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Abstract Interactions between the extracellular matrix
(ECM) and cells are critical in embryonic development,
tissue homeostasis, physiological remodeling, and tumori-
genesis. Matricellular proteins, a group of ECM compo-
nents, mediate cell-ECM interactions. One such molecule,
Fibulin-5 is a 66-kDa glycoprotein secreted by various cell
types, including vascular smooth muscle cells (SMCs),
fibroblasts, and endothelial cells. Fibulin-5 contributes to
the formation of elastic fibers by binding to structural
components including tropoelastin and fibrillin-1, and to
cross-linking enzymes, aiding elastic fiber assembly. Mice
deficient in the fibulin-5 gene (Fbln5) exhibit systemic
elastic fiber defects with manifestations of loose skin,
tortuous aorta, emphysematous lung and genital prolapse.
Although Fbln5 expression is down-regulated after birth,
following the completion of elastic fiber formation, expres-
sion is reactivated upon tissue injury, affecting diverse
cellular functions independent of its elastogenic function.
Fibulin-5 contains an evolutionally conserved arginine-
glycine-aspartic acid (RGD) motif in the N-terminal region,

which mediates binding to a subset of integrins, including
α5β1, αvβ3, and αvβ5. Fibulin-5 enhances substrate
attachment of endothelial cells, while inhibiting migration
and proliferation in a cell type- and context-dependent
manner. The antagonistic function of fibulin-5 in angiogen-
esis has been demonstrated in vitro and in vivo; fibulin-5
may block angiogenesis by inducing the anti-angiogenic
molecule thrompospondin-1, by antagonizing VEGF165-
mediated signaling, and/or by antagonizing fibronectin-
mediated signaling through directly binding and blocking
the α5β1 fibronectin receptor. The overall effect of fibulin-
5 on tumor growth depends on the balance between the
inhibitory property of fibulin-5 on angiogenesis and the
direct effect of fibulin-5 on proliferation and migration of
tumor cells. However, the effect of tumor-derived versus
host microenvironment-derived fibulin-5 remains to be
evaluated.
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ROS reactive oxygen species
TGF-β transforming growth factor-beta
SMC smooth muscle cell
VEGF vascular endothelial growth factor
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Introduction

The extracellular matrix (ECM) is essential for normal
development and maintenance of the microenvironment of
embryonic and adult tissues. The ECM is composed of
structural proteins, glycosaminoglycans, growth factors and
cytokines, secreted (pro)enzymes, and glycoproteins called
matricellular proteins. The ECM not only provides structural
stability to tissues and organs, but also regulates activities of
growth factors and cytokines by directly tethering inactive
pro-forms to structural components of the ECM (ten Dijke
and Arthur 2007). The composition of the ECM has
profound effects on cell behavior, including adhesion,
proliferation, and migration, as well as on the maintenance
of the stem cell niche (Raines 2000; Shen et al. 2008). In
addition, matricellular proteins participate in dynamic
matrix-cell interactions and fine tune cellular functions
(Bornstein 1995).

Over the last two decades, an increasing number of proteins
have emerged as matricellular proteins, including thrombo-
spondins and SPARC family members (Bornstein 2001;
Brekken and Sage 2001). The fibulin family of ECM
proteins has gained attention because of a wide spectrum of
cellular functions, as well as essential contributions to the
formation of elastic fibers and basement membranes by
aiding in assembly and stabilization of macromolecular ECM
complexes (reviewed in Argraves et al. 2003; Chu and Tsuda
2004; de Vega et al. 2009). While it is difficult to draw a line
precisely between structural proteins and matricellular
proteins, we include fibulins as part of the matricellular
family because of their diverse cellular and biological
functions that involve both matrix and neighboring cells.
We will focus on Class II short fibulins, specifically fibulin-5
(also known as EVEC, DANCE) in this review, and discuss
domain structure, gene expression, cellular functions, and
involvement in various biological processes during develop-
ment and in pathological conditions.

Fibulin-5: overview

Fibulin-5 was first identified in 1999 by two groups in
search of genes involved in phenotypic modulation of
vascular smooth muscle cells (SMCs) and in cardiovascular
development through subtractive hybridization and signal
sequence trap cloning, respectively (Kowal et al. 1999;
Nakamura et al. 1999). Fibulin-5 was shown to be a 66-kDa
glycoprotein containing six calcium-binding EGF-like
(cbEGF) motifs, which are believed to provide stability
and facilitate protein interaction. Fibulin-5 also contains a
RGD motif involved in the binding to a subset of cell-
surface integrins. In the initial reports, the fibulin-5 gene
(Fbln5) was shown to be strongly expressed in the

embryonic vasculature and neural crest, but was down-
regulated in all adult tissues, except in the uterus where
active remodeling and angiogenesis takes place. Fbln5
expression, however, was reactivated in injured vessels,
including the neointima induced by balloon withdrawal
injury, and in atherosclerotic plaques in the mouse model of
hypercholesterolemia (Kowal et al. 1999; Nakamura et al.
1999), suggesting a regulatory role in vascular cell
function. Fibulin-5 was also identified as a TGF-β-
inducible gene in 3T3-L1 fibroblasts and was shown to
induce DNA synthesis in a Smad3-dependent manner. In
contrast, fibulin-5 inhibited cell proliferation and cyclin A
expression in mink lung epithelial cells, suggesting a
potential involvement in the control of cell proliferation in
a context-dependent manner (Schiemann et al. 2002).

The biological function of fibulin-5 in vivo, however,
was unknown until the generation of Fbln5 knockout mice,
in which systemic elastic fiber defects were revealed
(Nakamura et al. 2002; Yanagisawa et al. 2002). Fbln5-
null mice survive to adulthood but progressively develop
severe elastinopathy, including loose skin, tortuous aorta,
emphysematous lung, and genital prolapse. These observa-
tions establish the first animal model for congenital elastic
fiber defects. Fbln5-null mice exhibit an elevated pulse
pressure, and Fbln5-null aortic explants show a significant
decrease in extensibility compared to the wild-type vessels,
demonstrating that compromised elastic fibers lead to stiff
vessels with decreased elasticity. Fbln5-null skin and lungs
contain only short, disrupted elastic fibers, and no signs of
inflammatory infiltrates were observed. In addition, the
aorta, lungs, and skin did not show a disruption in collagen
fiber formation, confirming that the defects in Fbln5-null
mice were confined to the elastic fiber system.

The biological functions of fibulin-5 have been investi-
gated in in vitro studies, and can be segregated into
elastogenic and extra-elastogenic functions. However, dis-
tinguishing these functions in vivo is challenging due to the
fact that insoluble elastin is known to influence cellular
behavior (Karnik et al. 2003).

Fibulin-5: an integrin-binding member of the Class II
fibulin subfamily

Fibulins are characterized by tandem repeats of calcium-
binding EGF (cbEGF)-like motifs and a globular C-terminal
fibulin module. There are seven known fibulins (Fig. 1),
which can be subdivided into two subfamilies based on their
size and domain structure. The Class I fibulin subfamily
includes the prototype fibulin-1, fibulin-2, and fibulin-6
(reviewed in Argraves et al. 2003; Timpl et al. 2003). In this
subfamily, cbEGF repeats are longer than in Class II fibulins,
and there are additional N-terminal domains that are not
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shared by Class II fibulins. Fibulin-6 contains the largest N-
terminal domain, consisting of a von Willebrand factor
domain, more than forty immunoglobulin domains depend-
ing on the species, and six thrombospondin type I repeats
(Vogel and Hedgecock 2001). Class II fibulins include
fibulin-3, fibulin-4, fibulin-5 and fibulin-7. Fibulins-3, -4
and -5 contain six cbEGF domains, the first of which
contains a proline-rich insertion sequence, and the sixth
domain, which is a divergent type with 8 cysteines. The
identity score of the primary amino acid sequence between
fibulin-5 and fibulins-3, -4 and -7 in humans is 41%, 49%,
and 24%, respectively. Fibulin-7 is the newest member and
is rather atypical because of the shorter cbEGF domains and
the presence of a sushi domain, which is frequently found in
complement proteins, but is absent in fibulins-3, -4, and -5
(de Vega et al. 2007).

Fibulin-5 contains an evolutionally conserved RGD
sequence in the first cbEGF domain (Fig. 2). The RGD
sequence is present in various matricellular and ECM
proteins, including fibronectin, vitronectin, osteopontin
and thrombospondins, and is recognized by heteromeric
integrin receptors to participate in cellular functions (Davis
et al. 2000; Ruoslahti and Pierschbacher 1987). For
example, ECM-cell binding is essential for the assembly
of fibrous ECM proteins such as fibronectin (Wu et al.
1995), to trigger cellular effects via the cytoplasmic tail of
β integrin (Legate et al. 2006), and to form cell- surface
protease complexes, involving urokinase type plasminogen

activator (uPA)/uPA receptor, vitronectin, and activated
integrins (Madsen and Sidenius 2008).

Fibulin-5 was shown to mediate binding to human
umbilical vein endothelial cells (HUVECs) in a RGD-
dependent manner (Nakamura et al. 1999). Further, it was
shown that the N-terminal half of fibulin-5 mediates cell
attachment via αvβ3, αvβ5 and α9β1 integrins (Nakamura
et al. 2002). On the other hand, Lomas et al. found that
fibulin-5 mediates attachment and spreading of primary
aortic SMCs through binding to the fibronectin receptor
α5β1 and α4β1, but not to αvβ3 (Lomas et al. 2007).
Although the RGD motif and insertion sequence of fibulin-
5 was suggested to be exposed to the cell surface (Albig
and Schiemann 2005), direct protein interaction assays
revealed that fibulin-5 was only able to bind to αvβ3 after
reduction and alkylation, which unmasks the RGD se-
quence (Kobayashi et al. 2007). Furthermore, truncated
fibulin-5, containing the first cbEGF domain alone, did not
support binding and spreading of SMCs. Taken together,
these results indicate that fibulin-5-integrin interactions may
require efficient exposure of the RGD motif and presence of
the flanking domains of fibulin-5 (Lomas et al. 2007).
Interestingly, fibulin-5 failed to activate downstream sig-
naling after binding to α5β1 and α4β1 integrins. Fibulin-5
antagonized fibronectin-induced stress fiber formation and
focal adhesions in SMCs in a dose-dependent manner,
suggesting that fibulin-5 acts in a dominant-negative
fashion to inhibit fibronectin receptor-mediated signaling.

Fig. 1 Schematic presentation
of fibulin family proteins. Class
I fibulins include long fibulins
(fibulin-1, -2, and -6) and Class
II fibulins include short fibulins
(fibulin-3, -4, -5, and -7).
Fibulin-5 contains an evolution-
ally conserved RGD (arginine-
glycine-asparatic acid) sequence
in the first cbEGF motif,
whereas the RGD sequence in
fibulin-2 is not conserved
among the species. Human
fibulin-6 with 44 repeats of
immunoglobulin domain is
shown. Parentheses indicate
synonym(s) of the
corresponding fibulin shown in
the figure
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Repeating cbEGF motifs are present in ECM and trans-
membrane proteins and are involved in protein-protein
interactions (Maurer and Hohenester 1997). Various binding
partners for fibulin-5 have been reported, including fibulin-5
itself (Jones et al. 2009; Zheng et al. 2007) (Table 1). Most
notably, fibulin-5 binds to several molecules, critical for
elastic fiber assembly, which will be discussed later in this
review. All class II fibulins except fibulin-7 were shown to
bind to tropoelastin (Kobayashi et al. 2007) and are
responsible for different aspects of elastic fiber development
in vivo (McLaughlin et al. 2006; McLaughlin et al. 2007).
Although a direct binding of Ca2+ to the cbEGF domains of
fibulin-5 has not been demonstrated, reducing the Ca2+

concentration significantly decreased tropoelastin binding to
fibulin-5 in solid-phase binding assays (Wachi et al. 2007;
Yanagisawa et al. 2002). Furthermore, a large deletion of the
cbEGF domains of fibulin-5 exhibited a significant reduction
in tropoelastin binding, suggesting that cbEGF domains play
a significant role in tropoealstin-fibulin-5 binding (Zheng et
al. 2007). Fibulin-5 also binds to extracellular-type
superoxide dismutase (SOD3), which regulates extracellular
superoxide anion (O2

-) levels by facilitating the conversion
of O2

- to hydrogen peroxide (H2O2) and protecting the
formation of peroxynitrite. Consistent with this observation,
Fbln5-null aorta was shown to contain higher amounts of
O2

- compared to wild-type controls because of the impaired
tethering of SOD3 (Nguyen et al. 2004).

Fibulin-5 was shown to undergo partial proteolytic
cleavage at arginine at position 77 in the N-terminal region,
creating a truncated form of fibulin-5 (Hirai et al. 2007b). A
point mutation of arginine to alanine inhibited proteolytic
cleavage of fibulin-5 in vitro. The truncated fibulin-5

increased with aging in the skin of wild-type mice, and
showed impaired ability to assemble elastic fibers in in vitro
elastogenic assays. The putative protease responsible for
the cleavage was suggested to be a serine protease (Hirai et
al. 2007b); however, the in vivo significance of this
cleavage and its relationship with human skin diseases still
needs to be established.

Fibulin-5 and elastic fiber development

Elastic fibers are composed of an amorphous-appearing
elastin core and a peripheral mantle of 10-nm fibrillin-
containing microfibrils. In addition to elastin, fibrillin-1,
and fibrillin-2, more than 30 microfibril- and elastin-
associated proteins, have been identified, including fibulins,
microfibril-associated glycoproteins MAGP-1 and MAGP-
2, and latent TGF-β binding proteins-1 through -4 (LTBPs)
(reviewed in Kielty et al. 2002). Elastogenesis occurs
through a series of highly regulated steps that involve
secretion of the tropoelastin monomer, self-aggregation of
tropoelastin, called coacervation, correct assembly and
cross-linking of tropoealstin, and final organization of the
insoluble elastin into functional fibers. In the mouse aorta,
elastin expression starts during mid-gestation in vascular
smooth muscle cells and continues for approximately
1 month after birth (Kelleher et al. 2004). Fbln5 expression
coincides with elastin expression in the aorta. During this
time, the secreted elastin is cross-linked and organized into
insoluble elastin sheets or laminae. Interestingly, microfibril
bundles form first in the regions where elastic fibers will
develop, and insoluble elastin is never observed in the

Fig. 2 Alignment of fibulin-5 from Human, Orangutan, Bovine,
Mouse, Rat, Chicken, Xenopus, and Danio in the first calcium binding
EGF-like domain with insertion a and a C-terminal fibulin module b.
Green shade represents a consensus of calcium binding motifs, yellow
shade represents the RGD sequence, and orange shade represents a
conserved sequence across the species. Red dot indicates arginine at

position 77 shown to undergo proteolytic cleavage. The amino acid
sequence of the C-terminal elastin-binding domain is indicated in b.
GenBank accession numbers used to obtain primary sequences are
Human (CAB38568), Orangutan (NP_001125375), Bovine
(NP_001014946), Mouse (NP_035942), Rat (NP_062026), Chicken
(XP_421423), Xenopus (NP_001025619) and Danio (NP_001005979)
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absence of microfibrils. Recently, double knockout mice for
the genes encoding fibrillin-1 (Fbn1) and fibrillin-2 (Fbn2)
were generated. These mice exhibited a severe disruption of
elastic fibers and a marked dysregulation of TGF-β-
mediated signals (Carta et al. 2006). The latter event occurs
due to the inability to tether proTGF-β onto microfibrils via
the interaction between large latency complex and fibrillin-
1 (Charbonneau et al. 2004; Isogai et al. 2003; Neptune et
al. 2003); however, the elastin core does not seem to be
involved in this process. These observations, together with
biochemical and ultrastructural studies, have led to the
suggestion that an interaction between microfibril proteins
and tropoelastin may be critical for proper elastic fiber
assembly.

Role of fibulin-5 in elastic fiber assembly

A dose-dependent, direct interaction between fibulin-5 and
tropoelastin was demonstrated by solid-phase binding
assays, and co-localization of fibulin-5 and elastic fibers
was revealed at an electron microscopic level, providing a
basis for the molecular function of fibulin-5 (Yanagisawa et
al. 2002). Fibulin-5 was shown to bind tropoelastin
preferentially, but not polymerized α-elastin, suggesting
its role in an early step of elastogenesis (Zheng et al. 2007).
Using full-length recombinant fibulin-5, it was shown that
fibulin-5 accelerates coacervation (Hirai et al. 2007b;
Wachi et al. 2008), and the interaction between fibulin-5
and tropoelastin is enhanced by increased temperature and
sodium chloride concentrations, which is consistent with

the conditions for the efficient coacervation in vitro (Wachi
et al. 2008). Furthermore, Cirulis et al. showed that fibulin-
5 limits the maturation of coacervated elastin fragments
(Cirulis et al. 2008). Consistent with these data, Choi et al.
showed by using electron microscopy that the average size
of elastin aggregates was increased in the skin of Fbln5-null
mice, compared with wild-type mice (Choi et al. 2009).
Taken together, these findings show that fibulin-5 functions
at a formation and maturation step of coacervation to 1)
control coacervation efficiency, and 2) to regulate the size
of self-aggregates to achieve optimal cross-linking of
tropoelastin during elastic assembly.

It was also demonstrated that fibulin-5 binds to fibrillin-
1, a major component of microfibrils (El-Hallous et al.
2007; Freeman et al. 2005). Fibulin-5 co-localizes with
microfibrils in elastogenic cells, as well as in non-
elastogenic cells, engineered to overexpress tropoelastin
and fibulin-5 (Hirai et al. 2007b; Nonaka et al. 2009; Zheng
et al. 2007). Consistent with these observations, a signifi-
cant alteration of fibulin-5 expression was observed in tight
skin mice, in which a Fbn1 mutation caused abnormally
tight skin, dermal fibrosis, and impaired elastogenesis
(Lemaire et al. 2004). Furthermore, it was shown that
knocking down Fbn1 in human skin fibroblasts abrogates
the formation of elastic fibers and decreases fibulin-5
immunoreactivity. Binding between LTBP-2 and fibulin-5
was shown to promote the deposition of fibulin-5 onto
fibrillin-1 microribrils (Hirai et al. 2007a). Whether the
formation of a fibrillin-1-fibulin-5-tropoelastin ternary
complex is necessary to bind microfibrils, or whether

Table 1 Interacting partners of Fibulin-5

Interacting proteins Binding site(s) within Fibulin-5 Cellular and/or Biological functions Reference

Fibulin-5 ND Unknown Zheng et al. 2007

Tropoelastin cbEGF domains Jones et al. 2009

N-terminal cbEGF domains Elastic fiber assembly Zheng et al. 2007

C-terminal EB domain

Loxl-1 a. C-terminal fibulin domain > 1st cbEGF Elastic fiber assembly a. Hirai et al. 2007a

b. C-terminal region (245-448) b. Liu et al. 2004

Loxl-2, 4 C-terminal fibulin domain Elastic fiber assembly Hirai et al. 2007a

Emilin-1 ND Elastic fiber assembly Zanetti et al. 2004

LTBP-2 6th cbEGF Elastic fiber assembly Hirai et al. 2007b

Fibrillin-1 ND Elastic fiber assembly Freeman et al. 2005

SOD3 C-terminal region (320-448) Superoxide scavenge Nguyen et al. 2004

α5β1, α4β1 N-terminal half containing RGD Cell attachment, Antagonize
fibronectin function

Lomas et al. 2007

αvβ3, αvβ5 N-terminal half containing RGD Cell attachment Nakamura et al. 2002

α9β1 ND Cell attachment Nakamura et al. 2002

Lipoprotein(a) C-terminal domain (350-448) Unknown Kapetanopoulos et al. 2002

ND not determined
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fibulin-5-tropoelastin binding alone is sufficient, needs to
be determined.

Fibulin-5 also binds cross-linking enzymes, including
lysyl oxidase like (Loxl)-1, -2, and -4 (Hirai et al.
2007b; Liu et al. 2004). Overexpression of Fbln5
increased deposition of elastin and the desmosine level
of elastin, indicating that fibulin-5 facilitates cross-linking
of tropoelastin (Nonaka et al. 2009). Retrovirus- or
adenovirus- mediated gene transfer of Fbln5 accelerated
deposition of elastic fibers in human skin fibroblasts
(Katsuta et al. 2008) and regenerated elastic fibers in the
skin of Fbln5-null mice, respectively (Zheng et al. 2007).
The deletion mutant of fibulin-5 lacking its N-terminal
region, however, was unable to rescue elastic fiber defects
both in vitro and in vivo, despite the presence of the
elastin-binding domain located within the C-terminal
fibulin module (Hirai et al. 2007b; Zheng et al. 2007).
Therefore, the C-terminal elastin-binding domain is
required but not sufficient for the formation of elastic
fibers.

Although the significance of the RGD sequence in
elastic fiber assembly was initially suggested, generation
of mutant mice expressing fibulin-5 D56E (Fbln5RGE/RGE),
a mutation known to disrupt the binding of the ECM to
RGD-dependent integrins (Yang et al. 2007), developed
completely normal elastic fibers (our unpublished observa-
tion), suggesting that cell-surface binding of fibulin-5
mediated by integrins is dispensable for the formation of
elastic fibers. Taken together, we propose a model in which
fibulin-5 binds tropoelastin to regulate the coacervation step
and serves as an adaptor to bind the cross-linking enzymes,
tropoelastin and microfibrils, to aid in elastic fiber assembly
(Fig. 3).

Mutation of fibulin-5 in human elastic fiber disease

Human genetic studies have identified two homozygous
missense mutations of FBLN5 (p.S227P) and (p.C217R) in
autosomal recessive (AR) cutis laxa families (Claus et al.
2008; Elahi et al. 2006; Loeys et al. 2002). The first
mutation was reported in two families of ethnically
different groups and the disease manifested as a severe
form of cutis laxa with internal organ involvement (AR
cutis laxa type I). Biochemically, both substitutions of
fibulin-5 (S227P and C217R) were shown to decrease
binding to tropoelastin. The S227P mutation further
revealed a significant decrease in synthesis and secretion
of the mutant protein and impaired association with
fibrillin-1 (Hu et al. 2006). A heterozygous tandem
duplication of fibulin-5 was also reported in a patient with
a mild form of cutis laxa, suggesting that the large mutant
protein might act in a dominant negative fashion (Markova
et al. 2003).

Heterozygous missense variations in FBLN5 were
reported to be associated with age-related macular degen-
eration (ARMD), a common cause of progressive vision
loss (Lotery et al. 2006; Stone et al. 2004). Fibulin-5 is
normally localized in Bruch’s membrane and the chorioca-
pilaris of the retina, where elastic fibers are present.
Fibulin-5 was observed in the pathological basal deposits
beneath the retinal pigment epithelium in eyes affected by
age-related macular degeneration (Mullins et al. 2007).
Some mutations of fibulin-5 (G412E, G267S, I169 T, and
Q124P) were shown to cause decreased secretion of the
mutant protein into the media (Lotery et al. 2006),
suggesting compromised elastic fiber formation as the
underlying mechanism. However, the causal relationship
between heterozygous missense mutations in fibulin-5 and
ARMD needs to be further investigated.

Alteration of fibulin-5 in pathological conditions involving
elastic fibers

Fbln5-null mice were shown to develop pelvic organ
prolapse and have served as one of the first animal models
for this condition (Drewes et al. 2007). By 6 months of age,
92% of Fbln5-null females developed vaginal prolapse with
severe disruptions in elastic fiber formation. Biomechanical
studies using vagina tissue from pregnant and non-pregnant
females from wild-type and Fbln5-null mice revealed that
the Fbln5-null vagina with prolapse was similar to that of
pregnant wild-type females, exhibiting a significant decrease
in vaginal stiffness (Rahn et al. 2008). Subsequently, it was
shown in the uterosacral ligaments of patients with pelvic
organ prolapse (POP) that expression of fibulin-5 was
significantly decreased (Jung et al. 2009). Additionally,
fibulin-5 mRNA was decreased in para-urethral biopsies
obtained from POP women (Soderberg et al. 2009), under-
scoring defective elastic fibers as an underlying cause of POP.

Another organ affected by the absence of fibulin-5 is the
lung, in which the defect is manifested as an emphysematous
lung that progressively worsens after birth. Expression of
fibulin-5 is observed during embryogenesis and continues after
birth to complete the development of the lung. Interestingly,
FGF18 expression, which peaks after birth, correlates with the
expression of tropoelastin in vivo, and supports elastogenesis
by inducing proliferation of lung fibroblasts, as well as by
expression of elastogenic genes, including Fbln5 and Lox
(Chailley-Heu et al. 2005). Fbln5 expression was confirmed
in rat lung interstitial fibroblasts, and was markedly increased
after treatment with TGF-β or following elastase-induced
lung injury (Kuang et al. 2003; Kuang et al. 2006). On the
other hand, treatment of lung interstitial fibroblasts with
interleukin -1β completely abolished the expression of Fbln5
(Kuang et al. 2003), demonstrating the regulation of Fbln5 by
distinct sets of cytokines.
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Effect of fibulin-5 on vascular cells

The function of fibulin-5 in adult blood vessels was
suggested by the strong upregulation of Fbln5 in the
neointima after balloon withdrawal injury or carotid artery
ligation, and in activated endothelial cells of atherosclerotic
plaques (Kowal et al. 1999; Spencer et al. 2005). Fbln5-null
SMCs displayed enhanced proliferation and migration in
response to serum and PDGF. This enhancement was
inhibited by over-expression of Fbln5 (Spencer et al.
2005). Forced expression of Fbln5 in primary human
endothelial cells improved cell attachment against contin-
uous shear stress and enhanced cell retention on artificial
grafts subjected to pulsatile flow. However, the proliferation
of endothelial cells was decreased in Fbln5-overexpressing
cells compared to control cells (Preis et al. 2006). Human
primary SMCs plated on recombinant fibulin-5 exhibited
PDGF receptors with undetectable phosphorylation, and
poorly phosphorylated EGF receptors, compared to SMCs
plated on fibronectin (Lomas et al. 2007). Interestingly, the
presence of integrin β1-activating antibody in SMCs,
plated on fibulin-5, restored phosphorylation of PDGF α
and β receptors. Together with the observation that fibulin-5
binds fibronectin receptors (α5β1 and α4β1) but fails to
activate downstream signaling, these data suggest a possi-
bility that fibulin-5 may regulate vascular cell behavior by
antagonizing fibronectin-mediated signaling. However,
further investigation is required to establish the in vivo
relevance of the fibulin-5-integrin binding during vessel
development and pathological insults.

Fibulin-5 and angiogenesis

The effect of fibulin-5 on angiogenesis was first described
using mouse brain microvascular MB114 endothelial cells,
in which Fbln5 overexpression or incubation with recom-
binant fibulin-5 inhibited sprouting, proliferation, and

invasion in matrigel (Albig and Schiemann 2004). Upre-
gulation of thrombospondin-1 expression, as well as
antagonization of VEGF165 -mediated signaling, including
activation of P38 MAPK and ERK1/2, were suggested to
be the underlying causes of the inhibitory effect of fibulin-
5. Fibulin-5 was also shown to reduce migration of human
microvascular HMEC-1 endothelial cells toward fibronec-
tin, and overexpression of FBLN5 in MB114 cells down-
regulated MMP-2 expression, as well as enzymatic activity
during tubulogenesis on collagen gels (Albig et al. 2006).
Matrigel implantation experiments in the skin of wild-type
mice showed that matrigel containing high or low doses of
fibulin-5 stimulated the invasion of bFGF-induced fibro-
blasts, but inhibited vessel formation and angiogenesis,
independent of RGD-integrin interactions. Consistent with
these observations, Fbln5-null mice exhibited increased
angiogenesis after physiological wound healing and PVA
sponge implantation, without an effect on fibroblast
invasion (Sullivan et al. 2007; Zheng et al. 2006).

Although exogenous and endogenous fibulin-5 was
shown to antagonize angiogenesis, the exact mechanism
behind this effect has remained elusive. We recently
observed that fibulin-5 exerts its effect on endothelial cells
and angiogenesis by controlling integrin-induced production
of reactive oxygen species (ROS), which have pro-
angiogenic properties (Schluterman et al. 2009). ROS,
including O2

- and H2O2, are highly reactive molecules
produced commonly as by products of aerobic respiration
and the mitochondrial transport chain. ROS were originally
identified as host defense molecules produced by neutrophils
via NAD(P)H oxidases, and have a critical function in
eliciting biological processes required for the initiation of
angiogenesis (Wu 2006). By functioning as signaling
molecules, ROS have been shown to activate pathways such
as proliferation, cell adhesion, motility and invasion in
endothelial cells (Ushio-Fukai 2007).

Endothelial cells, treated with H2O2, produced higher
levels of VEGF, thereby increasing their proliferation and

Fig. 3 A model of elastic fiber assembly. a Secretion of tropoelastin
(TE) from elastogenic cells (green). Tropoelastin undergoes self-
aggregation and fibulin-5 (purple) mediates this process. Tropoealstin
binds both N-terminal (N) and C-terminal tropoelastin-binding

domains (square) of fibulin-5. b Fibulin-5 binds tropoelastin, micro-
fibrils (blue), and lysyl oxidase-like enzyme (yellow) to aid in elastic
fiber assembly. c Cross-linked insoluble elastin (grey) is polymerized
and organized into functional elastic fibers
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migration (Chua et al. 1998). It has also been shown that
ROS, produced in response to hypoxic conditions, can
facilitate capillary tube formation in human microvascular
endothelial cells, and this process was inhibited by
treatment with an anti-oxidant (Lelkes et al. 1998). ROS
have also been shown to stimulate angiogenesis in vivo.
For example, neovascularization in response to hindlimb
ischemia was significantly impaired in mice lacking
gp91phox, a critical component of NADPH oxidases (Tojo
et al. 2005). However, the production of ROS must be tightly
regulated because a large excess of ROS can be detrimental to
the remodeling process and result in endothelial cell death
(Touyz and Schiffrin 2004). Since α5β1 integrin serves as
the primary fibronectin receptor and stimulates ROS
production (Chiarugi et al. 2003), and fibulin-5 binding to
α5β1 leads to inhibition of fibronectin-mediated down-
stream signaling (Lomas et al. 2007), it is plausible that
fibulin-5 antagonizes endothelial cell proliferation and
migration by controlling ROS levels through binding to
α5β1 integrin. Interestingly, ROS production increases in
response to vascular injury and atherosclerotic changes as
part of the inflammatory response to aid in endothelial cell
stimulation (Cai and Harrison 2000). Therefore, it is possible
that the increase in fibulin-5 expression observed following
trauma to the vasculature could be used as a mechanism to
control ROS production during such events.

Fibulin-5 in tumorigenesis

Given the varying effects of fibulin-5 on different cell
populations, it is no surprise that the effect of fibulin-5 on
tumor growth is complex and appears to be largely context-
dependent. For example, MCA 102 fibrosarcoma cells, stably
expressing Fbln5 and subcutaneously injected into isogenic
wild-type mice, produced significantly reduced tumor growth,
despite the fact that stimulation with fibulin-5 increased the
invasiveness of MCA 102 cells into a synthetic basement
membrane in vitro (Albig et al. 2006). When Fbln5-
overexpressing HT1080 fibrosarcoma cells were injected
into BALB/c SCID mice, tumor growth was inhibited and
tumor blood vessel formation was significantly decreased
compared to the mice injected with control HT1080 cells
(Xie et al. 2008). In stark contrast, overexpression of
Fbln5 in 4T1 breast cancer cells increased invasiveness
by inducing TGF-β-stimulated epithelial-mesenchymal
transitions and MMP expression. These alterations led to
increased tumor growth in vivo when these cells were
implanted into normal wild-type mice. (Lee et al. 2008).

Examination of FBLN5 mRNA levels in various human
tumors from kidney, breast, prostate, lung and gastrointestinal
organs, revealed that FBLN5 expression was down-regulated
in 62% of tumors in comparison to control normal tissues

(Schiemann et al. 2002). However, the analysis of FBLN5
expression in human tumors has been limited and has largely
centered on whole tumor tissue analysis, allowing for no
distinction between tumor cell-derived and host-derived
fibulin-5. Given the differential effects of fibulin-5 on cells
of epithelial origin and on cells of mesenchymal origin
(Schiemann et al. 2002), the overall effect of fibulin-5 on
tumor development must be carefully evaluated in human
tumor specimens.

Conclusions and future directions

Fibulin-5 is a matricellular protein, contributing to the
structural development of elastogenic tissues, as well as
mediating various cellular functions required for the
maintenance of tissue homeostasis. The discovery of
fibulin-5 has provided a new insight into the regulated
steps of elastic fiber assembly and has given us an
opportunity to explore therapeutic implications, including
prevention of elastic fiber-degenerative conditions, regen-
eration of damaged elastic fibers, and development of
efficient artificial blood vessels. The availability of genet-
ically engineered mice that enables us to delete Fbln5 after
the completion of elastic fibers will allow us to distinguish
between the elastic fiber-dependent or -independent effect
of fibulin-5. It also remains to be investigated how Class II
fibulins are involved in elastic fiber development in vivo, and
what are the redundant and specific roles among these
fibulins. A diverse cellular effect of fibulin-5, in a cell-type
specific and context-dependent manner, suggests that there
may be multiple fibulin-5-interacting proteins at the cell
surface, including integrins. It remains to be determined how
fibulin-5 mediates or antagonizes cellular signaling at the cell
surface, and whether modulation of fibulin-5 has the potential
for the therapy of angiogenesis-dependent pathologies.
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