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1 Introduction

Much effort has been spent in developing the so called stabi-
lized numerical methods overcoming the two main sources
of instability in incompressible flow analysis, namely those
originated by the high values of the convective terms and
those induced by the difficulty in satisfying the incompress-
ibility condition.

The solution of above problems in the context of the finite
element method (FEM) has been attempted in a number of
ways. The first attempts to correct the underdiffusive char-
acter of the Galerkin FEM for high convection flows were
based in adding some kind of artificial viscosity terms to the
standard Galerkin equations [1, 2].

A popular way to overcome the problems with the incom-
pressibility constraint is by introducing a pseudo-compress-
ibility in the flow and using implicit and explicit algorithms
developed for this kind of problems such as artificial com-
pressibility schemes [3–5] and preconditioning techniques
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[6]. State of the art FEM schemes for fluid flow analysis
with good stabilization properties for the convective and
incompressibility terms are based in Petrov-Galerkin (PG)
techniques. The background of PG methods are the non-
centred (upwind) schemes for computing the first derivatives
of the convective operator in finite difference and finite vol-
ume methods [7, 8]. A general class of stabilized PG FEM
has been recently developed where the standard Galerkin
variational form of the momentum and mass balance equa-
tions is extended with adequate residual-based terms in
order to achieve a stabilized numerical scheme. References
[9–30] list some of the more popular stabilized FEM of this
kind. A review of many of these methods can be found in [1,
31].

In this paper a stabilized FEM for incompressible flows is
derived via a finite calculus (FIC) approach [32, 33]. The FIC
method is based in invoking the balance of fluxes in a fluid
domain of finite size. This introduces naturally additional
terms in the classical differential equations of momentum
and mass balance of infinitesimal fluid mechanics which are
a function of characteristic length dimensions related to the
element size in the discretized problem. The FIC terms in
the modified governing equations provide the necessary sta-
bilization to the discrete equations obtained via the standard
Galerkin FEM. The FIC/FEM formulation allows to use low
order finite elements (such as linear triangles and tetrahedra)
with equal order approximations for the velocity and pressure
variables.

The FIC/FEM formulation has proven to be very effec-
tive for the solution of a wide class of problems, such as con-
vection-diffusion [32–39] and convection-diffusion-reaction
[40–42] involving arbitrary high gradients, incompressible
flow problems accounting for free surface effects and fluid–
structure interaction situations [32, 33, 43–51] and quasi and
fully incompressible problems in solid mechanics [52, 53].

The FIC equations for incompressible flow derived in pre-
vious works of the authors assumed that the dimensions of
the domain where the momentum conservations law was en-
forced remain the same independently of the direction along
which balance of momentum is imposed. As a consequence,
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each of the resulting FIC momentum equations contain the

same characteristic dimensions which can be grouped in a
characteristic distance vector. In this paper, a refined FIC
momentum equations are derived by accepting that the dimen-

sions of the momentum balance domain are different for each

of the momentum equations. This introduces a matrix form

of the characteristic distances and of the corresponding FIC
terms which have better intrinsic stabilization properties.

The idea of a matrix form of the stabilization parame-
ters is close to the element-matrix-based and element-vec-
tor-based stabilization parameters proposed in [54] where
different intrinsic time parameters were defined separately
for each degree of freedom of the equation system.

Stabilized FEM have been successfully used in the past
to solve a wide range of fluid mechanics problems. The in-
trinsic dissipative properties of the stabilization terms (which
can interpreted as an additional viscosity) typically suffices
to yield good results for low and moderate values of the Rey-
nolds number (Re). For high values of Re most stabilized
FEM fail to provide physically meaningful results and the
numerical solution is often unstable or inaccurate. The intro-
duction of a turbulence model is mandatory in order to obtain
meaningful results in these cases.

The relationship between the additional dissipation intro-
duced by the turbulence model and the intrinsic dissipative
properties of stabilized FEM is an open topic which is attract-
ing increasing attention in the CFD community. It is clear
that both remedies (the turbulence model and the stabiliza-
tion terms) play a similar role in the numerical solution, i.e.
that of ensuring a solution which is “physically sound” and
as accurate as possible.

It is our belief that the matrix stabilization terms intro-
duced by the FIC/FEM formulation here presented allow to
model accurately high Re number flows without the need
of introducing any turbulence model. The background of this
belief originates in the positive experiences in the application
of a very similar formulation for solving advection-diffusion
and advection-diffusion-reaction problems with arbitrary
sharp gradients without introducing any transverse dissipa-
tion terms [39, 41]. The extension of these ideas to the Na-
vier–Stokes equations described here provides a straightfor-
ward procedure for solving a wide class of flow problems
from low to high Reynolds numbers, as demonstrated by the
good results presented in the paper.

The layout of the paper is the following. In the next sec-
tion the FIC equations for incompressible flows with matrix
stabilization terms are presented. The finite element discret-
ization is introduced and the resulting matrix equations are
detailed. A fractional step scheme for the transient solution
is detailed. Examples of applications to the 2D analysis of
flows passing a backward facing step and a cylinder at differ-
ent Reynolds numbers are presented.

2 General FIC equations for viscous incompressible fl w

The FIC governing equations for a viscous incompressible
fluid can be written in an Eulerian frame of reference as

Momentum

rmi
−

1

2
hi j

∂rmi

∂x j

= 0 in � no sum in i. (1)

Mass balance

rd −
1

2
h j

∂rd

∂x j

= 0 in �, (2)

where

rmi
= ρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

+
∂p

∂xi

−
∂si j

∂x j

− bi (3a)

rd =
∂ui

∂xi

i, j = 1, nd . (3b)

Above � is the analysis domain, nd is the number of
space dimensions (nd = 2 for 2D problems), ui is the veloc-
ity along the ith global axis, ρ is the (constant) density of the
fluid, p is the absolute pressure (defined positive in compres-
sion), bi are the body forces and si j are the viscous deviatoric
stresses related to the viscosity µ by the standard expression

si j = 2µ

(

ε̇i j − δi j

1

3

∂uk

∂xk

)

, (4)

where δi j is the Kronecker delta and the strain rates ε̇i j are

ε̇i j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

. (5)

The FIC boundary conditions are

n jσi j − ti +
1

2
hi j n jrmi

= 0 on Ŵt no sum in i (6a)

u j − u
p
j = 0 on Ŵu (6b)

and the initial condition is u j = u0
j for t = t0.

Summation convention for repeated indices in products
and derivatives is used unless otherwise specified.

In Eqs. (6a) and (6b) ti and u
p
j are surface tractions

and prescribed displacements on the boundaries Ŵt and Ŵu ,
respectively, n j are the components of the unit normal vec-
tor to the boundary and σi j are the total stresses given by
σi j = si j − δi j p.

The hi j and h j are characteristic distances of the domain
where balance of momentum and mass is enforced. In Eqs. (1)
and (2) these lengths define the domain where equilibrium
of boundary tractions is established [32]. In the discretized
problem the characteristic distances become of the order of
the typical element dimensions. Note that by making these
distances equal to zero the standard infinitessimal form of the
fluid mechanics equations is recovered [1, 7, 31].

Equations (1)–(6) are the starting point for deriving sta-
bilized FEM for solving the incompressible Navier–Stokes
equations. The underlined FIC terms in Eq. (1) are essential
to overcome the numerical instabilities due to the convective
terms in the momentum equations, whereas the underlined
terms in Eq. (2) take care of the instabilities due to the incom-
pressibility constraint. An interesting feature of the FIC for-
mulation is that it allows to use equal order interpolation for
the velocity and pressure variables [43–53].



Remark 1 In previous work of the authors the characteristic
distances in the momentum equations had a vector form, i.e.
the FIC momentum equations were written as

ri −
1

2
h j

∂ri

∂x j

= 0 (7a)

or

ri −
1

2
hT∇ri = 0, (7b)

where (for 2D problems) h = [h1, h2]
T is the characteristic

length vector [32, 33, 43].
The difference of Eqs. (7) with Eq. (1) is that the charac-

teristic distances have now a matrix form, i.e. the expanded
form of the momentum equations (1) is (for 2D problems)

r1 − 1
2

(

h11
∂r1
∂x1

+ h12
∂r1
∂x2

)

= 0

r2 − 1
2

(

h21
∂r2
∂x1

+ h22
∂r2
∂x2

)

= 0.
(8)

The rationale of Eqs. (8) is briefly explained in the Appendix.
The matrix of stabilization parameters S is defined as (for

2D problems)

S =

[

h11 h12

h21 h22

]

. (9)

Remark 2 Note that the characteristic distances in the FIC
mass conservation equation (2) have a vector form. As men-
tioned above distances h1 and h2 in Eq. (2) (for 2D problems)
denote the dimensions of the domain where balance of mass
is globally enforced (see Appendix). This is a basic difference
with the momentum equations where the momentum balance
law is applied along each global coordinate direction.

2.1 Stabilized integral forms

From the momentum equations it can be obtained [43, 45]

∂rd

∂xi

≃
hi i

2ai

∂rmi

∂x j

, no sum in i, (10a)

where

ai =
2µ

3
+

ρui hi i

2
, no sum in i. (10b)

Substituting Eq. (10a) into Eq. (2) and retaining the terms
involving the derivatives of rmi

with respect to xi only, leads
to the following alternative expression for the stabilized mass
balance equation

rd −

nd
∑

i=1

τi

∂rmi

∂xi

= 0 (11)

with

Fig. 1 Definition of the principal curvature direction �ξ i
1 along the

gradient of ui

Fig. 2 Definition of the element characteristic distances li1 and li2
corresponding to the i th momentum equation

τi =

(

8µ

3hi i hi

+
2ρui

hi i

)−1

. (12)

The τi ’s in Eq. (11) when multiplied by the density are
equivalent to the intrinsic time parameters, seen extensively
in the stabilization literature. The interest of Eq. (11) is that it
introduces the first space derivatives of the momentum equa-
tions into the mass balance equation. These terms have intrin-
sic good stability properties as explained next.

The weighted residual form of the momentum and mass
balance equations [Eqs. (1), (11)] is written as

∫

�

δui

[

rmi
−

hi j

2

∂rmi

∂x j

]

d�

+

∫

Ŵt

δui

(

σi jn j − ti +
hi j

2
n jrmi

)

dŴ = 0 (13)

∫

�

q

[

rd −

nd
∑

i=1

τi

∂rmi

∂xi

]

d� = 0, (14)

where δui and q are arbitrary weighting functions represent-
ing virtual velocities and virtual pressure fields. Integrating
by parts the rmi

terms in Eqs. (13) and (14) leads to



Fig. 3 Backward facing step. Geometry and finite element mesh of 30,850 three-noded triangles. Mesh detail at the vicinity of the step

∫

�

δuirmi
d� +

∫

Ŵt

δui (σi j n j − ti )dŴ

+

∫

�

hi j

2

∂δui

∂x j

rmi
d� = 0 (15a)

∫

�

qrdd� +

∫

�

[

nd
∑

i=1

τi

∂q

∂xi

rmi

]

d�

−

∫

Ŵ

[

nd
∑

i=1

qτinirmi

]

dŴ = 0. (15b)

We will neglect hereonwards the third integral in Eq. (15b)
by assuming that rmi

is negligible on the boundaries. The de-
viatoric stresses and the pressure terms in the first integral
of Eq. (15a) are integrated by parts in the usual manner. The
resulting momentum and mass balance equations are

∫

�

[

δuiρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

+
∂δui

∂x j

(

µ
∂ui

∂x j

− δi j p

)]

d�

−

∫

�

δui bi d� −

∫

Ŵt

δui ti dŴ

+

∫

�

hi j

2

∂δui

∂x j

rmi
d� = 0 (16a)

∫

�

q
∂ui

∂xi

d� +

∫

�

[

nd
∑

i=1

τi

∂q

∂xi

rmi

]

d� = 0. (16b)

In the derivation of the viscous term in Eq. (16a) we have
used the following identity holding for incompressible fluids
(prior to the integration by parts)

∂si j

∂x j

= 2µ
∂εi j

∂x j

= µ
∂2ui

∂x j∂x j

. (17)

2.2 Convective and pressure gradient projections

The computation of the residual terms are simplified if we
introduce the convective and pressure gradient projections ci

and πi , respectively, defined as

ci = rmi
− ρu j

∂ui

∂x j

πi = rmi
− ∂p

∂xi
.

(18)

We can express rmi
in Eqs. (16a) and (16b) in terms of ci

and πi , respectively which then become additional variables.
The system of integral equations is now augmented in the
necessary number of equations by imposing that the resid-
ual rmi

vanishes (in average sense) for both forms given by
Eqs. (18). This gives the final system of governing equations
as:
∫

�

[

δuiρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

+
∂δui

∂x j

(

µ
∂ui

∂x j

− δi j p

)]

d�

−

∫

�

δui bi d� −

∫

Ŵt

δui ti dŴ



Fig. 4 Backward facing step. Contours of horizontal (above) and vertical velocities

+

∫

�

hik

2

∂(δui )

∂xk

(

ρu j

∂ui

∂x j

+ ci

)

d� = 0 (19)

∫

�

q
∂ui

∂xi

d� +

∫

�

nd
∑

i=1

τi

∂q

∂xi

(

∂p

∂xi

+ πi

)

d� = 0 (20)

∫

�

δciρ

(

ρu j

∂ui

∂x j

+ ci

)

d� = 0 no sum in i (21)

∫

�

δπiτi

(

∂p

∂xi

+ πi

)

d� = 0 no sum in i (22)

with i, j, k = 1, nd . In Eqs. (21) and (22) δci and δπi are
appropriate weighting functions and the ρ and τi weights are
introduced for convenience.

We note that accounting for the convective and pressure
gradient projections enforces the consistency of the formula-
tion as it ensures that the stabilization terms in Eqs. (19) and
(20) have a residual form which vanishes for the “exact” solu-
tion. Neglecting these terms can reduce the accuracy of the
numerical solution and it makes the formulation more sensi-
tive to the value of the stabilization parameters as shown in
references [51–53].

3 Finite element discretization

We choose C◦ continuous linear interpolations of the veloci-
ties, the pressure, the convection projections ci and the pres-
sure gradient projections πi over 3-noded triangles (2D) and
4-noded tetrahedra (3D). The linear interpolations are written
as

ui = N k ūk
i , p = N k p̄k

ci = N k c̄k
i , πi = N k π̄k

i ,
(23)

where the sum goes over the number of nodes of each ele-

ment n (n = 3/4 for triangles/tetrahedra), ¯(·)
k

denotes the
nodal variables and N k are the linear shape functions [1].

Substituting the approximations (23) into Eqs. (19)–(22)
and choosing the Galerking form with δui = q = δci =
δπi = N i leads to following system of discretized equations

M ˙̄u + Hū − Gp̄ + Cc̄ = f (24a)

GTū + L̂p̄ + Qπ̄ππ = 0 (24b)

Ĉū + Mc̄ = 0 (24c)

QTp̄ + M̂π̄ππ = 0, (24d)

where

H = A + K + K̂. (25)

If we denote the node indexes with superscripts a, b, the
space indices with subscripts i, j , the element contributions
to the components of the arrays involved in these equations
are (i, j = 1, 3 for 3D problems)

Mab
i j =





∫

�e

ρN a N bd�



 δi j , Aab
i j =





∫

�e

ρN a(uT∇N b)d�



 δi j

K ab
i j =





∫

�e

µ∇∇∇T N a∇∇∇N bd�



 δi j , ∇∇∇ =

[

∂

∂x1
,

∂

∂x2
,

∂

∂x3

]T

K̂ ab
i j =





1

2

∫

�e

hi j

∂N a

∂x j

(ρuT∇∇∇N b)d�



 δi j , Gab
i =

∫

�e

∂N a

∂xi

N bd�

C =





C1

C2

C3



 , Cab
i =

1

2

∫

�e

hi j

∂N a

∂x j

N bd� (26)

L̂ab =

∫

�e

(∇∇∇T N a)[τ ]∇∇∇N bd�, [τ ] =





τ1 0 0

0 τ2 0

0 0 τ3





Q = [Q1,Q2,Q3], Qab
i =

∫

�e

τi

∂N a

∂xi

N bd� no sum in i



Fig. 5 Backward facing step. Velocity vectors and recirculation distance D

Ĉ = [Ĉ1, Ĉ2, Ĉ3], Ĉab
1 = Ĉab

2 = Ĉab
3 =

∫

�e

ρ2 Na(uT∇∇∇N b)d�

M̂ab
i j =





∫

�e

τi Na N bd�



 δi j , f a
i =

∫

�e

Na fi d�+

∫

Ŵe

Na ti dŴ. (27)

It is understood that all the arrays are matrices (except f
which is a vector) whose components are obtained by group-
ing together the left indices in the previous expressions (a
and possibly i) and the right indices (b and possibly j).

Note that the stabilization matrix K̂ in Eq. (25) adds ad-
ditional orthotropic diffusivity terms of value ρ(hi j ul/2).

The overall stabilization terms introduced by the FIC for-
mulation above presented have the intrinsic capacity to ensure
physically sound numerical solutions for a wide spectrum of
Reynolds numbers without the need of introducing additional
turbulence modelling terms. This interesting property is val-
idated in the solution of the examples presented in a next
section.

3.1 Transient solution scheme

The solution in time of the system of Eqs. (24) can be written
in general form as

M
1

�t

(

ūn+1 − ūn
)

+ Hn+θ ūn+θ − Gp̄n+θ

+Cn+θ c̄n+θ = fn+θ (27a)

GTūn+θ + L̂n+θ p̄n+θ + Qπ̄ππn+θ = 0 (27b)

Ĉn+θ ūn+θ + Mc̄n+θ = 0 (27c)

GTp̄n+θ + M̂n+θπ̄ππn+θ = 0 (27d)

where Hn+θ = H
(

un+θ
)

, etc and the parameter θ ∈ [0, 1].
The direct monolithic solution of Eqs. (27) is possible using
an adequate iterative scheme [52, 53]. However, in our work
we have used the fractional step method described next.

4 Fractional step method

A fractional step scheme is derived by spliting the discretized
momentum equation (27a) into the two following equations

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0 2 4 6 8 10 12 14 16 18 20

Length

U1

Fig. 6 Distribution of the horizontal velocity along the bottom line start-
ing from the vertical wall of the step. The circle shows the end of the
recirculation region.

M
1

�t

(

ũn+1 − ūn
)

+ Hn+θ ũn+θ − αGp̄n

+Cn+θ c̄n+θ = fn+θ (28a)

M
1

�t

(

ūn+1 − ũn+1
)

− G
(

p̄n+1 − αp̄n
)

= 0. (28b)

In Eqs. (28) ũn+1 is a predicted value of the velocity at
time n+1 and α is a variable whose values of interest are zero
and one. For α = 0 (first order scheme) the splitting error is
of order 0(�t), whereas for α = 1 (second order scheme)
the error is of order 0

(

�t2
)

[52]. We have chosen α = 1 for
the solution of the examples presented in the paper.

Equations (28) are completed with the following three
equations emanating from Eqs. (27b–d)

GTūn+1 + L̂np̄n+1 + Qπ̄ππn = 0 (29a)

Ĉn+1ūn+1 + Mc̄n+1 = 0 (29b)

QTp̄n+1 + M̂n+1π̄ππn+1 = 0. (29c)

The value of ūn+1 obtained from Eq. (28b) is substituted
into Eq. (29a) to give

GTũn+1 + �tGTM−1G(p̄n+1 − αp̄n)

+L̂npn+1 + Qπ̄ππn = 0. (30)

The product GTM−1G can be approximated by a lapla-
cian matrix, i.e.

GTM−1G =
1

ρ
L with Lab =

∫

�e

∇∇∇T Na∇∇∇N bd�, (31)



Fig. 7 Flow past a cylinder of unit diameter. Analysis domain and boundary conditions

Fig. 8 Flow past a cylinder. Mesh of 91,316 three-noded triangles used for the computations

where Lab are the element contributions to L.
The steps of the fractional step scheme are:

Step 1 Eq.(28a) is linearized as

M
ũn+1 − ūn

�t
+ H̃n+θ ũn+θ − αGp̄n + C̃n+θ c̄n = f̄n+θ,

(32)

where ũn+θ = θ ũn+1 + (1 − θ)ūn , H̃n+θ = H
(

ũn+θ
)

,

and C̃n+θ = C
(

ũn+θ
)

. We have chosen in our computation

θ = 0. For this value, the fractional nodal velocities ũn+1

can be explicitely computed from Eq. (32) by

ũn+1 = ūn − �tM−1
d

[

H̃nūn − αGp̄n + C̃n c̄n − f̄n
]

, (33)

where Md is the lumped diagonal form of M.

Step 2 Compute p̄n+1 from Eq. (30) as

p̄n+1 =−

[

L̂n +
�t

ρ
L

]−1[

GTũn+1 − α
�t

ρ
Lp̄n + Qπ̄ππn

]

.

(34)

Step 3 Compute ūn+1 explicitly from Eq. (28a) as

ūn+1 = ũn+1 + �tM−1
d G

(

p̄n+1 − αp̄n
)

. (35)

Step 4 Compute c̄n+1 explicitly from Eq. (29b) as

c̄n+1 = −M−1
d Ĉn+1ūn+1. (36)

Step 5 Compute π̄ππn+1 explicitly from Eq. (29c) as

π̄ππn+1 = −M̂−1
d QTp̄n+1. (37)



Fig. 9 Flow past a cylinder, Re = 100. Contour of the velocity vector modulus for t = 100 s

Fig. 10 Flow past a cylinder, Re = 100. Velocity vectors for t = 100 s

Above algorithm has improved stabilization properties
versus the standard segregation methods due to the introduc-

tion of the laplacian matrix L̂ in Eq. (34) which emanates
from the FIC stabilization terms.

The boundary conditions are applied as follows. No con-
dition is applied in the computation of the fractional velocities
ũn+1 in Eq. (33). The prescribed velocities at the boundary
are applied when solving for ūn+1 in the step 3. The pre-
scribed pressures at the boundary are imposed by making p̄n

equal to the prescribed pressure values.

5 Stokes f ow

The formulation for a Stokes flow can be readily obtained
simply by neglecting the convective terms in the general Na-
vier–Stokes formulation. Consequently, the convective
stabilization terms and the convective projection variables
are not larger necessary. Also the intrinsic time parameters
τi take now the simpler form [see Eq. (12)]:

τi =
3hi i hi

8µ
. (38)



Fig. 11 Flow past a cylinder, Re = 100. Trajectories of a substance over a band of 2.45 U at the entry transported across the flow for t = 100 s

The resulting discretized system of equations can be writ-
ten as [see Eqs. (29)]

M ˙̄u + Kū − Gp̄ = f
GTū + L̂p̄ + Qπ̄ππ = 0
QTp̄ + M̂π̄ππ = 0.

(39)

The fractional step algorithm of the previous section can
now be implemented. We note that convergence of the pre-
dictor-corrector scheme is now faster due to the absence of
the non linear convective terms in the momentum equation.

The steady-state form of Eqs. (39) can be expressed in
matrix form as




K −G 0
−GT −L̂ −Q
0 −QT −M̂











ū
p̄
π̄ππ







=







f
0
0







. (40)

The system is symmetric and always positive definite and
therefore leads to a non singular solution. This property holds
for any interpolation function chosen for ū, p̄ and π̄ππ , there-
fore overcoming the Babus̆ka-Brezzi (BB) restrictions [1].

A reduced velocity-pressure formulation can be obtained
by eliminating the pressure gradient projection variables π̄ππ



Fig. 12 Flow past a cylinder, Re = 100. Oscillations with time of the
horizontal velocity at the point with coordinates A (6.7–1.02)

from the last equation to give

[

K −G
−GT −

(

L̂ − QM̂−1QT
)

]

{

ū
p̄

}

=

{

f
0

}

. (41)

The reduction process is simplified by using a diagonal

form of matrix M̂. Applications of this scheme to incom-
pressible solid mechanics problems are reported in [52, 53].

6 Computation of the characteristic distances

The computation of the stabilization parameters is a crucial
issue as they affect both the stability and accuracy of the
numerical solution. The different procedures to compute the
stabilization parameters are typically based on the study of
simplified forms of the stabilized equations. Contributions
to this topic are reported in [11–20, 26–31, 34, 45, 54, 55].
Despite the relevance of the problem there still lacks a gen-
eral method to compute the stabilization parameters for all
the range of flow situations.

Recent work of the authors in the application of the FIC/
FEM formulation to convection-diffusion problems with sharp
arbitrary gradients [39, 41] has shown that the stabilizing FIC
terms take the form of a simple orthotropic diffusion if the bal-
ance equation is written in the principal curvature directions
of the solution. Excellent results were reported in [39, 41]
by computing first the characteristic length distances along
the principal curvature directions, followed by a standard
transformation of the distances to global axes. The resulting
stabilized finite element equations capture the high gradient
zones in the vicinity of the domain edges (boundary layers)
as well as the sharp gradients appearing randomly in the inte-
rior of the domain [39, 41]. The FIC/FEM thus reproduces
the best features of both the so called transverse (cross-wind)
dissipation or shock capturing methods [56, 57].

The numerical computations are simplified without appar-
ent loss of accuracy if the main principal curvature direction
of the solution at each element point is approximated by the
direction of the gradient vector at the element center. The
second principal direction (for 2D problems) is taken in the
orthogonal direction to the gradient. For linear triangles and
quadrilaterals these directions are assumed to be constant
within the element [39, 41].

Above simple scheme has been extended in this work
for the computation of the characteristic distances hi j for
the momentum equations. As for the length parameters hi

in the mass conservation equation, the simplest assumption
hi = hi i has been taken. Details of the algorithm for com-
puting hi j are given next (the method is explained for 2D
problems although it is readily extendible to 3D problems).

For the i-th momentum balance equation and every step
of the fractional step method described in Sect. 4:

1. A coordinate system �ξ i
1, �ξ i

2 is defined at each element

point such that �ξ i
1 is aligned with the gradient of

ui

(

�ξ i
1 = �∇ui

)

and �ξ i
2 is orthogonal to �ξ i

1 in anticlock-

wise sense (Fig. 1). The angle that �ξ i
1 forms with the

global x1 axis is defined as αi . Recall that the upper and
lower index i denotes the i th momentum equation.

2. The element characteristic distances li1 and li2 are defined
as the maximum projections of the element sides along

the �ξ i
1 and �ξ i

2 axes, respectively (Fig. 2).
3. The characteristic distances hi1 and hi2 are computed as

{

hi1

hi2

}

=

[

ci −si

si ci

] {

h̄i1

h̄i2

}

, i = 1, 2 (42)

with ci = cos αi , si = sin αi and the local distances h̄i1

and h̄i2 are

h̄i1 =

(

coth γ̄i j −
1

γ̄i j

)

li j , γ̄i j =
ū j li j

2µ
j = 1, 2,

(43)

where ū1 and ū2 are the components of the velocity vector

along the local axes �ξ i
1 and �ξ i

2, respectively (Fig. 1).

7 Examples

The examples were solved with the Tdyn code where the for-
mulation here presented has been implemented. The Tdyn
code can be downloaded from the webpage given in [58].

7.1 Backward facing step at high Reynolds number

Figure 3 shows the geometry of the standard backward facing
step problem. The boundary conditions were the following:
u1 = 1 and u2 = 0 were taken at the entry while p = 0
was assumed at the exit. Slipping conditions were assumed
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Fig. 13 Flow past a cylinder. Experimental (thick line) and computed (filled diamond) values of the Strouhal number S in terms of the Reynolds
number. Experimental values taken from [http://wn7.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01- 02/grp1/index.htm]

Fig. 14 Flow past a cylinder, Re = 1, 000. Contour of the velocity vector module for t = 100 s

at the rest of the vertical and horizontal walls. A value of
the kinematic viscosity ν = (µ/ρ) = 2.1 × 10−5 was taken
giving a Reynolds number of Re = ((ufree H)/ν) = 47, 619
for H = 1 and ufree = 1.

Figure 3 also shows the relatively coarse mesh chosen
of 30,850 three-noded triangular elements and 15,426 nodes.
The contours of the horizontal and vertical velocities and
details of the velocity vectors are shown in Figs. 4 and 5,
respectively. Figure 6 shows the distribution of the horizontal
velocity along the bottom line starting from the vertical wall
of the step. The point where the horizontal velocity changes
sign indicates the end of the recirculation area.

The length of the circulation area computed from Fig. 6 is
6.79. This value compares very well (3.2%) with the exper-
imental value reported by Kim et al. [59] (see Table 1). The
FIC/FEM results are remarkably accurate in comparison with

Table 1 Backward facing step. Length of the recirculation distance D
for Re = 47, 619

Model Length D Error range (%) Average error (%)
Exp. [59] 6.0–7.0

K-ε [60] 5.2 13.3–26 19.6
K-ε [61] 5.88 2–16 9
K-ε [62] 6.0 0–14 7
K-ε [63] 6.2 13.7–11.4 12.6
K-Tau [63] 6.82 13.7–2.5 8.1
FIC/FEM 6.71 11.8–4.1 7.9

Comparison of the FIC/FEM result with experimental data and with
numerical results obtained using different turbulence models

other results reported in the literature obtained using K -ε
and K -tau turbulence models [60–63]. We note again that
the FIC/FEM formulation does not include any additional
turbulence terms.



Fig. 15 Flow past a cylinder, Re = 1, 000. Velocity vectors for t = 100 s

7.2 Flow past a cylinder. Computation of the Strouhal
instability

Figure 7 shows the geometry for the analysis of the flow past
a cylinder of unit diameter (D). A unit horizontal velocity
is prescribed at the inlet boundary and at the two horizontal
walls. Zero pressure is prescribed at the outlet boundary. The
dimensions of the analysis domain are 36×27 units. The ori-
gin of the coordinate system has been sampled at the center
of the cylinder located at a distance of 13.1 units from the
entry wall. Zero velocity is prescribed at the cylinder wall.
The kinematic viscosity is ν = 0.01. Figure 8 shows the mesh
of 91,316 three-noded elements used for the computation. A
detail of the mesh in the vicinity of the cylinder is also shown
in Fig. 8.

The problem has been analyzed first for a value of the
horizontal velocity at the entry of u1 = 1 giving a Reynolds
number of Re = 100. Figures 9 and 10, respectively, show
the velocity modulus contours and the velocity vectors for
t = 100 s.

Figure 11 shows images of the trajectory of a substance
over a band of 2.45 units transported at the entry across the
flow for t = 100 s. The picture shows clearly the oscillatory
nature of the flow.

Figure 12 shows the oscillations of the horizontal velocity
at the point A with coordinates (6.7, −1.02) with time. The
Strouhal number computed from the shedding frequency n

as S = (nD/|u|) is S = 0.1702. This number compares very
well with the experimental result available in the literature
(see Fig. 13).

The same problem was analyzed for a value of the kine-
matic viscosity ν = 0.001 giving Re = 1, 000. The same
mesh of 91,316 linear triangles of Fig. 7 was used.

Figures 14, 15, 16 show, respectively, the velocity modulus
contours, the velocity vectors in the vicinity of the cylinder
for t = 100 s. and the trajectories of a substance transported
across the flow. Figure 17 finally shows the oscillations of
the horizontal velocity at point A. The computed value of
the Strouhal number in this case was S = 0.2103. This value
again coincides well with the reported experimental data (see
Fig. 13).

It is a well known fact that for Re > 300 the flow past a
cylinder exhibits 3D features. In [64] results from 2D and 3D
computation were compared for Re = 300 and 800. While
3D features were observed even at Re = 300 and more so
at Re = 800, there were no large discrepances between the
global flow parameters (such as drag, lift and Strouhal num-
ber) obtained from 2D and 3D computations. These conclu-
sions justify the results of the 2D computations presented in
the paper.

8 Conclusions

The finite calculus (FIC) form of the fluid mechanics equa-
tions is a good starting point for deriving stabilized FEM
for solving a variety of incompressible fluid flow problems.
The matrix stabilization terms introduced by the FIC formu-
lation here presented allow to obtain physically sound solu-
tions in the presence of sharp gradients occuring for high
Reynolds numbers without the need of introducing a turbu-
lence model. Good numerical solutions have been obtained
in the 2D examples solved with relatively coarse meshes for
moderate and high values of the Reynolds number. These
preliminary results reinforce our idea that the stabilization
terms introduced by the FIC formulation suffice to provide



Fig. 16 Flow past a cylinder, Re = 1, 000. Trajectories of a substance over a band of 2.45 units at the entry transported across the flow for
t = 100 s

good results for problems for which turbulence models are
required using alternative numerical methods. These results
also confirm the close link between the stabilized methods
and turbulence models, which surely will be the object of
much research in the near future.

Appendix

The FIC momentum equations in two dimensions (2D) are
obtained by expressing the balance of momentum along the
horizontal and vertical directions in the finite domains shown
in Figs. 18 and 19, respectively.

The balance equation is written for each finite domain as

∑

fi d� =
∂

∂t

∫

�

ρui d� +

∫

Ŵ

(ρui )uTndŴ i = 1, 2,

(44)

where fi includes the forces due to the stresses acting on the
boundary of the balance domain and the body forces per unit
area (Figs. 18, 19).

Expressing the values of the momentum and force terms
at the end point of the balance domain in terms the values at an
arbitrary point (such as the corner point A) using higher order
Taylor expansions and retaining second order tems gives after



Fig. 17 Flow past a cylinder, Re = 1, 000. Oscillations with time of
the horizontal velocity at the point with coordinates A (6.7 − 1.02)

Fig. 18 Finite domain where balance of momentum is imposed along
the horizontal direction

some algebra [32] the FIC momentum equations along the
i th coordinate direction as

ri −
1

2
hi j

∂ri

∂x j

= 0 i, j = 1, 2 (45)

with

ri := ρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

−
∂σi j

∂x j

− bi (46)

with σi j = si j − pδi j where si j and p are the deviatoric
stresses and the pressure, respectively.

Note that distance h12 is arbitrary when writting the bal-
ance of momentum along the x1 direction. The same applies
for the distance h21 when deriving the balance equation along
the x2 direction. Thus, in general, h12 �= h21 and this explains
the matrix form of the FIC momentum equations.

The FIC mass balance equation is obtained by invoking
the balance of mass in the finite domain of Fig. 20
∫

Ŵ

ρuTndŴ = 0. (47)

Expanding the values of ρui at the corner points in terms
of the value at an arbitrary point gives of the mass balance

Fig. 19 Finite domain where balance of momentum is imposed along
the vertical direction

Fig. 20 Finite domain where balance of mass is enforced

domain the FIC mass balance equation as [32, 43]

∂ui

∂xi

−
1

2
h j

∂

∂x j

(

∂ui

∂xi

)

= 0.

Note that a matrix form of the characteristic distances
is not obtained in this case as the mass balance equation
expresses the conservation of the mass in the whole domain
ABCD of Fig. 20 with dimensions h1 and h2. Distances h1

and h2 should be taken in general different from distances hi j

defining the domain where balance of momentum is enforced.
In our computations we have however assumed that h1 = h11

and h2 = h22 for simplicity.
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