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Abstract 

The stop-signal paradigm is a popular method for examining response inhibition and impulse 

control in psychology, cognitive neuroscience, and clinical domains because it allows the 

estimation of the covert latency of the stop process (SSRT). In three sets of simulations, we 

examined to what extent SSRTs that were estimated with the popular mean and integration 

methods were influenced by the skew of the reaction time distribution and the gradual slowing of 

the response latencies. We found that the mean method consistently overestimated SSRT. The 

integration method tended to underestimate SSRT when response latencies gradually increased. 

This underestimation bias was absent when SSRTs were estimated with the integration method for 

smaller blocks of trials. Thus, skewing and response slowing can lead to spurious inhibitory 

differences. We recommend that the mean method of estimating SSRT be abandoned in favour of 

the integration method. 
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Fictitious inhibitory differences

The ability to inhibit planned or ongoing actions is a cornerstone of flexible human behaviour 

(Verbruggen & Logan, 2008). The stop-signal paradigm (Figure 1A) is currently one of the most 

popular tasks for examining response inhibition in the laboratory. The last decade has witnessed 

an exponential rise in stop-signal studies in various research domains (see Figure S1 in the 

Supplemental Material available online). The paradigm is popular because it allows researchers to 

estimate the covert latency of the stop process: the stop-signal reaction time (SSRT). SSRT has 

been used to explore the cognitive and neural mechanisms of response inhibition, the 

development and decline of inhibitory capacities across the life span, and correlations between 

individual differences in stopping and behaviours such as substance abuse, pathological gambling, 

risk-taking, and more generally, control of impulses and urges (Chambers, Garavan, & Bellgrove, 

2009; Logan, 1994; Verbruggen & Logan, 2008). In the present study, we used simulations to test 

the reliability and accuracy of SSRT estimates. Previous simulations of Band, van der Molen, and 

Logan (2003) showed that commonly used SSRT-estimation methods were not influenced much 

by variability in go reaction time (RT) or SSRT, or by dependency between the go and stop 

processes. However, we will show that estimates are strongly biased by positive skew and by 

gradual slowing of reaction times. Because skew and slowing are important characteristics of RT 

distributions in most stop-signal experiments (see below), our simulations suggest that some of the 

previously reported differences in stopping may be spurious. 

! SSRT is estimated based on the assumptions of the independent race model (Logan, 1994; 

Logan & Cowan, 1984; Verbruggen & Logan, 2009a): performance in the stop task can be 

modelled as a race between a go process, which is triggered by the presentation of the go 

stimulus, and a stop process, which is triggered by the presentation of a stop signal (Figure 1B). 

The stop signal occurs after a variable delay (stop-signal delay; SSD). If the go process finishes 

before the stop process (i.e. when RT < SSRT + SSD; Figure 1B) then response inhibition is 

unsuccessful and a response is executed; if the stop process finishes before the go process (i.e. 

when RT > SSRT + SSD) then the response is correctly withheld. The race model provides two 

common methods for estimating SSRT: the integration method and the mean method (Logan & 
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Cowan, 1984). In the integration method, the point at which the stop process finishes is estimated 

by integrating the RT distribution and finding the point at which the integral equals the probability of 

responding [p(respond|signal)] for a specific delay (Figure 1B). SSRT is then calculated by simply 

subtracting SSD from the finishing time. In the mean method, the mean of the inhibition function (a 

plot of the probability of responding given a stop signal against SSD; see Logan & Cowan, 1984; 

Verbruggen & Logan, 2009a) is subtracted from the mean of the RT distribution.

! In recent years, the majority of stop-signal studies have used a dynamic tracking procedure 

to determine an SSD at which subjects inhibit 50% of the time. At the beginning of the experiment, 

SSD is set to a specific value (e.g. 250 ms) and is then constantly adjusted after stop signal trials, 

depending on the outcome of the race: when inhibition is successful, SSD increases (e.g. by 50 

ms); when inhibition is unsuccessful, SSD decreases (e.g., by 50 ms). This one-up/one-down 

tracking procedure typically results in a p(respond|signal) ≈ .50, which means that the race 

between the stop process and the go process is tied. Then SSRT is usually estimated with the 

mean method or the integration method (see Figure S1 in Supplemental Material)i. The mean 

method uses the mean of the inhibition function (see above), which corresponds to the average 

SSD obtained with the tracking procedure when p(respond|signal) = .50. In other words, the mean 

method assumes that the mean RT equals SSRT + mean SSD, so SSRT can be estimated easily 

by subtracting mean SSD from mean RT (e.g. Logan & Cowan, 1984; Logan, Schachar, & 

Tannock, 1997). The integration method assumes that the finishing time of the stop process 

corresponds to the nth RT, with n = the number of RTs in the RT distribution multiplied by the 

overall p(respond|signal) (Logan, 1981); SSRT can then be estimated by subtracting mean SSD 

from the nth RT (e.g. Ridderinkhof, Band, & Logan, 1999; Verbruggen, Liefooghe, & 

Vandierendonck, 2004). 
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i Some studies estimated SSRT by subtracting mean SSD from the median RT. This ‘median’ method is a variant of the 
integration method that assumes that p(respond|signal) is always exactly .50. This is rarely the case. Thus, the median 
method is most of the time a less accurate version of the integration method; therefore, it is not further considered in the 
main analyses. We report the results for the median method in Table S8 in the Supplemental Material. The table shows 
that when ‘subjects’ did not slow and p(respond|signal) was close to .50, the results were very similar to the results for 
the integration method (as expected). However, when slowing was implemented, SSRT was overestimated [because 
p(respond|signal) was often lower than .50; see Tables S3–S5]. The overestimation bias was less pronounced than the 
bias observed for the mean method because the median is less influenced by the tail of the distribution than the mean. 



!  Simulations and reliability ii tests suggest that when the tracking procedure is used, the 

mean and integration estimates are both reliable (Band et al., 2003; Congdon et al., 2012; Logan 

et al., 1997; Williams, Ponesse, Schachar, Logan, & Tannock, 1999). However, a recent empirical 

study reported numerical differences between the two (Boehler et al., 2012). We propose that such 

discrepancies are due to two factors, namely (1) skewness of the RT distribution and (2) the 

degree of proactive response slowing in anticipation of stop signals. Indeed, the simulations of 

Band et al. (2003), and the comparison of mean and integration method by Boehler et al. (2012), 

suggest that skew and slowing might have an effect on estimations. However, these factors not 

been systematically explored in the simulations or reliability tests so far. There are often large 

individual or group differences in the shape of the RT distribution and the degree of response 

slowing, so it is important to know to what extent these differences influence SSRT estimates. 

! In our first set of simulations, we examined the effect of positively skewed RT distributions 

on SSRT estimates. It is well known that the mean is strongly influenced by extreme scores in the 

tails of the distribution; the median is less affected by the tails. In the stop-signal task, the median 

corresponds to the nth RT when p(respond|signal) is exactly .50. Because RT distributions are 

usually positively skewed (Ratcliff, 1993), the right tail of the distribution might explain 

discrepancies between the ‘mean’ and ‘integration’ estimates. As shown in Figure 1C, the mean 

method would overestimate the finishing time of the stop process (and therefore, the SSRT) when 

the RT distribution is skewed, whereas the integration method might provide a more accurate 

estimate. We tested this in the first set of simulations. 

! In a second and third set of simulations, we explored the effect of response slowing on 

SSRT estimates. Recent studies have shown that subjects slow responses either proactively when 

they expect that stop signals might occur, or reactively when they fail to inhibit their responses (e.g. 

Aron, 2011; Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & Logan, 2009b; 

Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008; Zandbelt, Bloemendaal, Neggers, Kahn, 

& Vink, 2012). Indeed, subjects sometimes slow their RT distributions over the course of the 

experiment to try to beat the tracking algorithm (see e.g. Leotti & Wager, 2010 for some extreme 
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examples). These shifts in the RT distribution could result in overestimates of SSRT in the mean 

method because slowing would primarily influence the right tail of the distribution and 

underestimates in SSRT in the integration method because the tracking is a step behind when 

subjects continuously slow down. We tested the effect of slowing in the second and third set 

simulations. 

Figure 1. (A) In the stop-signal task, participants perform a go task (e.g. respond to the shape of a stimulus). On 
a minority of the trials, the go stimulus is followed by a ‘stop signal’ (e.g. the outline of the shape turning bold) 
after a variable delay (stop-signal delay; SSD); this stop signal instructs the subject to withhold the planned 
response. FIX = presentation duration of the fixation sign; MAXRT = response deadline. (B) Graphic 
representation of the assumptions of the independent horse-race model of Logan and Cowan (1984), indicating 
how the probability of responding [p(respond|signal)] depends on the distribution of go reaction times, stop-
signal delay (SSD) and stop-signal reaction time (SSRT). In this example, p(respond|signal) = .50. The dotted line  
corresponds to the nth percentile, with n = p(respond|signal); the square shows the mean of the RT distribution. 
(C) This panel demonstrates that when the distribution is skewed to the right, there is a substantial difference 
between the mean and the nth RT; this may influence the SSRT estimations (see main text). 
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Methods 

Race model simulations

Performance in the stop-signal task was simulated based on assumptions of the independent race 

model (Logan & Cowan, 1984): on stop-signal trials, a response was deemed to be withheld 

(signal-inhibit) when the RT was larger than SSRT + SSD; a response was deemed to be 

erroneously executed (signal-respond) when RT was smaller than SSRT + SSD. 

! All simulations were done using R (http://www.r-project.org). RTs were sampled from an ex-

Gaussian distribution, using the rexGaus function (http://gamlss.org). The ex-Gaussian distribution 

is often used by psychologists to describe RT data (Ratcliff & Murdock, 1976); it has a positively 

skewed unimodal shape and results from a convolution of a normal (Gaussian) distribution and an 

exponential distribution. It is characterised by three parameters: mu (mean of the Gaussian 

component), sigma (SD of Gaussian component), and tau (both the mean and SD of the 

exponential component) (Figure S2 in the Supplemental Material shows how changes in these 

three parameters influence the distribution). Sigma approximately represents the rise in the left tail 

and tau the fall in the right tail of the ex-Gaussian distribution, whose mean = mu + tau and 

variance = tau2 + sigma2 (Ratcliff, 1979). Band et al. (2003) also used an ex-gaussian distribution 

to model reaction times in their simulations.

! In the first set of simulations, sigma for the go task (RT-sigma) was 50, 100, or 150; and tau 

for the go task (RT-tau) was 50, 150, 250 (see e.g. Schmiedek, Oberauer, Wilhelm, Süss, & 

Wittmann, 2007, for a series of choice-reaction time tasks with tau’s in this range). Empirically, 

sigma is usually not more than one fourth of tau (Ratcliff, 1993); however, we included a wider 

range of sigma because variability is often increased in clinical populations (e.g.Klein, Wendling, 

Huettner, Ruder, & Peper, 2006; Leth-Steensen, King Elbaz, & Douglas, 2000). For each 

combination of RT-sigma and RT-tau, we simulated the data of 100 ‘subjects’. Mu was different for 

each subject [mu(subject)]; it was sampled from a normal distribution with mean = 400 (i.e. the 

population mean) and SD = 25, with the restriction that it was larger than 300. 

! SSRTs were also sampled from an ex-Gaussian distribution. For all subjects, both SSRT-

sigma and SSRT-tau were 10. Mu(subject) was derived from a normal distribution with mean = 200 
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(population mean), and SD = 10, with the restriction that mu(subject) was larger than 150. Note 

that we also ran simulations in which SSRT-sigma and SSRT-tau were varied; the results are 

reported in the Supplemental Material (Table S7). SSRT-sigma and SSRT-tau did not influence the 

estimates much, and did not interact with the effects of RT-tau and response slowing. Therefore, 

we used only one value for SSRT-sigma and SSRT-tau in the main simulations reported below. 

! For each simulated subject, there were 4 blocks of 60 trials; signals randomly ‘occurred’ on 

25% of the trials, resulting in 15 stop-signal trials per block. The ‘delay’ between the start of the go 

process and the start of the stop process (SSD) was initially set at 150 + RT-tau (e.g. when RT-tau 

was 250, the initial SSD was 400), and subsequently adjusted: after a signal-inhibit trial, SSD 

increased by 50; after a signal-respond trial, SSD decreased by 50. The start value was chosen in 

such a way that the race between go and stop would be close, but with a small initial ‘head start’ 

for the stop process (the finishing time of the go process ≈ mean RT = 400 + RT-tau; the finishing 

time of the stop process ≈ SSD + mean SSRT = 150 + RT-tau + 200 + SSRT-tau). Because mu 

was not manipulated across conditions, we only used tau to determine start SSD. 

! In the second set of simulations, we examined the effect of gradual slowing of reaction 

times. RTs were again derived from an ex-Gaussian distribution but RT-mu increased linearly over 

trials. The start value of RT-mu was again derived from a normal distribution with mu = 400 and SD 

= 25. The slope of the increase depended on a slowing factor, which could be 1, 1.5, or 2.5; these 

values were roughly based on the degree of slowing for individual subjects in one of our previous 

studies (Verbruggen & Logan, 2009b). The slope of the increase was (y2 – y1)⧸(x2 – x1), with y2 = 

RT-mu(start) * slowing factor, and y1 = RT-mu(start), x2 = 240 (the trial number of the last trial),and 

x1 = 1 (trial number of the first trial). When the slowing factor was 1, the slope was 0 (i.e. y2 = y1, 

so no slowing). When the slowing factor was 1.5 or 2.5, the slope was positive and RT-mu 

increased. For example, with only six trials and slowing factor = 1.5, RT-mu’s would be: T1 = 

mu(start), T2 = mu(start) * 1.1, T3 = mu(start) * 1.2, T4 = mu(start) * 1.3, T5 = mu(start) * 1.4, T6 = 

mu(start) * 1.5. In this second set of simulations, RT-sigma was 50 or 150, and RT-tau was 50 or 

250. 
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! Finally, in the third set of simulations, the slowing factor was different for each subject to 

allow for individual differences in slowing. For each simulated subject, slowing factor was derived 

from a uniform distribution with min = 1, and max = 3. 

Estimation and analyses

For the first set of simulations, we estimated SSRT over all blocks using the mean (SSRT = mean 

RT - mean SSD) and integration (SSRT = nth RT - mean SSD) methods. For the second and third 

set, we also estimated SSRT for each block separately using the integration method and then took 

the average of these four block estimates iii. Trials with a RT > 2000 were considered to be missed 

responses (in real experiments, there is always a response deadline around this value). These 

‘missed’ trials were excluded when we estimated SSRT using the ‘mean’ method; for the 

integration methods, RT for missed responses was set to 2000iv.

! For each estimation method, we calculated the difference between the estimated SSRT and 

actual SSRT; positive values indicate that SSRT is overestimated, whereas negative values 

indicate that SSRT is underestimated. Table 1 reports the mean difference scores, confidence 

intervals, and t-tests that explored whether the SSRT difference was reliably different from zero. 

Using mixed ANOVAs (see Tables S2, S4, and S6 in the Supplemental Material for overviews), we 

then tested whether the difference scores were influenced by estimation method, RT-sigma, RT-

tau, and slowing (second set of simulations). 

Results and discussion

In the first set of simulations, the tracking procedure worked well and p(respond|signal) was close 

to .50 for all RT-sigma/RT-tau combinations (see Table S1 in Supplemental Material). When we 

collapsed across all values of RT-sigma and RT-tau, we found that the mean method 

overestimated SSRT; by contrast, the integration method tended to slightly underestimate SSRT 

(Table 1). 

!
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iii Because there was an equal number of signal trials in each block, a block-based variant of the mean method results in 
the exact same estimate as the estimate obtained using experiment-based mean method. 

iv As discussed below, the mean method tended to overestimate SSRT. This overestimation would be even more 
pronounced if ‘missed’ responses were not excluded or when ‘missed’ RT was set to 2000. 



Mean
difference

95% CI95% CI one-sample 
t df pMean

difference lower upper

one-sample 
t df p

Experiment 1Experiment 1Experiment 1

Mean methodMean method 23.46 21.15 25.78 19.92 899 < .001

Integration methodIntegration method -6.16 -8.35 -3.97 5.53 899 < .001

Experiment 2: 
slow factor = 1
Experiment 2: 
slow factor = 1
Experiment 2: 
slow factor = 1

Mean methodMean method 25.89 22.09 29.69 13.39 399 < .001

Integration methodIntegration method -4.73 -8.19 -1.28 2.70 399 0.01

Integration (blocked)Integration (blocked) -3.48 -6.92 -0.04 1.99 399 0.05

Experiment 2: 
slow factor = 1.5
Experiment 2: 
slow factor = 1.5
Experiment 2: 
slow factor = 1.5

Mean methodMean method 39.67 35.47 43.88 18.55 399 < .001

Integration methodIntegration method -1.13 -4.62 2.36 0.64 399 0.52

Integration (blocked)Integration (blocked) -0.62 -4.15 2.91 0.35 399 0.73

Experiment 2: 
slow factor = 2.5
Experiment 2: 
slow factor = 2.5
Experiment 2: 
slow factor = 2.5

Mean methodMean method 62.67 58.27 67.07 27.99 399 < .001

Integration methodIntegration method -14.10 -18.38 -9.82 6.48 399 < .001

Integration (blocked)Integration (blocked) -1.78 -5.38 1.81 0.97 399 0.33

Experiment 3Experiment 3Experiment 3

Mean methodMean method 51.07 46.81 55.33 23.55 399 < .001

Integration methodIntegration method -6.59 -10.37 -2.80 3.42 399 < .001

Integration (blocked)Integration (blocked) 0.84 -2.52 4.19 0.49 399 0.62

Table 1: Overview of analyses of the difference scores (i.e. difference between the estimated SSRT and actual 
SSRT; positive values indicate that SSRT is overestimated, whereas negative values indicate that SSRT is 
underestimated). One-sample t tests were performed to examine whether the scores were significantly different 
from zero.

We used box-plots of differences scores to examine the accuracy of SSRT estimates and to 

explore the estimation bias: a leftward shift of a box indicates underestimation; rightward shift 

indicates overestimation. The plots (Figure 2) demonstrate that when RT-sigma and RT-tau were 

small, the difference between the estimated and actual SSRTs was small for most of subjects. An 

increase in RT-sigma led to more noisy estimates, but did not induce a systematic bias (i.e. the box 
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widened but was still centred around zero). Changes in RT-tau, which influenced the right tail 

(positive skew) of the RT-distribution, had a more pronounced effect on SSRT estimations. A 

comparison of the bottom- and top-row box-plots shows that when RT-tau increased, estimates 

became noisier and, more importantly, became biased. For the mean method, the rightward shift of 

the top-row boxes shows that SSRT was overestimated when RT-tau increased. The integration 

method had a small tendency to underestimate SSRT when RT-tau increased, but this effect was 

less pronounced. Thus, the integration method seemed more robust and less biased than the 

mean method. These conclusions are supported by significant main effects of estimation method, 

RT-tau, and an interaction between method and RT-tau (see Table S2 in the Supplemental 

Material). 

! The overestimation bias for large RT-tau’s is problematic when SSRTs of different groups or 

conditions are compared. Often, RT distributions differ between groups or conditions. For example, 

a recent study showed that RT-tau was approximately 251 ms for children with ADHD and 162 ms 

for control children (Epstein et al., 2011). Such RT-tau group differences could influence the SSRT 

estimates. We further tested this by randomly selecting 20 subjects in the RT-sigma=100/RT-

tau=150 condition and 20 subjects in the RT-sigma=100/RT-tau=250 condition. As expected, there 

was no difference between the true stop latencies in both conditions [208 vs. 206; F(1,38) = 0.11, p 

= 0.750]. However, there was a significant 31 ms difference between the estimated SSRTs [RT-

tau=150: 229 ms, RT-tau=250: 260 ms; F(1,38) = 6.60, p = .014]. Thus, when there are differences 

in RT-tau, the mean method may lead to incorrect conclusions about group differences in SSRTs. 

Note that there was no difference between the SSRTs estimated using the integration method [200 

vs. 204; F(1,38) = 0.07, p = 0.798]. 
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Figure 2. This series of box-plots shows the difference between the estimated stop latency (using the mean and 
integration methods) and the true stop latency for each combination of RT-sigma and RT-tau. Negative values 
indicate the estimated value is an underestimation of the true SSRT; positive values indicate that the estimated 
SSRT is longer than the actual stop latency. The plots show that estimates become noisier when RT-sigma and 
RT-tau increase. Importantly, the mean method substantially overestimates the stop latency when RT-tau 
increases. 

In the second set of simulations, we tested how gradual slowing of RTs over trials influences the 

SSRT estimates. Here, we used two variants of the integration method: (1) the variant that we 

used in the first set of simulations and that uses all trials to obtain a single SSRT estimate 

(henceforth, the experiment-wide integration method), and (2) a block-based integration method 
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that estimated SSRT for each block separately (there were 60 trials per block, 15 of which were 

signal trials) and then took the average of these four estimates. 

! The box-plots in Figure 3 show that the mean method overestimates SSRT when RT-tau 

increases or when mean RT gradually increases over trials (see also Table 1). By contrast, the 

experiment-wide integration method tended to underestimate SSRT, especially when the slowing 

factor increased (see Figure 3 and Table 1). The block-based integration method did not show 

such a consistent bias. These conclusions were supported by the ANOVAs reported in Table S4 of 

the Supplemental Material. 

Figure 3. This series of box-plots shows how the SSRT estimates are influenced by RT-tau and response 
slowing. The mean method is influenced by both, which leads to overestimations for most RT-tau and slowing-
factor combinations. By contrast, the integration method, which estimates SSRT based on all trials, tends to 
underestimate SSRT. Finally, the block-based integration method, which estimates SSRT for each block 
separately first, appears relatively immune to changes in RT-tau and slowing.
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We found that the mean method was strongly influenced by response slowing. One possible 

explanation for this finding is that the mean method assumes that the probability of responding 

approximates .50. However, Table S3 (Supplemental Material) shows that when the slowing factor 

increased, p(respond|signal) tended to decrease: when the slowing factor is large, the tracking 

procedure cannot keep up with the changes in RT, so p(respond|signal) will be lower than .50. 

Therefore, we re-estimated SSRT using only those simulated subjects for which .40 < p(respond|

signal) < .60; these values are based on the criterion discussed in Verbruggen, Logan, & Stevens 

(2008). The results are shown in Figure S3 (Supplemental Material); as can be seen, the RT-tau 

and slowing biases were still present, even when only the central estimates were included. 

! The second set of simulations demonstrated that the mean method and experiment-wide 

integration method were influenced by response slowing. In a third set of simulations, we used a 

random slowing factor for each simulated subject to explore the correlation between slowing and 

the degree of over/underestimation. Figure 4 shows that when RT-tau was low and the experiment-

wide integration method was used, the estimated SSRT correlated negatively with the degree of 

slowingv,vi. Researchers have previously argued that such negative correlations could be due to 

proactive suppression of motor output or changes in task priorities (e.g. Jahfari, Stinear, Claffey, 

Verbruggen, & Aron, 2010; Leotti & Wager, 2010). Our simulations suggest that this negative 

correlation could be due to a bias in SSRT estimation. Importantly, this bias was not observed 

when SSRT was estimated for each block separately (middle row Figure 4). As expected based on 

the previous sets of simulations, we found a positive correlation between response slowing and 

degree of overestimation for the mean method. 

14

v We obtained very similar results when we implemented slowing differently: On each trial, we obtained an RT from a 
single ex-gaussian distribution with constant parameters [mu(subject), sigma, tau]. This RT was then multiplied by the 
slowing factor. For example, if the slowing factor would have been 1.5 and the number of trials = 3, the RTs would be: T1 
= RT(sampled), T2 = RT(sampled) * 1.25, T3 = RT(sampled) * 1.5. The negative correlations and underestimation bias 
were still present for the standard integration method (if anything, the effects were more pronounced), but not for the 
block-based method. 

vi For the mean method, overall correlation was 0.26 [t(398) = 5.48, p < .001], which suggests that the mean method will 
overestimate SSRT when subjects slow down. For the experiment-wide integration method, the overall correlation was 
-0.19 [t(398) = -3.83, p < .001]; this suggests that the experiment-based integration method will underestimate SSRT 
when subjects slow down. Finally, for the block-based integration, overall correlation was 0.02 [t(398) = 0.34, p = 0.74], 
which suggests that the estimates are not influenced by slowing. We obtained very similar correlations between the 
degree of slowing and the difference between SSRT(estimate) and SSRT(true): for the mean method, the overall 
correlation was 0.29 [t(398) = 5.98, p < .001]; for the integration method, the overall correlation was -0.21 [t(398) = -4.36, 
p < .001]; finally, for the block-based integration, overall correlation was 0.02 [t(398) = 0.45, p = 0.66]. This confirms that 
the observed correlations between slowing and SSRT were due to an estimation bias.
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Figure 4: Correlation between the estimated SSRT and the slowing factor.

15



Conclusions and practical guidelines

In the present study, we explored to what extent the skew of the RT distribution and gradual 

slowing of response latencies influences the ‘mean’ and ‘integration’ SSRT estimates. The mean 

method is often used (see Figure S1 in the Supplemental Material) because it is very easy: SSRT 

can be estimated simply by subtracting the mean SSD from the mean RT. However our simulations 

show that this approach overestimates SSRT when the RT distribution is skewed to the right (i.e. 

when RT-tau is large) or when RTs increase gradually over the course of the experiment. We 

demonstrated that individual or group differences in RT skew or response slowing could result in 

spurious inhibitory differences. Unfortunately, such RT differences may occur frequently. For 

example, studies showed that SSRT is longer for children with ADHD than for control children 

(Lijffijt, Kenemans, Verbaten, & van Engeland, 2005; Oosterlaan & Sergeant, 1998; Schachar & 

Logan, 1990). However, a recent study estimated that tau was much higher in children with ADHD 

than in control children (Epstein et al., 2011). Thus, the mean method will overestimate SSRT 

differences between ADHD children and control children, and possibly produce spurious 

differences. Thus, our first take-home message is that the mean method should be 

abandoned because it is overly susceptible to the shape of the RT distribution. 

! The integration method fared better in the first set simulations: there was a trend to 

underestimate SSRT slightly (approximately 4 ms), but there were no obvious group differences 

caused by changes in the shape of the RT distribution. This is consistent with a recent reliability 

analysis that used split-half reliability measures (Congdon et al., 2012). However, the second and 

third set of simulations showed that the small underestimation bias for the integration method 

became more pronounced when there is gradual slowing of RTs across blocks. This 

underestimation bias may explain the previously observed negative correlations between SSRT 

and response slowing(e.g. Jahfari et al., 2010; Leotti & Wager, 2010). Thus, our second take-

home message is that the experiment-wide integration method results in reliable and 

unbiased estimates unless subjects slow their RT gradually. 

! The gradual slowing of reaction times may be reduced by clear advance instructions (for 

example, by stressing speed in the go task and explaining the staircase tracking procedure) and by  
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providing feedback after every trial (e.g. Ridderinkhof et al., 1999; Verbruggen et al., 2004) or after 

every block (e.g. Verbruggen et al., 2008). Thus, our third take-home message is that in 

standard stop tasks researchers should provide clear instructions and implement feedback 

procedures to discourage excessive strategic slowing. 

! Even when feedback is provided, slowing may still be observed in certain subjects (e.g. 

Verbruggen et al., 2004; Verbruggen et al., 2008). Researchers can exclude those subjects who 

slow their responses substantially; our simulations suggest that the underestimation bias appeared 

when the mean of the normal part of the distribution doubledvii. However, this may result in the 

exclusion of a large number of subjects in some experiments, which could induce an exclusion 

bias. Also, researchers may be specifically interested in the correlation between slowing and 

SSRT. Recently, several authors have argued that strategy adjustments may be an important 

aspect of successful stop performance and more generally, impulse control in everyday life (e.g. 

Aron, 2011; Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & Logan, 2009b). Feedback 

about slowing may not be provided when such strategic adjustments are examined. Furthermore, 

excluding subjects who slow substantially is not be appropriate in such studies. The second and 

third set of simulations show that a block-based version of the integration method is less 

susceptible to bias from response slowing. When SSRT was estimated for each block separately 

(number of no-signal trials per block = 45; number of signal trials per block = 15) and then 

averaged, we obtained a reliable and unbiased SSRT even when there was substantial response 

slowing. Additional analyses (Supplementary Material; Figures S5–S6) suggest that approximately 

40-80 trials are required per block (25% of which are signal trials). If there are fewer trials, the 

estimates become too noisy; if there are more trials, the underestimation bias starts to emerge. We 

recommend that there are at least 50 signals in total. Thus, our fourth take-home message is 

that researchers should estimate SSRT for each block separately when strategic slowing is 

observed and subjects cannot be excluded. 

! It should be noted that slowing could be interpreted as a violation of the context 

independence and the stochastic independence assumptions of the race model (Logan & Cowan, 

17
vii When RT-tau is small, the mean of the normal part of the distribution will not differ much from the global average. 



1984). Context independence (also referred to as signal independence) refers to the assumption 

that the RT distribution is the same for no-signal trials and stop-signal trials. Stochastic 

independence refers to the assumption that trial-by-trial variability in RT is unrelated to trial-by-trial 

variability in SSRT. Gradual slowing of RT does not necessarily violate these assumptions: 

Because subjects cannot predict whether a stop signal will occur in the standard version of a stop 

task, they are expected to slow down on all trials (including no-signal trials). In other words, the 

assumptions of the race model hold as long as slowing occurs to a similar degree on both signal 

and no-signal trials. Note also that the race model does not make assumptions about the shape of 

the finishing-time distributions. Thus, skew should not influence the SSRT estimations. The results 

of the first set of simulations demonstrated that this was the case for the integration method. 

! To conclude, our results demonstrate that the central SSRT estimates, which were 

previously thought to be most reliable, are strongly influenced by the right tail of the RT distribution 

and gradual slowing of RTs. Therefore, we recommend that researchers abandon the mean 

method to estimate SSRT and instead use the experiment-wide or block-based integration method 

to reliably estimate the latency of response inhibition. 

18



References

Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for 
stopping inappropriate responses. Biological Psychiatry, 69(12), e55-68. doi:10.1016/

j.biopsych.2010.07.024
Band, G. P., van der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of the 

stop-signal procedure. Acta Psychologica, 112(2), 105-42.
Bissett, P. G., & Logan, G. D. (2011). Balancing cognitive demands: Control adjustments in the 

stop-signal paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
37(2), 392-404. doi:10.1037/a0021800

Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2012). The 
influence of different stop-signal response time estimation procedures on behavior-behavior 

and brain-behavior correlations. Behavioural Brain Research. doi:10.1016/j.bbr.2012.01.003
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of 

response inhibition from cognitive and clinical neuroscience. Neuroscience and Biobehavioral 
Reviews, 33(5), 631-646. doi:10.1016/j.neubiorev.2008.08.016

Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Canli, T., & Poldrack, R. A. (2012). 
Measurement and reliability of response inhibition. Frontiers in Psychology, 3, 37. doi:10.3389/

fpsyg.2012.00037
Epstein, J. N., Langberg, J. M., Rosen, P. J., Graham, A., Narad, M. E., Antonini, T. N., . . . Altaye, 

M. (2011). Evidence for higher reaction time variability for children with adhd on a range of 
cognitive tasks including reward and event rate manipulations. Neuropsychology. doi:10.1037/

a0022155
Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F., & Aron, A. R. (2010). Responding with 

restraint: What are the neurocognitive mechanisms? Journal of Cognitive Neuroscience, 22(7), 
1479-92. doi:10.1162/jocn.2009.21307

Klein, C., Wendling, K., Huettner, P., Ruder, H., & Peper, M. (2006). Intra-subject variability in 
attention-deficit hyperactivity disorder. Biological Psychiatry, 60(10), 1088-97. doi:10.1016/

j.biopsych.2006.04.003
Leotti, L. A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. 

Journal of Experimental Psychology: Human Perception and Performance, 36(2), 430-47. doi:
10.1037/a0016802

Leth-Steensen, C., King Elbaz, Z., & Douglas, V. I. (2000). Mean response times, variability, and 
skew in the responding of ADHD children: A response time distributional approach. Acta 

Psychologica, 104(2), 167-190.
Lijffijt, M., Kenemans, J. L., Verbaten, M. N., & van Engeland, H. (2005). A meta-analytic review of 

stopping performance in attention-deficit/hyperactivity disorder: Deficient inhibitory motor 
control? Journal of Abnormal Psychology, 114(2), 216-22. doi:10.1037/0021-843X.114.2.216

19



Logan, G. D. (1981). Attention, automaticity, and the ability to stop a speeded choice response. 

Attention and Performance IX, 205-222.
Logan, G. D. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal 

paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and 
language (pp. 189-239). Academic Press.

Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act 
of control. Psychological Review, 91(3), 295-327.

Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control. 
Psychological Science, 8(1), 60-64.

Oosterlaan, J., & Sergeant, J. A. (1998). Response inhibition and response re-engagement in 
attention-deficit/hyperactivity disorder, disruptive, anxious and normal children. Behavioural 

Brain Research, 94(1), 33-43.
Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. 

Psychological Bulletin, 86(3), 446-61.
Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 

510-32.
Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological 

Review; Psychological Review, 83(3), 190-214.
Ridderinkhof, K. R., Band, G. P. H., & Logan, G. D. (1999). A study of adaptive behavior: Effects of 

age and irrelevant information on the ability to inhibit one's actions. Acta Psychologica, 
101(2-3), 315-337.

Schachar, R., & Logan, G. D. (1990). Impulsivity and inhibitory control in normal development and 
childhood psychopathology. Developmental Psychology, 26(5), 710-720.

Schmiedek, F., Oberauer, K., Wilhelm, O., Süss, H. M., & Wittmann, W. W. (2007). Individual 
differences in components of reaction time distributions and their relations to working memory 

and intelligence. Journal of Experimental Psychology: General, 136(3), 414-29. doi:
10.1037/0096-3445.136.3.414

Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in 
Cognitive Sciences, 12(11), 418-24. doi:10.1016/j.tics.2008.07.005

Verbruggen, F., & Logan, G. D. (2009a). Models of response inhibition in the stop-signal and stop-
change paradigms. Neuroscience and Biobehavioral Reviews, 33(5), 647-61. doi:10.1016/

j.neubiorev.2008.08.014
Verbruggen, F., & Logan, G. D. (2009b). Proactive adjustments of response strategies in the stop-

signal paradigm. Journal of Experimental Psychology: Human Perception and Performance, 
35(3), 835-54. doi:10.1037/a0012726

20



Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2004). The interaction between stop signal 

inhibition and distractor interference in the flanker and stroop task. Acta Psychologica, 116(1), 
21-37. doi:10.1016/j.actpsy.2003.12.011

Verbruggen, F., Logan, G. D., & Stevens, M. A. (2008). STOP-IT: Windows executable software for 
the stop-signal paradigm. Behavior Research Methods, 40(2), 479-83.

Verbruggen, F., Logan, G. D., Liefooghe, B., & Vandierendonck, A. (2008). Short-term aftereffects 
of response inhibition: Repetition priming or between-trial control adjustments? Journal of 

Experimental Psychology: Human Perception and Performance, 34(2), 413-26. doi:
10.1037/0096-1523.34.2.413

Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development 
of inhibitory control across the life span. Developmental Psychology, 35(1), 205-13.

Zandbelt, B. B., Bloemendaal, M., Neggers, S. F., Kahn, R. S., & Vink, M. (2012). Expectations and 
violations: Delineating the neural network of proactive inhibitory control. Human Brain 

Mapping. doi:10.1002/hbm.22047

21



Supplementary Material

22



Table S1: p(respond|signal) for first set of simulations

M SD min max

Sigma Tau

50 50 0.495 0.011 0.467 0.517

100 50 0.494 0.013 0.467 0.517

150 50 0.493 0.011 0.467 0.517

50 150 0.498 0.011 0.467 0.533

100 150 0.496 0.013 0.467 0.517

150 150 0.496 0.013 0.467 0.517

50 250 0.504 0.015 0.467 0.533

100 250 0.500 0.015 0.467 0.533

150 250 0.499 0.016 0.467 0.533
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Table S2: Overview of analyses of difference scores for the first set of simulations. We conducted 

a 2 (RT-tau) x 2 (RT-sigma) x 2 (method) ANOVA to examine effects of sigma, and tau, and to 
compare methods; we followed this up with separate 2 (RT-tau) x 2 (RT-sigma) ANOVAs for each 

method.

df MSEMSE F p

CombinedCombined

Method (M) 1, 891 6272562725 5609.24 < .001

Sigma (S) 2, 891 19441944 3.84 0.022

Tau (T) 2, 891 19441944 16.71 < .001

M x S 2, 891 6272562725 112.061 < .001

M x T 2, 891 6272562725 1326.78 < .001

S x T 4, 891 19441944 5.74 < .001

M x S x T 4, 891 6272562725 21.24 < .001

Mean onlyMean only

Sigma (S) 2, 891 939939 9.66 < .001

Tau (T) 2, 891 939939 125.23 < .001

S x T 4, 891 939939 8.64 < .001

Integration onlyIntegration only

Sigma (S) 2, 891 10751075 5.83 < .001

Tau (T) 2, 891 10751075 7.68 < .001

S x T 4, 891 10751075 4.22 < .001
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Table S3 : p(respond|signal) for second set of simulations

M SD min max

Sigma Tau Slowing

50 50 1 0.494 0.010 0.467 0.517

150 50 1 0.494 0.013 0.467 0.533

50 250 1 0.505 0.015 0.467 0.533

150 250 1 0.499 0.015 0.467 0.533

50 50 1.5 0.460 0.012 0.433 0.483

150 50 1.5 0.463 0.014 0.433 0.500

50 250 1.5 0.473 0.014 0.433 0.500

150 250 1.5 0.472 0.017 0.433 0.517

50 50 2.5 0.398 0.013 0.367 0.417

150 50 2.5 0.401 0.014 0.367 0.433

50 250 2.5 0.410 0.017 0.367 0.450

150 250 2.5 0.410 0.019 0.367 0.467
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Table S4: Overview of analyses of difference scores for the second set of simulations. We 

conducted a 2 (RT-tau) x 2 (RT-sigma) x 3 (method) x 3 (slowing) ANOVA to examine effects of 
sigma, tau, slowing and estimation method; we followed this up with separate 2 (RT-tau) x 2 (RT-

sigma) x 3 (slowing) ANOVAs for each method. 

df MSE F p

CombinedCombined

Method (M) 2,2376 104 8594.58 < .001

Sigma (S) 1,1188 3533 0.01 0.922

Tau (T) 1,1188 3533 77.54 < .001

Slowing (SL) 2,1188 3533 8.405 0.000

M x S 2,2376 104 16.54 < .001

M x T 2,2376 104 2275.63 < .001

M x SL 4,2376 104 612.43 < .001

S x T 1,1188 3533 7.026 0.008

S x SL 2,1188 3533 0.247 0.781

T x SL 2,1188 3533 8.163 < .001

M x S x T 2,2376 104 67.92 < .001

M x S x SL 4,2376 104 20.30 < .001

M x T x SL 4,2376 104 119.00 < .001

S x T x SL 2,1188 3533 8.338 < .001

M x S x T x SL 4,2376 104 15.64 < .001

Mean onlyMean only

Sigma (S) 1,1188 1122 1.70 0.192

Tau (T) 1,1188 1122 649.62 < .001

Slowing (SL) 2,1188 1122 123.12 < .001

S x T 1,1188 1122 28.11 < .001

S x SL 2,1188 1122 2.37 0.094

T x SL 2,1188 1122 5.61 0.004

S x T x SL 2,1188 1122 6.32 0.002

Integration onlyIntegration only

Sigma (S) 1,1188 1342 0.88 0.347

Tau (T) 1,1188 1342 10.17 0.001

Slowing (SL) 2,1188 1342 13.35 < .001
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S x T 1,1188 1342 5.44 0.020

S x SL 2,1188 1342 0.84 0.434

T x SL 2,1188 1342 34.17 < .001

S x T x SL 2,1188 1342 14.97 < .001

Integration (blocked) onlyIntegration (blocked) only

Sigma (S) 1,1188 1276 0.29 0.589

Tau (T) 1,1188 1276 3.20 0.074

Slowing (SL) 2,1188 1276 0.65 0.523

S x T 1,1188 1276 0.08 0.782

S x SL 2,1188 1276 1.02 0.360

T x SL 2,1188 1276 1.08 0.340

S x T x SL 2,1188 1276 4.33 0.013
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Table S5 : p(respond|signal) for third set of simulations

M SD min max

Sigma Tau

50 50 0.432 0.037 0.367 0.500

150 50 0.431 0.042 0.333 0.517

50 250 0.446 0.039 0.367 0.517

150 250 0.442 0.039 0.350 0.517
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Table S6: Overview of analyses of difference scores for the third set of simulations. We conducted 

a 2 (RT-tau) x 2 (RT-sigma) x 3 (method) ANOVA to examine effects of sigma, tau, and estimation 

method; we followed this up with separate 2 (RT-tau) x 2 (RT-sigma) ANOVAs for each method. 

df MSEMSE F p

CombinedCombined

Method (M) 2,792 259259 1520.26 < .001

Sigma (S) 1,396 32513251 0.68 0.410

Tau (T) 1,396 32513251 49.71 < .001

M x S 2,792 259259 1.0223 0.360

M x T 2,792 259259 274.94 < .001

S x T 1,396 32513251 0.23 0.631

M x S x T 2,792 259259 15.27 < .001

Mean onlyMean only

Sigma (S) 1,396 11941194 0.76 0.385

Tau (T) 1,396 11941194 226.91 < .001

S x T 1,396 11941194 4.76 0.030

Integration onlyIntegration only

Sigma (S) 1,396 14101410 0.07 0.798

Tau (T) 1,396 14101410 23.34 < .001

S x T 1,396 14101410 0.34 0.559

Integration (blocked) onlyIntegration (blocked) only

Sigma (S) 1,396 11641164 1.50 0.222

Tau (T) 1,396 11641164 0.03 0.867

S x T 1,396 11641164 2.14 0.144
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Table S7: We reran the second set of simulations to test whether the effect of RT-tau and 
response slowing were influenced by SSRT-sigma and SSRT-tau (i.e. rise of the left tail and fall of 
the right tail of the SSRT distribution). This table shows the average (avg; in grey) and standard 
deviation (sd) of the difference scores for each combination of SSRT-sigma * SSRT-tau * 
estimation method * RT-tau * slowing factor. We replicated the effects of RT-tau and response 
slowing: the mean method overestimated SSRT when RT-tau and/or the slowing factor increased; 
the experiment-wide integration method [int(exp)] underestimated SSRT when RTs gradually 
increased; finally, the block-based integration method seemed relatively immune against effects of 
RT-tau and response slowing. Importantly, SSRT-sigma and SSRT-tau had very little effect on the 
differences scores and did not interact with the effects of RT-tau or slowing. 

slowing factor = 1slowing factor = 1slowing factor = 1slowing factor = 1 slowing factor = 1.5slowing factor = 1.5slowing factor = 1.5slowing factor = 1.5 slowing factor = 2.5slowing factor = 2.5slowing factor = 2.5slowing factor = 2.5

RTtau=50RTtau=50 RTtau=250RTtau=250 RTtau=50RTtau=50 RTtau=250RTtau=250 RTtau=50RTtau=50 RTtau=250RTtau=250

avg sd avg sd avg sd avg sd avg sd avg sd

SSRT-sigma = 10
SSRT-tau = 10
SSRT-sigma = 10
SSRT-tau = 10

int(exp) 1.92 24.8 -5.6 42.8 0.69 22.4 -1.1 44.1 -31 33.7 9.6 45.9

int(block) 1.74 25.3 -2.5 43.3 0.25 22.7 -2.9 42.8 0.83 29.2 3.63 43.9

mean 7.04 21.6 48.2 43.6 15.2 21.3 65.3 42.4 34.2 28.8 96.1 41.8

SSRT-sigma = 25
SSRT-tau = 10
SSRT-sigma = 25
SSRT-tau = 10

int(exp) -2.6 26 -11 45.7 1.6 21.8 -6.5 42.3 -28 31.3 4.35 43.4

int(block) -2.2 25.5 -6.3 46.8 1.92 22.2 -7 42.5 0.81 26.2 0.65 40.1

mean 3.48 24.1 44.3 43.5 15.9 21 60.9 40.1 36.1 25.6 93.2 37.6

SSRT-sigma = 10
SSRT-tau = 50
SSRT-sigma = 10
SSRT-tau = 50

int(exp) -6.3 24.8 -10 45.2 -1.3 23.3 -2.5 38.4 -27 33.8 2.92 41.7

int(block) -5.5 25.2 -6.9 46.1 -1.4 23.9 -2 37.5 1.12 28.7 -3.9 37.8

mean -2 23.3 39.4 41.6 11.6 22.1 58.4 38 33.2 29.6 83.5 36.7

SSRT-sigma = 25
SSRT-tau = 50
SSRT-sigma = 25
SSRT-tau = 50

int(exp) -5.7 22.4 -9.5 41.2 1.32 22.5 -3.4 45.4 -27 32.3 7.4 45.6

int(block) -5.9 22.1 -7.3 41.2 1.15 22.4 -4 45 1.44 30.1 0.87 43.8

mean -1.5 21.1 41.6 37.5 13.5 21.2 61.1 41.4 34.5 28.5 89.5 39.9
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Table S8: Difference scores when SSRT was analysed using the median RT instead of the nth RT. 
This table shows the average (avg; in grey) and standard deviation (sd) of the difference scores 
(estimated SSRT - true SSRT) for each combination of RT-tau * RTsigma. The final column shows 
the global average of the difference scores and 95% confidence intervals (when the interval does 
not include 0, the global average is significantly different from zero). For the second set of 
simulations, we calculated difference scores for each slowing factor separately. Note that in the 
third set of simulations, we also found that the estimated SSRT correlated with the amount of 
slowing (r = 0.46, p < .001), which suggests that the estimated SSRT will be an overestimation 
when subjects slow down. 

RTtau = 50RTtau = 50RTtau = 50RTtau = 50 RTtau = 250RTtau = 250RTtau = 250RTtau = 250
Average difference
(lower & upper CI)RTsigma 

= 50
RTsigma 

= 50
RTsigma 

= 150
RTsigma 

= 150
RTsigma 

= 50
RTsigma 

= 50
RTsigma 

= 150
RTsigma 

= 150

Average difference
(lower & upper CI)

avg sd avg sd avg sd avg sd

Simulation 1Simulation 1 -2.22 13.95 3.36 29.42 -17.9 40.28 -16.6 42.28 -8.3
(-11.7, -4.9)

Simulation 2Simulation 2

slow factor 
= 1 -3.33 13.5 -1.34 31.52 -13.9 36.82 -9.79 45.77 -7.1 

(-8.8, -5.4)

slow factor 
= 1.5 8.45 15.06 15.47 27.3 6.18 36.5 16.14 45.66 11.6

(9.9, 13.2)

slow factor 
= 2.5 25.7 22.09 41.44 34.95 69.96 38.81 71.89 42.69 52.2

(50.3, 54.2)

Simulation 3Simulation 3 18.43 22.13 29.43 32.63 38.65 49.76 48.35 51.08 33.7
(29.6, 37,9)
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Figure S1: To demonstrate the increasing popularity of the stop-signal paradigm, we performed a 
search in Web of Science (topic = ‘stop-signal task’). (A) The search results confirmed that the task 
is currently very popular in different research areas (the research areas correspond to the Web of 
Science Categories; note that papers can belong to multiple categories). (B) Since the year 2000, 
there has been an exponentially increasing number of stop-signal studies. (C) We checked the 
method section of 170 stop-signal articles published since 2010. 128 studies reported how SSD 
was determined and how SSRT was estimated. The majority of these studies used the tracking 
method. Approximately half of the tracking studies used the mean RT to estimate the SSRT; the 
other studies used the integration method or used the median of the RT distribution as an 
approximation for the nth RT.
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Figure S2:  Effect of changes in mu, sigma, and tau on the shape of the RT distribution. A. When 
mu increases, the RT distribution shifts to the right (left upper panel vs. left lower panel). B. When 
tau increases, the distribution becomes positively skewed (left upper panel vs. right upper panel); 
note that when RT-tau is small, the distribution is almost symmetrical.  C. When sigma increases, 
the spread of the distribution increases (left upper panel vs. right lower panel).
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Figure S3: Results for the mean method (second set of simulations) when only the central 
estimates (.40 < presp < .60) are included. There was still an effect of RT-tau and slowing (both p-
values < .001). 
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Figure S4: Results for the mean method (third set of simulations) when only the central estimates 
(.40 < presp < .60) are included. There was still an effect of RT-tau (p < .001), and the degree of 
slowing still correlated with overestimation. 
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Figure S5: The effect of the number of trials per block for the ‘block-based’ integration method. 
There were 240 trials per subject. For n=10, we split the data file in 24 blocks of 10 trials; for n=20, 
we split the data file in 12 blocks of 20 trials; and so on. N=240 corresponds to the estimates using 
the default integration method. N=60 corresponds to the values for the ‘blocked-based’ integration 
method reported in the mean manuscript. 
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Figure S6: Correlations between difference SSRT(true) and SSRT(estimated) for the different 
block-based integration methods (see caption Figure S5 for discussion of methods). This figure 
suggests that when the number of trials is larger than 80 trials, the previously observed negative 
correlation (see main manuscript) appears again. 
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 : method n=80
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 : method n=120
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 : method n=240
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 : method n=240
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