to MPO-deficient (Mpo−/−) mice (Rudolph
et al., 2010). This was accompanied by a significant increase in
atrial fibrosis in ATII-treated WT mice, which was blunted in
Mpo−/−.

In contrast, in a model of acute myocardial infarction the level
of pro-MMP-9 and MMP-2 in myocardial tissue was decreased
in WT as compared to Mpo−/− mice on day 3 after ligation
of the left descending coronary artery (Askari et al., 2003).
The authors interpreted these unexpected findings by MPO-
dependent consumption of H2O2: increased bioavailability of
H2O2 in Mpo−/− mice was assumed to lead to MMP expres-
sion and activation. However, collagen deposition was markedly
delayed in Mpo−/− as compared to WT mice upon AMI in this
study. This observation underlines the complexity of the inter-
relation of ECM deposition and MMP-activity – in particular in
the setting of myocardial infarction (Jugdutt, 2003). The differ-
ences between WT and Mpo−/− mice in myocardial remodeling
in this model were related to MPO-dependent inhibition of the
plasmin activator-inhibitor-1 (PAI-1), which resulted in elevated
plasmin activity in WT myocardium. As the fibrinolytic enzyme
plasmin has been shown to activate TGF-β1 as well as MMPs
(Loskutoff and Quigley, 2000; Zheng and Harris, 2004), and as
PAI-1−/− mice display enhanced fibrotic remodeling as compared
to WT (Xu et al., 2010), MPO was noted for affecting myocardial
remodeling via PAI-1-inhibition (Figure 3). Whether this mech-
anism is also of significance in atrial myocardium remains to be
investigated.

Apart from MPO’s impact on proteolytic enzyme systems, addi-
tional mechanisms are initiated by MPO, which may account
for its pro-fibrotic properties: given that leukocytes with their
high potency to generate reactive species and to secrete cytokines
and MMPs are strongly suggested to contribute to fibrosis for-
mation, MPO’s ability to enhance the recruitment of leukocytes
(Klinke et al., 2011) might be a pro-fibrotic event. Moreover,
MPO not only leads to infiltration of leukocyte but also directly
activates MAPK and NADPH-oxidase of PMN via interaction
with their integrins CD11b/CD18 (Lau et al., 2005). In addi-
tion, activation of macrophages with enhanced production of
cytokines is also mediated by MPO (Lefkowitz et al., 1992).
Recent data now suggest that MPO-derived HOCl also activates
MAPK in cardiomyocytes and endothelial cells (unpublished;
Figure 4).

FIGURE 3 | Molecular targets of HOCl mediating fibrosis. MPO-derived
HOCl leads to conversion of inactive pro-MMP to active MMP, inactivates
TIMP-1 and PAI-1, which results in enhanced ECM-turnover. Activation of
MAPKs in various cells initiates pro-fibrotic cascades. Abbreviations: ECM,
extracellular matrix; HOCl, hypochlorous acid; MAPK, mitogen-activated
protein kinase; MMP, matrix metalloproteinase; PAI-1, plasmin
activator-inhibitor-1; ROS, reactive oxygen species; TIMP-1, tissue-inhibitor
of MMPs.

Whether MPO-derived reactive species affect fibroblast differ-
entiation, collagen expression, and other processes as described for
ROS remains elusive so far.

MPO IN ATRIAL FIBRILLATION
MPO’s potency to generate ROS and RNS, its impact on fibrotic
remodeling, and its high abundance in leukocytes, which are found
to accumulate in fibrillating atria, suggest the enzyme to critically
contribute to the formation and maintenance of AF.

In a canine surgical incision model, MPO deposition in the
atria was found to correlate with an inhomogeneity of electri-
cal conduction (Ishii et al., 2005). Likewise, surgical induction of
pericarditis in dogs lead to marked epicardial injury with reduced
expression of connexin-40 and -43 and pronounced accumula-
tion of MPO-positive leukocytes (Ryu et al., 2007; Goldstein et al.,
2008). Prednisone treatment in this model prevented the occur-
rence of atrial flutter, which was accompanied by profoundly
reduced MPO immunostaining in the atrial tissue. Furthermore,
in patients following AF-ablation an early recurrence of AF was
associated with increased MPO plasma levels (Richter et al., 2012).
Likewise, increased plasma levels and enhanced atrial deposition
of MPO were detected in patients with paroxysmal AF (Rudolph
et al., 2010). Whereas these findings remain descriptive without
proving a causal role, a clear mechanistic link between MPO and
AF development was disclosed within the latter study (Rudolph
et al., 2010). As described above, ATII-treated Mpo−/− mice were
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FIGURE 4 | Effect of MPO on cardiac cells and leukocytes contributing to
pro-fibrotic remodeling. MPO promotes the recruitment of leukocytes and
initiates cytokine secretion from macrophages. Furthermore, MPO activates
MAPKs in PMN via CD11b/CD18 integrins, which induces secretion of MMPs,

superoxide, cytokines, and MPO. Potentially (dashed line), MPO activates
pro-fibrotic pathways in cardiomyocytes via MAPKs. Abbreviations: MAPK,
mitogen-activated protein kinase; MMP, matrix metalloproteinase; MPO,
myeloperoxidase.

found to be protected of fibrotic atrial remodeling as compared
to WT mice. These animals showed markedly attenuated vulnera-
bility to AF upon programmed and burst atrial electrophysiolog-
ical stimulation as compared to MPO-competent animals. This
observation was accompanied by inhomogeneous atrial electrical
conduction in ATII-treated WT but not in Mpo−/− mice assessed
by an electrophysiological mapping technique. MPO-activity and
resultant modifications in atrial tissue following ATII-treatment in
WT mice was evidenced by mass-spectromic analysis of chloroty-
rosine. Of note, chronic intravenous infusion of MPO led to a
profound and dose-dependent increase in AF vulnerability in WT
and Mpo−/−mice. These data underscore the importance of MPO
for atrial arrhythmias, but also shed light on the function of ATII
herein: whereas ATII exerts direct effects on cardiac fibroblasts and
myocytes and stimulates the release of MMPs, its ability to activate
leukocytes appears to be of great significance. ATII was proven to
induce PMN degranulation in the current study (Rudolph et al.,
2010) with elevation of MPO concentrations in plasma and atrial
tissue of WT mice. The attenuated atrial fibrosis and fibrillation in
MPO-naïve animals suggests, that MPO is in part mandatory for
ATII-dependent effects.

Taken together, these findings point out that inflammatory
processes and in particular MPO-derived reactive species are
critically involved in the pathogenesis of AF.

OUTLOOK
Atrial fibrosis is a critical contributor in AF initiation and per-
petuation. The pathogenesis of atrial fibrosis is multifactorial
and oftentimes related to hypertension, heart failure, or coro-
nary artery disease. So far, the detailed mechanisms, which trigger
fibrotic remodeling and account for enhanced deposition of ECM
proteins in the atria remain incompletely understood. MPO, with
its high potency to generate reactive species and its impact on
cellular signaling cascades has evolved as an important medi-
ator in atrial fibrosis and fibrillation. Inhibition of MPO’s cat-
alytic activity under conditions of established risk factors for AF
might emerge as a potential therapeutic target. However, MPO
secretion occurs under a large variety of inflammatory condi-
tions and MPO-derived reactive species exhibit a broad range
of biological targets. Thus, further studies are necessary to elu-
cidate MPO’s distinct mechanistic implications and therapeutic
potentials in AF.
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